1
|
Paliwal S, Bawa S, Shalmali N, Tonk RK. Therapeutic potential and recent progression of BTK inhibitors against rheumatoid arthritis. Chem Biol Drug Des 2024; 104:e14582. [PMID: 39013795 DOI: 10.1111/cbdd.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Rheumatoid arthritis (RA) is a complex chronic inflammatory illness that affects the entire physiology of human body. It has become one of the top causes of disability worldwide. The development and progression of RA involves a complex interplay between an individual's genetic background and various environmental factors. In order to effectively manage RA, a multidisciplinary approach is required, as this disease is complicated and its pathophysiological mechanism is not fully understood yet. In majority of arthritis patients, the presence of abnormal B cells and autoantibodies, primarily anti-citrullinated peptide antibodies and rheumatoid factor affects the progression of RA. Therefore, drugs targeting B cells have now become a hot topic in the treatment of RA which is quite evident from the recent trends seen in the discovery of various B cell receptors (BCRs) targeting agents. Bruton's tyrosine kinase (BTK) is one of these recent targets which play a role in the upstream phase of BCR signalling. BTK is an important enzyme that regulates the survival, proliferation, activation and differentiation of B-lineage cells by preventing BCR activation, FC-receptor signalling and osteoclast development. Several BTK inhibitors have been found to be effective against RA during the in vitro and in vivo studies conducted using diverse animal models. This review focuses on BTK inhibition mechanism and its possible impact on immune-mediated disease, along with the types of RA currently being investigated, preclinical and clinical studies and future prospective.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Nishtha Shalmali
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Ghaziabad, Uttar Pradesh, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi, India
| |
Collapse
|
2
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
3
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
4
|
Tang K, Wang S, Gao W, Song Y, Yu B. Harnessing the cyclization strategy for new drug discovery. Acta Pharm Sin B 2022; 12:4309-4326. [PMID: 36562004 PMCID: PMC9764076 DOI: 10.1016/j.apsb.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
The design of new ligands with high affinity and specificity against the targets of interest has been a central focus in drug discovery. As one of the most commonly used methods in drug discovery, the cyclization represents a feasible strategy to identify new lead compounds by increasing structural novelty, scaffold diversity and complexity. Such strategy could also be potentially used for the follow-on drug discovery without patent infringement. In recent years, the cyclization strategy has witnessed great success in the discovery of new lead compounds against different targets for treating various diseases. Herein, we first briefly summarize the use of the cyclization strategy in the discovery of new small-molecule lead compounds, including the proteolysis targeting chimeras (PROTAC) molecules. Particularly, we focus on four main strategies including fused ring cyclization, chain cyclization, spirocyclization and macrocyclization and highlight the use of the cyclization strategy in lead generation. Finally, the challenges including the synthetic intractability, relatively poor pharmacokinetics (PK) profiles and the absence of the structural information for rational structure-based cyclization are also briefly discussed. We hope this review, not exhaustive, could provide a timely overview on the cyclization strategy for the discovery of new lead compounds.
