1
|
Kremsmayr T, Schober G, Kaltenböck M, Hoare BL, Brierley SM, Muttenthaler M. Oxytocin Analogues for the Oral Treatment of Abdominal Pain. Angew Chem Int Ed Engl 2024; 63:e202415333. [PMID: 39384545 DOI: 10.1002/anie.202415333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024]
Abstract
Abdominal pain presents an onerous reality for millions of people affected by gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD). The oxytocin receptor (OTR) has emerged as a new analgesic drug target with OTR expression upregulated on colon-innervating nociceptors in chronic visceral hypersensitivity states, accessible via luminal delivery. However, the low gastrointestinal stability of OTR's endogenous peptide ligand oxytocin (OT) is a bottleneck for therapeutic development. Here, we report the development of potent and fully gut-stable OT analogues, laying the foundation for a new area of oral gut-specific peptide therapeutics. Ligand optimisation guided by structure-gut-stability-activity relationships yielded highly stable analogues (t1/2>24 h, compared to t1/2<10 min of OT in intestinal fluid) equipotent to OT (~3 nM) and with enhanced OTR selectivity. Intra-colonic administration of the lead ligand significantly reduced colonic mechanical hypersensitivity in a concentration-dependent manner in a mouse model of chronic abdominal pain. Moreover, oral administration of the lead ligand also displayed significant analgesia in this abdominal pain mouse model. The generated ligands and employed strategies could pave the way to a new class of oral gut-specific peptides to study and combat chronic gastrointestinal disorders, an area with substantial unmet medical needs.
Collapse
Affiliation(s)
- Thomas Kremsmayr
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Straße 38, 1090, Vienna, Austria
| | - Gudrun Schober
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Matthias Kaltenböck
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Straße 38, 1090, Vienna, Austria
| | - Bradley L Hoare
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Straße 38, 1090, Vienna, Austria
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Markus Muttenthaler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Straße 38, 1090, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, 4072, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Wen S, Arakawa H, Yokoyama S, Shirasaka Y, Higashida H, Tamai I. Functional identification of soluble uric acid as an endogenous inhibitor of CD38. eLife 2024; 13:RP96962. [PMID: 39527634 PMCID: PMC11554305 DOI: 10.7554/elife.96962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Excessive elevation or reduction of soluble uric acid (sUA) levels has been linked to some of pathological states, raising another subject that sUA at physiological levels may be essential for the maintenance of health. Yet, the fundamental physiological functions and molecular targets of sUA remain largely unknown. Using enzyme assays and in vitro and in vivo metabolic assays, we demonstrate that sUA directly inhibits the hydrolase and cyclase activities of CD38 via a reversible non-competitive mechanism, thereby limiting nicotinamide adenine dinucleotide (NAD+) degradation. CD38 inhibition is restricted to sUA in purine metabolism, and a structural comparison using methyl analogs of sUA such as caffeine metabolites shows that 1,3-dihydroimidazol-2-one is the main functional group. Moreover, sUA at physiological levels prevents crude lipopolysaccharide (cLPS)-induced systemic inflammation and monosodium urate (MSU) crystal-induced peritonitis in mice by interacting with CD38. Together, this study unveils an unexpected physiological role for sUA in controlling NAD+ availability and innate immunity through CD38 inhibition, providing a new perspective on sUA homeostasis and purine metabolism.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa UniversityKanazawaJapan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiKanazawaJapan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa UniversityKanazawaJapan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| |
Collapse
|
3
|
Higashida H, Oshima Y, Yamamoto Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 2024; 178:171230. [PMID: 38677620 DOI: 10.1016/j.peptides.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
4
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
5
|
Xu JP, Ding XY, Guo SQ, Wang HY, Liu WJ, Jiang HM, Li YD, Fu P, Chen P, Mei YS, Zhang G, Zhou HB, Jing J. Characterization of an Aplysia vasotocin signaling system and actions of posttranslational modifications and individual residues of the ligand on receptor activity. Front Pharmacol 2023; 14:1132066. [PMID: 37021048 PMCID: PMC10067623 DOI: 10.3389/fphar.2023.1132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The vasopressin/oxytocin signaling system is present in both protostomes and deuterostomes and plays various physiological roles. Although there were reports for both vasopressin-like peptides and receptors in mollusc Lymnaea and Octopus, no precursor or receptors have been described in mollusc Aplysia. Here, through bioinformatics, molecular and cellular biology, we identified both the precursor and two receptors for Aplysia vasopressin-like peptide, which we named Aplysia vasotocin (apVT). The precursor provides evidence for the exact sequence of apVT, which is identical to conopressin G from cone snail venom, and contains 9 amino acids, with two cysteines at position 1 and 6, similar to nearly all vasopressin-like peptides. Through inositol monophosphate (IP1) accumulation assay, we demonstrated that two of the three putative receptors we cloned from Aplysia cDNA are true receptors for apVT. We named the two receptors as apVTR1 and apVTR2. We then determined the roles of post-translational modifications (PTMs) of apVT, i.e., the disulfide bond between two cysteines and the C-terminal amidation on receptor activity. Both the disulfide bond and amidation were critical for the activation of the two receptors. Cross-activity with conopressin S, annetocin from an annelid, and vertebrate oxytocin showed that although all three ligands can activate both receptors, the potency of these peptides differed depending on their residue variations from apVT. We, therefore, tested the roles of each residue through alanine substitution and found that each substitution could reduce the potency of the peptide analog, and substitution of the residues within the disulfide bond tended to have a larger impact on receptor activity than the substitution of those outside the bond. Moreover, the two receptors had different sensitivities to the PTMs and single residue substitutions. Thus, we have characterized the Aplysia vasotocin signaling system and showed how the PTMs and individual residues in the ligand contributed to receptor activity.
