1
|
Iqbal J, Bano S, Khan IA, Sévigny J, Huang Q. Ectonucleotidase inhibitors: an updated patent review (2017-2023). Expert Opin Ther Pat 2024; 34:1167-1176. [PMID: 39460640 DOI: 10.1080/13543776.2024.2423023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The main enzymes that hydrolyzes nucleotides at the cell surface are nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (ENPPs), alkaline phosphatases (APs) and ecto-5'- nucleotidase (e5'NT, CD73) and by regulating the concentration of nucleotides at the cell surface, these enzymes have the potential to affect various conditions such as fibrosis, cancer metastasis, pruritus, inflammation, and autoimmune diseases. Thus, they represent a prospective therapeutic target. AREA COVERED A number of molecules, including nucleoside/nucleotide and non-nucleoside analogues, and bicyclic compounds, have shown strong potential as ectonucleotidase inhibitors. This review covers the chemistry and clinical uses of ectonucleotidase inhibitors patented between 2017 and 2023. EXPERT OPINION By binding to their specific P1 and P2 receptors at the cell surface, nucleosides and nucleotides regulate a number of pathophysiological events such as inflammation, fibrosis, cancer, and autoimmune diseases. Interestingly, these nucleotides can be hydrolyzed to nucleosides by several cell surface enzymes called ectonucleotidases. The development of small molecules that modulate ectonucleotidase activity is, therefore, of therapeutic value. This review provides valuable insights into recent advancements, including combination therapy and enhanced selectivity, which are poised to shape the future of ectonucleotidase inhibition through a comprehensive analysis of patents.
Collapse
Affiliation(s)
- Jamshed Iqbal
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sehrish Bano
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Imtiaz Ali Khan
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Quebec city, QC, Canada
- Centre de recherche du CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Qing Huang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
2
|
Xu Y, Liu D, Zhang W, Liu Z, Liu J, Zhang W, Song R, Li J, Yang F, Wang Y, Liu D, Qian G, Tang H, Chen X, Lai Y. Discovery of Novel 5-(Pyridazin-3-yl)pyrimidine-2,4(1 H,3 H)-dione Derivatives as Potent and Orally Bioavailable Inhibitors Targeting Ecto-5'-nucleotidase. J Med Chem 2024; 67:18491-18511. [PMID: 39385716 DOI: 10.1021/acs.jmedchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ecto-5-nucleotidase (CD73) is overexpressed in a variety of cancers and associated with the immunosuppressive tumor microenvironment, making it an attractive target for cancer immunotherapy. Herein, we designed and synthesized a series of novel (pyridazine-3-yl)pyrimidine-2,4(1H,3H)-dione derivatives as CD73 inhibitors. These compounds exhibited remarkable inhibitory activity against CD73 in both enzymatic biochemical and cellular assays. Among them, compound 35j proved to be one of the most potent inhibitors and an uncompetitive inhibitor with no obvious cytotoxicity. This compound showed high metabolic stability in rat liver microsomes and favorable pharmacokinetic profiles in rats (T1/2 = 3.37 h, F = 50.24%). Importantly, orally administered 35j significantly inhibited tumor growth in the triple-negative breast cancer 4T1 mouse model (TGI = 73.6%, 50 mg/kg). Immunoassays suggested that 35j remarkably increased the infiltration of positive immune cells, thereby reinvigorating antitumor immunity. These results demonstrate that 35j is a potent CD73 inhibitor worthy of further development.
Collapse
Affiliation(s)
- Yu Xu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Dan Liu
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenzhuang Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Zhining Liu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jingjing Liu
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanling Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rongxing Song
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Li
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Yang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Wang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Dunkai Liu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Gaofei Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing 210023, China
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yisheng Lai
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
4
|
Jin XY, He YM, Hui TH, Liu L, Cheng L. Selective Methylation of Nucleosides via an In Situ Generated Methyl Oxonium. J Org Chem 2024; 89:3597-3604. [PMID: 38356389 DOI: 10.1021/acs.joc.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A very mild and efficient procedure has been developed for the preparation of N-methylated uridine, pseudouridine, guanosine and inosine derivatives. This process was compatible with free hydroxyls within the ribose and did not require precautions on the protection or deprotection of other functionalities. The key to this extremely mild methylation without protection relied on the in situ generated methyl oxonium from the Wittig reagent and methanol. A putative mechanism for the selective methylation was also proposed.
Collapse
Affiliation(s)
- Xiao-Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yin-Ming He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-He Hui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ge GH, Wang QY, Zhang ZH, Zhang X, Guo S, Zhang TJ, Meng FH. Small molecular CD73 inhibitors: Recent progress and future perspectives. Eur J Med Chem 2024; 264:116028. [PMID: 38086190 DOI: 10.1016/j.ejmech.2023.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
The occurrence and development of the tumor are very complex biological processes. In recent years, a large number of research data shows that CD73 is closely related to tumor growth and metastasis. It has been confirmed that the cascade hydrolysis of extracellular ATP to adenosine is one of the most important immunosuppressive regulatory pathways in the tumor microenvironment. The metabolite adenosine can mediate immunosuppression by activating adenosine receptor (such as A2A) on effector Immune cells and enable tumor cells to achieve immune escape. Therefore, attenuating or completely removing adenosine-mediated immunosuppression in the tumor microenvironment by inhibiting CD73 is a promising approach in the treatment of solid tumors. This paper focuses on the research progress of CD73 enzyme and CD73 small molecule inhibitors, and is expected to provide some insights into the development of small-molecule antitumor drugs targeting CD73.