Collapse
|
5
|
Bin Shahari MS, Tiekink ERT, Dolzhenko AV. One‐Pot Multicomponent Synthesis ofBis(diamino‐1,3,5‐triazines) under Microwave Irradiation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Muhammad Syafiq Bin Shahari
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials School of Medical and Life Sciences Sunway University 5 Jalan Universiti, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
| | - Anton V. Dolzhenko
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
- Curtin Medical School Curtin Health Innovation Research Institute Faculty of Health Sciences Curtin University GPO Box U1987 Perth, Western Bentley 6845 Australia
| |
Collapse
|
6
|
Shahari MSB, Dolzhenko AV. A closer look at N2,6-substituted 1,3,5-triazine-2,4-diamines: Advances in synthesis and biological activities. Eur J Med Chem 2022; 241:114645. [DOI: 10.1016/j.ejmech.2022.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/03/2022]
|
7
|
Meng J, Chen P, Wahib M, Yang M, Zheng L, Wei Y, Feng S, Liu W. Boosting the predictive performance with aqueous solubility dataset curation. Sci Data 2022; 9:71. [PMID: 35241693 PMCID: PMC8894363 DOI: 10.1038/s41597-022-01154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Intrinsic solubility is a critical property in pharmaceutical industry that impacts in-vivo bioavailability of small molecule drugs. However, solubility prediction with Artificial Intelligence(AI) are facing insufficient data, poor data quality, and no unified measurements for AI and physics-based approaches. We collect 7 aqueous solubility datasets, and present a dataset curation workflow. Evaluating the curated data with two expanded deep learning methods, improved RMSE scores on all curated thermodynamic datasets are observed. We also compare expanded Chemprop enhanced with curated data and state-of-art physics-based approach using pearson and spearman correlation coefficients. A similar performance on pearson with 0.930 and spearman with 0.947 from expanded Chemprop is achieved. A steadily improved pearson and spearman values with increasing data points are also illustrated. Besides that, the computation advantage of AI models enables quick evaluation of a large set of molecules during the hit identification or lead optimization stages, which helps further decision making within the time cycle at drug discovery stage.
Collapse
Affiliation(s)
- Jintao Meng
- Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518000, China.,National Supercomputer Center in Shenzhen, Shenzhen, 518000, China.,Tencent AI Lab, Shenzhen, 518000, China
| | - Peng Chen
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan. .,RIKEN Center for Computational Science, Hyogo, Japan.
| | - Mohamed Wahib
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,RIKEN Center for Computational Science, Hyogo, Japan
| | | | - Liangzhen Zheng
- Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518000, China
| | - Yanjie Wei
- Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518000, China.
| | - Shengzhong Feng
- National Supercomputer Center in Shenzhen, Shenzhen, 518000, China.
| | - Wei Liu
- Tencent AI Lab, Shenzhen, 518000, China
| |
Collapse
|
8
|
Zhou S, Huang G. Some important inhibitors and mechanisms of rheumatoid arthritis. Chem Biol Drug Des 2021; 99:930-943. [PMID: 34942050 DOI: 10.1111/cbdd.14015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis is a chronic disease that seriously affects human health and quality of life, and it is one of the main causes of labor loss and disability. Many countries have listed rheumatoid arthritis as one of the national a key diseases to tackle. The pathogenesis of RA in humans is still unknown, and medical researchers believe that the pathogenesis of RA may be the result of a combination of genetic and environmental factors. RA is an incurable condition that can only be controlled and treated with conventional drugs. In this paper, the pathologic features and pathogenesis of RA were introduced, and the research progress of new anti-rheumatoid arthritis chemical drugs in recent years was reviewed.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, 401228, China.,College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
9
|
Tasso B, Spallarossa A, Russo E, Brullo C. The Development of BTK Inhibitors: A Five-Year Update. Molecules 2021; 26:molecules26237411. [PMID: 34885993 PMCID: PMC8659154 DOI: 10.3390/molecules26237411] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.
Collapse
|
10
|
Kawahata W, Asami T, Kiyoi T, Irie T, Kashimoto S, Furuichi H, Sawa M. Discovery of AS-1763: A Potent, Selective, Noncovalent, and Orally Available Inhibitor of Bruton's Tyrosine Kinase. J Med Chem 2021; 64:14129-14141. [PMID: 34529443 DOI: 10.1021/acs.jmedchem.1c01279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although Bruton's tyrosine kinase (BTK) has been recognized as a validated drug target for the treatment of B-cell malignances, the emergence of clinical resistance to the first-generation covalent BTK inhibitors is becoming a serious concern. As a part of our effort to develop noncovalent BTK inhibitors, a series of novel pyrrolopyrimidines was identified as noncovalent inhibitors of both the wild-type and C481S mutant BTKs. Subsequent lead optimization led to the identification of an orally available, potent, and selective BTK inhibitor 13f (AS-1763) as a next-generation noncovalent BTK inhibitor. With significant efficacies in vivo tumor xenograft models, AS-1763 has advanced to phase 1 clinical trials.