Collapse
Affiliation(s)
- Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, Institute for Brain Sciences, Advanced Institute for Life Sciences, School of Life Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Nanjing University, Nanjing, Jiangsu, China
- Peng Cheng Laboratory, Shenzhen, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Cherepanov SM, Yuhi T, Iizuka T, Hosono T, Ono M, Fujiwara H, Yokoyama S, Shuto S, Higashida H. Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PLoS One 2023; 18:e0281363. [PMID: 36758056 PMCID: PMC9910740 DOI: 10.1371/journal.pone.0281363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.
Collapse
Affiliation(s)
- Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigeru Yokoyama
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Daughters K, Rees DA, Hunnikin L, Wells A, Hall J, van Goozen S. Oxytocin administration versus emotion training in healthy males: considerations for future research. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210056. [PMID: 35858104 PMCID: PMC9272145 DOI: 10.1098/rstb.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Identifying emotions correctly is essential for successful social interaction. There is therefore a keen interest in designing therapeutic interventions to improve emotion recognition in individuals who struggle with social interaction. The neuropeptide oxytocin has been proposed as a potential physiological intervention due to its important role in emotion recognition and other aspects of social cognition. However, there are a number of caveats to consider with the current form of intranasal oxytocin commonly used in the literature. Psychological interventions, on the other hand, do not carry the same caveats, and there is, therefore, a need to understand how intranasal oxytocin administration compares to psychological interventions designed to target the same psychological phenomena; and whether a combined intervention approach may provide additive benefits. Here we present a pilot, proof-of-concept study in healthy volunteers comparing the effect of intranasal oxytocin against a validated emotion training programme, finding that the psychological intervention, and not intranasal oxytocin, improved emotion recognition specifically for angry expressions. We discuss the theoretical implications of the research for future clinical trials. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Katie Daughters
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Laura Hunnikin
- Centre for Human Developmental Science, Cardiff University, Cardiff, UK
| | - Amy Wells
- Centre for Human Developmental Science, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | |
Collapse
|
8
|
Lopez JB, Chang CC, Kuo YM, Chan MF, Winn BJ. Oxytocin and secretin receptors - implications for dry eye syndrome and ocular pain. FRONTIERS IN OPHTHALMOLOGY 2022; 2:948481. [PMID: 38983562 PMCID: PMC11182124 DOI: 10.3389/fopht.2022.948481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 07/11/2024]
Abstract
Dry eye syndrome, a form of ocular surface inflammation, and chronic ocular pain are common conditions impacting activities of daily living and quality of life. Oxytocin and secretin are peptide hormones that have been shown to synergistically reduce inflammation in various tissues and attenuate the pain response at both the neuron and brain level. The oxytocin receptor (OXTR) and secretin receptor (SCTR) have been found in a wide variety of tissues and organs, including the eye. We reviewed the current literature of in vitro experiments, animal models, and human studies that examine the anti-inflammatory and anti-nociceptive roles of oxytocin and secretin. This review provides an overview of the evidence supporting oxytocin and secretin as the basis for novel treatments of dry eye and ocular pain syndromes.