Collapse
Affiliation(s)
- Wataru Kawahata
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tokiko Asami
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takao Kiyoi
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takayuki Irie
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shigeki Kashimoto
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hatsuo Furuichi
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
11
|
Recent Advances in BTK Inhibitors for the Treatment of Inflammatory and Autoimmune Diseases. Molecules 2021; 26:molecules26164907. [PMID: 34443496 PMCID: PMC8399599 DOI: 10.3390/molecules26164907] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) plays a crucial role in B-cell receptor and Fc receptor signaling pathways. BTK is also involved in the regulation of Toll-like receptors and chemokine receptors. Given the central role of BTK in immunity, BTK inhibition represents a promising therapeutic approach for the treatment of inflammatory and autoimmune diseases. Great efforts have been made in developing BTK inhibitors for potential clinical applications in inflammatory and autoimmune diseases. This review covers the recent development of BTK inhibitors at preclinical and clinical stages in treating these diseases. Individual examples of three types of inhibitors, namely covalent irreversible inhibitors, covalent reversible inhibitors, and non-covalent reversible inhibitors, are discussed with a focus on their structure, bioactivity and selectivity. Contrary to expectations, reversible BTK inhibitors have not yielded a significant breakthrough so far. The development of covalent, irreversible BTK inhibitors has progressed more rapidly. Many candidates entered different stages of clinical trials; tolebrutinib and evobrutinib are undergoing phase 3 clinical evaluation. Rilzabrutinib, a covalent reversible BTK inhibitor, is now in phase 3 clinical trials and also offers a promising future. An analysis of the protein–inhibitor interactions based on published co-crystal structures provides useful clues for the rational design of safe and effective small-molecule BTK inhibitors.
Collapse
|
12
|
Dolzhenko AV, Bin Shahari MS, Junaid A, Tiekink ERT. A New One-Pot Three-Component Synthesis of 4-Aryl-6-cycloamino-1,3,5-triazin-2-amines under Microwave Irradiation. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1401-2795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractA new method for the fast synthesis of diverse 4-aryl-6-cycloamino-1,3,5-triazin-2-amines was developed. The synthesis is performed under microwave irradiation in a one-pot manner from cyanoguanidine, aromatic aldehydes, and cyclic amines. Their three-component reaction in the presence of hydrochloric acid produced dihydrotriazines, which were then converted (without isolation) into the targeted compounds via aromatic dehydrogenation in the presence of alkali. The reaction tolerated various aromatic aldehydes (including heterocyclic) and cyclic amines. Crystal structures of two representative 4-aryl-6-morpholino-1,3,5-triazin-2-amines were established by X-ray crystallography. The results of preliminary biological screening identified potent antileukemic activity for 6-[3,4-dihydroisoquinolin-2(1H)-yl]-4-phenyl-1,3,5-triazin-2-amine.
Collapse
Affiliation(s)
- Anton V. Dolzhenko
- School of Pharmacy, Monash University Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University
| | | | - Ahmad Junaid
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University
| |
Collapse
|
13
|
Hopkins BT, Bame E, Bell N, Bohnert T, Bowden-Verhoek JK, Bui M, Cancilla MT, Conlon P, Cullen P, Erlanson DA, Fan J, Fuchs-Knotts T, Hansen S, Heumann S, Jenkins TJ, Gua C, Liu Y, Liu Y, Lulla M, Marcotte D, Marx I, McDowell B, Mertsching E, Negrou E, Romanowski MJ, Scott D, Silvian L, Yang W, Zhong M. Utilizing structure based drug design and metabolic soft spot identification to optimize the in vitro potency and in vivo pharmacokinetic properties leading to the discovery of novel reversible Bruton's tyrosine kinase inhibitors. Bioorg Med Chem 2021; 44:116275. [PMID: 34314938 DOI: 10.1016/j.bmc.2021.116275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.
Collapse
Affiliation(s)
| | - Eris Bame
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Noah Bell
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Tonika Bohnert
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Minna Bui
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Mark T Cancilla
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Patrick Conlon
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Patrick Cullen
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Junfa Fan
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Tarra Fuchs-Knotts
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Stig Hansen
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Stacey Heumann
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | - Chuck Gua
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Ying Liu
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - YuTing Liu
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Mukush Lulla
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Isaac Marx
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Bob McDowell
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | - Ella Negrou
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Daniel Scott
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Laura Silvian
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Wenjin Yang
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Min Zhong
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Qiu H, Ali Z, Bender A, Caldwell R, Chen YY, Fang Z, Gardberg A, Glaser N, Goettsche A, Goutopoulos A, Grenningloh R, Hanschke B, Head J, Johnson T, Jones C, Jones R, Kulkarni S, Maurer C, Morandi F, Neagu C, Poetzsch S, Potnick J, Schmidt R, Roe K, Viacava Follis A, Wing C, Zhu X, Sherer B. Discovery of potent and selective reversible Bruton's tyrosine kinase inhibitors. Bioorg Med Chem 2021; 40:116163. [PMID: 33932711 DOI: 10.1016/j.bmc.2021.116163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase member of the TEC family of tyrosine kinases. Pre-clinical and clinical data have shown that targeting BTK can be used for the treatment for B-cell disorders. Here we disclose the discovery of a novel imidazo[4,5-b]pyridine series of potent, selective reversible BTK inhibitors through a rational design approach. From a starting hit molecule 1, medicinal chemistry optimization led to the development of a lead compound 30, which exhibited 58 nM BTK inhibitory potency in human whole blood and high kinome selectivity. Additionally, the compound demonstrated favorable pharmacokinetics (PK), and showed potent dose-dependent efficacy in a rat CIA model.
Collapse
Affiliation(s)
- Hui Qiu
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1).
| | - Zahid Ali
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Andrew Bender
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Richard Caldwell
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Yi-Ying Chen
- Stoke Therapeutics, 45 Wiggins Ave, Bedford, MA 01730, USA
| | - Zhizhou Fang
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Anna Gardberg
- Constellation Pharmaceuticals, 215 First St #200, Cambridge, MA 02142, USA
| | - Nina Glaser
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Anja Goettsche
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Andreas Goutopoulos
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Roland Grenningloh
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Bettina Hanschke
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Jared Head
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Theresa Johnson
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Christopher Jones
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Reinaldo Jones
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Shashank Kulkarni
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Christine Maurer
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Federica Morandi
- Roche Pharma Research and Early Development, Grenzacherstrasse 124, Basel, Basel-Stadt, CH 4070, Switzerland
| | - Constantin Neagu
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Sven Poetzsch
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Hessen, DE 64293, Germany
| | - Justin Potnick
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Ralf Schmidt
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Katherine Roe
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Ariele Viacava Follis
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Carolyn Wing
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Xiaohua Zhu
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| | - Brian Sherer
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA(1)
| |
Collapse
|
15
|
Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton's tyrosine kinase (BTK): Current development. Eur J Med Chem 2021; 217:113329. [PMID: 33740548 DOI: 10.1016/j.ejmech.2021.113329] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
Therapy based on Bruton's tyrosine kinase (BTK) inhibitors one of the major treatment options currently recommended for lymphoma patients. The first generation of BTK inhibitor, Ibrutinib, achieved remarkable progress in the treatment of B-cell malignancies, but still has problems with drug-resistance or off-target induced serious side effects. Therefore, numerous new BTK inhibitors were developed to address this unmet medical need. In parallel, the effect of BTK inhibitors against immune-related diseases has been evaluated in clinical trials. This review summarizes recent progress in the research and development of BTK inhibitors, with a focus on structural characteristics and structure-activity relationships. The structure-refinement process of representative pharmacophores as well as their effects on binding affinity, biological activity and pharmacokinetics profiles were analyzed. The advantages and disadvantages of reversible/irreversible BTK inhibitors and their potential implications were discussed to provide a reference for the rational design and development of novel potent BTK inhibitors.