Collapse
Affiliation(s)
- Jacqueline B Lopez
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Chih-Chiun Chang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
| | - Bryan J Winn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
9
|
Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T, Hayashi Y, Cherepanov SM, Shabalova AA, Salmina AB, Minami K, Yuhi T, Tsuji C, Fu P, Liu Z, Luo S, Zhang A, Yokoyama S, Shuto S, Watanabe M, Fujiwara K, Munesue SI, Harashima A, Yamamoto Y. Oxytocin Dynamics in the Body and Brain Regulated by the Receptor for Advanced Glycation End-Products, CD38, CD157, and Nicotinamide Riboside. Front Neurosci 2022; 16:858070. [PMID: 35873827 PMCID: PMC9301327 DOI: 10.3389/fnins.2022.858070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother’s milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- *Correspondence: Haruhiro Higashida,
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Kanazawa, Japan
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anna A. Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B. Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Kana Minami
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - PinYue Fu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Zhongyu Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shuxin Luo
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anpei Zhang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Sei-ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
10
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
11
|
Cherepanov SM, Gerasimenko M, Yuhi T, Shabalova A, Zhu H, Yokoyama S, Salmina AB, Munesue SI, Harashima A, Yamamoto Y, Higashida H. An improved sample extraction method reveals that plasma receptor for advanced glycation end-products (RAGE) modulates circulating free oxytocin in mice. Peptides 2021; 146:170649. [PMID: 34543678 DOI: 10.1016/j.peptides.2021.170649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) binds oxytocin (OT) and transports it from the blood to the brain. As RAGE's OT-binding capacity was lost in RAGE knockout (KO) mice, we predicted that circulating concentrations of unbound (free) OT should be elevated compared to wild-type (WT) mice. However, this hypothesis has not yet been investigated. Unfortunately, the evaluation of the dynamics of circulating free and bound plasma OT is unclear in immunoassays, in part because of interference from plasma proteins. A radioimmunoassay (RIA) is considered the gold standard method for overcoming this issue, but is more challenging to implement; thus, commercially available enzyme-linked immunosorbent assays (ELISAs) are more commonly used. Here, we developed a pre-treatment method to remove the interference-causing components from plasma before performing ELISA. The acetonitrile protein precipitation (PPT) approach was reliable, with fewer steps needed to measure free OT concentrations than by solid-phase extraction of plasma samples. PPT-extracted plasma samples yielded higher concentrations of OT in RAGE KO mice than in WT mice using ELISA. After peripheral OT injection, free OT plasma levels spiked immediately then rapidly declined in WT mice, but remained high in KO mice. These results suggest that plasma samples with PPT pre-treatment appear to be superior and that circulating soluble RAGE can most likely serve as a buffer for plasma OT, which indicates a novel physiological function of RAGE.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Anna Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hong Zhu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Alla B Salmina
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, 660022, Russia
| | - Shei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|
12
|
Kinoshita R, Kozaki I, Shimizu K, Shibata T, Ochiai A, Honda H. Agonist/Antagonist Activity of Oxytocin Variants Obtained from Free Cyclic Peptide Libraries Generated via Amino Acid Substitution. ACS OMEGA 2021; 6:31244-31252. [PMID: 34841168 PMCID: PMC8613857 DOI: 10.1021/acsomega.1c04982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/26/2023]
Abstract
We established a method for synthesizing a free cyclic peptide library via peptide array synthesis to demonstrate the sequence activity of cyclic peptides. Variants of the cyclic nonapeptide oxytocin (OXT) were synthesized via residue substitution. Natural amino acids (AAs) were classified into eight groups based on their physical properties and the size of their side chains, and a representative AA from each group was selected for residue substitution. All OXT variants were systematically evaluated for agonist/antagonist activity. Consequently, no improvement in agonist activity was observed, although substitution of the P4 and P8 residues resulted in decreased activity due to AA substitution. A few OXT variants exhibited antagonistic activity. In particular, the variants with P2 Leu residue substitution (Y2L) and Phe substitutions at residues 4 (Q4F), 5 (N5F), and 7 (P7F) showed high antagonistic activity. Variant Y2W was found to have the highest inhibitory effect, with a dissociation constant of 44 nM, which was comparable to that of the commercial antagonist atosiban (21 nM). Therefore, a free cyclic peptide library constructed via substitution with a natural AA residue was confirmed to be a powerful tool for bioactive peptide screening.
Collapse
Affiliation(s)
- Remi Kinoshita
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ikko Kozaki
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kazunori Shimizu
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takahiro Shibata
- Department
of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Akihito Ochiai
- Department
of Materials Science and Technology, Graduate School of Science and
Technology, Niigata University, Niigata 950-2181, Japan
| | - Hiroyuki Honda
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
13
|
Fischer NH, Nielsen DS, Palmer D, Meldal M, Diness F. C-Terminal lactamization of peptides. Chem Commun (Camb) 2021; 57:895-898. [PMID: 33367306 DOI: 10.1039/d0cc06018f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-phase synthesis of peptides (SPPS) with release through formation of C-terminal γ-, δ-, or ε-lactams is presented. The natural products ciliatamide A and C were synthesized in up to 90% yield. Peptides carrying C-terminal lactams were shown to possess increased bio-stability and comparable biological activity as compared to the parent non-lactamized peptide amides.
Collapse
Affiliation(s)
- Niklas H Fischer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Daniel S Nielsen
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Frederik Diness
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
14
|
Vantourout JC, Adusumalli SR, Knouse KW, Flood D, Ramirez A, Padial NM, Istrate A, Maziarz K, deGruyter JN, Merchant RR, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJL, Baran PS. Serine-Selective Bioconjugation. J Am Chem Soc 2020; 142:17236-17242. [PMID: 32965106 PMCID: PMC8350984 DOI: 10.1021/jacs.0c05595] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Communication reports the first general method for rapid, chemoselective, and modular functionalization of serine residues in native polypeptides, which uses a reagent platform based on the P(V) oxidation state. This redox-economical approach can be used to append nearly any kind of cargo onto serine, generating a stable, benign, and hydrophilic phosphorothioate linkage. The method tolerates all other known nucleophilic functional groups of naturally occurring proteinogenic amino acids. A variety of applications can be envisaged by this expansion of the toolbox of site-selective bioconjugation methods.
Collapse
Affiliation(s)
- Julien C. Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Kyle W. Knouse
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dillon Flood
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Natalia M. Padial
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Alena Istrate
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Katarzyna Maziarz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Justine N. deGruyter
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Rohan R. Merchant
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jennifer X. Qiao
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, United Kingdom
| | - Martin D. Eastgate
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Philip E. Dawson
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
15
|
Qi Y, Qu Q, Bierer D, Liu L. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chem Asian J 2020; 15:2793-2802. [DOI: 10.1002/asia.202000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yun‐Kun Qi
- Department of Medicinal Chemistry School of Pharmacy Qingdao University Qingdao 266021 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Donald Bierer
- Bayer AG Department of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
16
|
Lawson EA, Olszewski PK, Weller A, Blevins JE. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J Neuroendocrinol 2020; 32:e12805. [PMID: 31657509 PMCID: PMC7186135 DOI: 10.1111/jne.12805] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Obesity and its associated complications have reached epidemic proportions in the USA and also worldwide, highlighting the need for new and more effective treatments. Although the neuropeptide oxytocin (OXT) is well recognised for its peripheral effects on reproductive behaviour, the release of OXT from somatodendrites and axonal terminals within the central nervous system (CNS) is also implicated in the control of energy balance. In this review, we summarise historical data highlighting the effects of exogenous OXT as a short-term regulator of food intake in a context-specific manner and the receptor populations that may mediate these effects. We also describe what is known about the physiological role of endogenous OXT in the control of energy balance and whether serum and brain levels of OXT relate to obesity on a consistent basis across animal models and humans with obesity. We describe recent data on the effectiveness of chronic CNS administration of OXT to decrease food intake and weight gain or to elicit weight loss in diet-induced obese (DIO) and genetically obese mice and rats. Of clinical importance is the finding that chronic central and peripheral OXT treatments both evoke weight loss in obese animal models with impaired leptin signalling at doses that are not associated with visceral illness, tachyphylaxis or adverse cardiovascular effects. Moreover, these results have been largely recapitulated following chronic s.c. or intranasal treatment in DIO non-human primates (rhesus monkeys) and obese humans, respectively. We also identify plausible mechanisms that contribute to the effects of OXT on body weight and glucose homeostasis in rodents, non-human primates and humans. We conclude by describing the ongoing challenges that remain before OXT-based therapeutics can be used as a long-term strategy to treat obesity in humans.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - James E Blevins
- Department of Veterans Affairs Medical Center, Office of Research and Development Medical Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Higashida H, Hashii M, Tanaka Y, Matsukawa S, Higuchi Y, Gabata R, Tsubomoto M, Seishima N, Teramachi M, Kamijima T, Hattori T, Hori O, Tsuji C, Cherepanov SM, Shabalova AA, Gerasimenko M, Minami K, Yokoyama S, Munesue SI, Harashima A, Yamamoto Y, Salmina AB, Lopatina O. CD38, CD157, and RAGE as Molecular Determinants for Social Behavior. Cells 2019; 9:cells9010062. [PMID: 31881755 PMCID: PMC7016687 DOI: 10.3390/cells9010062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson’s disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood–brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; (A.B.S.)