Collapse
Affiliation(s)
- Jiakuo Liu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Zhang
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
16
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
17
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
18
|
Zhao P, Zhou Y, Yu XX, Huang C, Wu YD, Yin G, Wu AX. Iodine-Promoted Multicomponent Synthesis of 2,4-Diamino-1,3,5-triazines. Org Lett 2020; 22:8528-8532. [PMID: 33047965 DOI: 10.1021/acs.orglett.0c03130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and efficient multicomponent cyclization of methyl ketones, cyanamides, and arylamines for the synthesizing 2,4-diamino-1,3,5-triazines via consecutive formation of four C-N bonds is reported. This multicomponent reaction is characterized by the employment of two molecules of cyanamide for double C(sp3)-H amination of methyl ketones, avoiding complicated prepreparation of substrates and expanding the substrate scope. Furthermore, this multicomponent cyclization strategy provides a new approach for generating diverse 2,4-diamino-1,3,5-triazines with a broad substrate scope under mild conditions.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guodong Yin
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
19
|
Ma B, Bohnert T, Otipoby KL, Tien E, Arefayene M, Bai J, Bajrami B, Bame E, Chan TR, Humora M, MacPhee JM, Marcotte D, Mehta D, Metrick CM, Moniz G, Polack E, Poreci U, Prefontaine A, Sheikh S, Schroeder P, Smirnakis K, Zhang L, Zheng F, Hopkins BT. Discovery of BIIB068: A Selective, Potent, Reversible Bruton's Tyrosine Kinase Inhibitor as an Orally Efficacious Agent for Autoimmune Diseases. J Med Chem 2020; 63:12526-12541. [PMID: 32696648 DOI: 10.1021/acs.jmedchem.0c00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoreactive B cell-derived antibodies form immune complexes that likely play a pathogenic role in autoimmune diseases. In systemic lupus erythematosus (SLE), these antibodies bind Fc receptors on myeloid cells and induce proinflammatory cytokine production by monocytes and NETosis by neutrophils. Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that signals downstream of Fc receptors and plays a transduction role in antibody expression following B cell activation. Given the roles of BTK in both the production and sensing of autoreactive antibodies, inhibitors of BTK kinase activity may provide therapeutic value to patients suffering from autoantibody-driven immune disorders. Starting from an in-house proprietary screening hit followed by structure-based rational design, we have identified a potent, reversible BTK inhibitor, BIIB068 (1), which demonstrated good kinome selectivity with good overall drug-like properties for oral dosing, was well tolerated across preclinical species at pharmacologically relevant doses with good ADME properties, and achieved >90% inhibition of BTK phosphorylation (pBTK) in humans.
Collapse
Affiliation(s)
- Bin Ma
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tonika Bohnert
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kevin L Otipoby
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Eric Tien
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Million Arefayene
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Judy Bai
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Eris Bame
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Timothy R Chan
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Humora
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - J Michael MacPhee
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Devangi Mehta
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire M Metrick
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - George Moniz
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Evelyne Polack
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Urjana Poreci
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Annick Prefontaine
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Sheikh
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Patricia Schroeder
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Karen Smirnakis
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lei Zhang
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fengmei Zheng
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T Hopkins
- Research & Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
20
|
Zhai Z, Li R, Bai X, Ning X, Lin Z, Zhao X, Jin Y, Yin Y. Design, synthesis and biological evaluation of novel dithiocarbamate-substituted diphenylaminopyrimidine derivatives as BTK inhibitors. Bioorg Med Chem 2019; 27:4124-4142. [DOI: 10.1016/j.bmc.2019.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
|
21
|
Junaid A, Lim FPL, Tiekink ERT, Dolzhenko AV. New One-Pot Synthesis of 1,3,5-Triazines: Three-Component Condensation, Dimroth Rearrangement, and Dehydrogenative Aromatization. ACS COMBINATORIAL SCIENCE 2019; 21:548-555. [PMID: 31180634 DOI: 10.1021/acscombsci.9b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new, effective one-pot synthesis of the 6, N2-diaryl-1,3,5-triazine-2,4-diamines under microwave irradiation was developed. The method involved an initial three-component condensation of cyanoguanidine, aromatic aldehydes, and arylamines in the presence of hydrochloric acid. Without isolation, the resulting 1,6-diaryl-1,6-dihydro-1,3,5-triazine-2,4-diamines were treated with a base to initiate Dimroth rearrangement and spontaneous dehydrogenative aromatization, affording the desired compounds. The developed method was found to be sufficiently general in scope, tolerating various aromatic aldehydes and amines; by using their combinations in the first step, a representative library of 110 compounds was successfully prepared and screened for anticancer properties.