- Correspondence: ; Tel.: +81-76-265-2455; Fax: +81-76-234-4213
| | - Minako Hashii
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
- Division of Molecular Genetics and Clinical Research, National Hospital Organization Nanao Hospital, Nanao 926-0841, Japan
| | - Yukie Tanaka
- Molecular Biology and Chemistry, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan;
| | - Shigeru Matsukawa
- Life Science Research Laboratory, University of Fukui, Fukui 910-1193, Japan;
| | - Yoshihiro Higuchi
- Molecular Pharmacology, Suzuka University of Medical Science, Suzuka 513-0816, Japan;
| | - Ryosuke Gabata
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Makoto Tsubomoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Noriko Seishima
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Mitsuyo Teramachi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Taiki Kamijima
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (T.H.); (O.H.)
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (T.H.); (O.H.)
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Anna A. Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Kana Minami
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
| | - Sei-ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.-i.M.); (A.H.); (Y.Y.)
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.-i.M.); (A.H.); (Y.Y.)
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.-i.M.); (A.H.); (Y.Y.)
| | - Alla B. Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (R.G.); (M.T.); (N.S.); (M.T.); (T.K.); (C.T.); (S.M.C.); (A.A.S.); (M.G.); (K.M.); (S.Y.)
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; (A.B.S.)
| | - Olga Lopatina
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; (A.B.S.)
| |
Collapse
|
18
|
Peripheral Blood Mononuclear Cell Oxytocin and Vasopressin Receptor Expression Positively Correlates with Social and Behavioral Function in Children with Autism. Sci Rep 2019; 9:13443. [PMID: 31530830 PMCID: PMC6748974 DOI: 10.1038/s41598-019-49617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
The peptide hormone oxytocin is an established regulator of social function in mammals, and dysregulated oxytocin signaling is implicated in autism spectrum disorder (ASD). Several clinical trials examining the effects of intranasal oxytocin for improving social and behavioral function in ASD have had mixed or inclusive outcomes. The heterogeneity in clinical trials outcomes may reflect large inter-individual expression variations of the oxytocin and/or vasopressin receptor genes OXTR and AVPR1A, respectively. To explore this hypothesis we examined the expression of both genes in peripheral blood mononuclear cells (PBMC) from ASD children, their non-ASD siblings, and age-matched neurotypical children aged 3 to 16 years of age as well as datamined published ASD datasets. Both genes were found to have large inter-individual variations. Higher OXTR and AVPR1A expression was associated with lower Aberrant Behavior Checklist (ABC) scores. OXTR expression was associated with less severe behavior and higher adaptive behavior on additional standardized measures. Combining the sum expression levels OXTR, AVPR1A, and IGF1 yielded the strongest correlation with ABC scores. We propose that future clinical trials in ASD children with oxytocin, oxytocin mimetics and additional tentative therapeutics should assess the prognostic value of their PBMC mRNA expression of OXTR, AVPR1A, and IGF1.
Collapse
|
19
|
Cherepanov SM, Miura R, Shabalova AA, Ichinose W, Yokoyama S, Fukuda H, Watanabe M, Higashida H, Shuto S. Synthesis of oxytocin derivatives lipidated via a carbonate or carbamate linkage as a long-acting therapeutic agent for social impairment-like behaviors. Bioorg Med Chem 2019; 27:3358-3363. [PMID: 31229420 DOI: 10.1016/j.bmc.2019.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
Abstract
In the course of our studies of hydrophobic oxytocin (OT) analogues, we newly synthesized lipidated OT (LOT-4a-c and LOT-5a-c), in which a long alkyl chain (C14-C16) is conjugated via a carbonate or carbamate linkage at the Tyr-2 phenolic hydroxy group and a palmitoyl group at the terminal amino group of Cys-1. These LOTs did not activate OT and vasopressin receptors. Among the LOTs, however, LOT-4c, having a C16-chain via a carbonate linkage at the phenolic hydroxyl group of the Tyr-2, showed very long-lasting action for the recovery of impaired social behavior in CD38 knockout mice, a rodent model of autistic phenotypes, whereas the effect of OT itself rapidly diminished. These results indicate that LOT-4c may serve as a potential prodrug in mice.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Risako Miura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Anna A Shabalova
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hayato Fukuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|