Collapse
Affiliation(s)
- Ahmad Junaid
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Felicia Phei Lin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V. Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
22
|
Montaruli M, Alberga D, Ciriaco F, Trisciuzzi D, Tondo AR, Mangiatordi GF, Nicolotti O. Accelerating Drug Discovery by Early Protein Drug Target Prediction Based on a Multi-Fingerprint Similarity Search. Molecules 2019; 24:molecules24122233. [PMID: 31207991 PMCID: PMC6631269 DOI: 10.3390/molecules24122233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023] Open
Abstract
In this continuing work, we have updated our recently proposed Multi-fingerprint Similarity Search algorithm (MuSSel) by enabling the generation of dominant ionized species at a physiological pH and the exploration of a larger data domain, which included more than half a million high-quality small molecules extracted from the latest release of ChEMBL (version 24.1, at the time of writing). Provided with a high biological assay confidence score, these selected compounds explored up to 2822 protein drug targets. To improve the data accuracy, samples marked as prodrugs or with equivocal biological annotations were not considered. Notably, MuSSel performances were overall improved by using an object-relational database management system based on PostgreSQL. In order to challenge the real effectiveness of MuSSel in predicting relevant therapeutic drug targets, we analyzed a pool of 36 external bioactive compounds published in the Journal of Medicinal Chemistry from October to December 2018. This study demonstrates that the use of highly curated chemical and biological experimental data on one side, and a powerful multi-fingerprint search algorithm on the other, can be of the utmost importance in addressing the fate of newly conceived small molecules, by strongly reducing the attrition of early phases of drug discovery programs.
Collapse
Affiliation(s)
- Michele Montaruli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Domenico Alberga
- Cineca, Via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy.
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Anna Rita Tondo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156 Milano, Italy.
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| |
Collapse
|
23
|
Hopkins BT, Bame E, Bell N, Bohnert T, Bowden-Verhoek JK, Bui M, Cancilla MT, Conlon P, Cullen P, Erlanson DA, Fan J, Fuchs-Knotts T, Hansen S, Heumann S, Jenkins TJ, Marcotte D, McDowell B, Mertsching E, Negrou E, Otipoby KL, Poreci U, Romanowski MJ, Scott D, Silvian L, Yang W, Zhong M. Optimization of novel reversible Bruton's tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorg Med Chem 2019; 27:2905-2913. [PMID: 31138459 DOI: 10.1016/j.bmc.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.
Collapse
Affiliation(s)
- Brian T Hopkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States.
| | - Eris Bame
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Noah Bell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tonika Bohnert
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | | | - Minna Bui
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Mark T Cancilla
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Patrick Conlon
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Patrick Cullen
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Junfa Fan
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tarra Fuchs-Knotts
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stig Hansen
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stacey Heumann
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tracy J Jenkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Douglas Marcotte
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Bob McDowell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | | | - Ella Negrou
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Kevin L Otipoby
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Urjana Poreci
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Daniel Scott
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Laura Silvian
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Wenjin Yang
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Min Zhong
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| |
Collapse
|