Collapse
Affiliation(s)
- Gong-Hui Ge
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Qiu-Yin Wang
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Zhen-Hao Zhang
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Xu Zhang
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Shuai Guo
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| | - Fan-Hao Meng
- School of Pharmacy / Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| |
Collapse
|
6
|
Jiang B, Tang M, Shi S, Xie H, Pan S, Zhang L, Sheng J. Effects of abnormal expression of CD73 on malignant phenotype of nasopharyngeal carcinoma. J Mol Histol 2023; 54:633-644. [PMID: 37874500 DOI: 10.1007/s10735-023-10165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2023] [Indexed: 10/25/2023]
Abstract
Cluster of differentiation (CD) 73, encoded by the NT5E gene, plays important enzymatic and non-enzymatic roles in cells. There is growing evidence show that CD73 is a key regulator in the development of tumor. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in east and southeast Asia. It is urgent to know more about the mechanism of NPC development and find diagnostic markers for the patients. In this research, we carried out western blot, immunohistochemistry and qRT-PCR to investigate the expression level of CD73 and found that NPC tissues had higher level of CD73 than normal tissues. We also detected the relationship between its expression level with the clinicopathological features and prognosis of NPC patients. The results showed that CD73 expression was related to the clinical stages, lymph node metastasis and survival state of NPC patients. More importantly, patients with higher expression of CD73 had poorer prognosis. Then, CD73 was knocked down in NPC cells (CNE2 and CNE1), and its effects on cell proliferation and migration were investigated by CCK8, colony formation, Transwell and wound-healing assays. We found that knocking down the expression of CD73 in NPC cells could inhibit cells malignant phenotype. Collectively, CD73 plays important roles in NPC malignant behavior and might act as a novel target for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Mingming Tang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Lin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Haimen People's Hospital, Nantong, Jiangsu Province, China.
| | - Juping Sheng
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
7
|
Mihajlovic K, Bukvic MA, Dragic M, Scortichini M, Jacobson KA, Nedeljkovic N. Anti-inflammatory potency of novel ecto-5'-nucleotidase/CD73 inhibitors in astrocyte culture model of neuroinflammation. Eur J Pharmacol 2023; 956:175943. [PMID: 37541364 PMCID: PMC10527948 DOI: 10.1016/j.ejphar.2023.175943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Three novel cytosine-derived α,β-methylene diphosphonates designated MRS4598, MRS4552, and MRS4602 were tested in the range of 1 × 10-9 to 1 × 10-3 M for their efficacy and potency in inhibiting membrane-bound ecto-5'-nucleotidase/CD73 activity in primary astrocytes in vitro. The compounds were also tested for their ability to attenuate the reactive astrocyte phenotype induced by proinflammatory cytokines. The main findings are as follows: A) The tested compounds induced concentration-dependent inhibition of CD73 activity, with maximal inhibition achieved at ∼1 × 10-3M; B) All compounds showed high inhibitory potency, as reflected by IC50 values in the submicromolar range; C) All compounds showed high binding capacity, as reflected by Ki values in the low nanomolar range; D) Among the tested compounds, MRS4598 showed the highest inhibitory efficacy and potency, as reflected by IC50 and Ki values of 0.11 μM and 18.2 nM; E) Neither compound affected astrocyte proliferation and cell metabolic activity at concentrations near to IC50; E) MRS4598 was able to inhibit CD73 activity in reactive astrocytes stimulated with TNF-α and to induce concentration-dependent inhibition of CD73 in reactive astrocytes stimulated with IL-1β, with an order of magnitude higher IC50 value; F) MRS4598 was the only compound tested that was able to induce shedding of the CD73 from astrocyte membranes and to enhance astrocyte migration in the scratch wound migration assay, albeit at concentration well above its IC50 value. Given the role of CD73 in neurodegenerative diseases, MRS4598, MRS4552, and MRS4602 are promising pharmacological tools for the treatment of neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia.
| |
Collapse
|
8
|
Lopez V, Schuh HJM, Mirza S, Vaaßen VJ, Schmidt MS, Sylvester K, Idris RM, Renn C, Schäkel L, Pelletier J, Sévigny J, Naggi A, Scheffler B, Lee SY, Bendas G, Müller CE. Heparins are potent inhibitors of ectonucleotide pyrophosphatase/phospho-diesterase-1 (NPP1) - a promising target for the immunotherapy of cancer. Front Immunol 2023; 14:1173634. [PMID: 37711611 PMCID: PMC10497752 DOI: 10.3389/fimmu.2023.1173634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Victoria J. Vaaßen
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Michael S. Schmidt
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Riham M. Idris
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Christian Renn
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Annamaria Naggi
- Institute for Chemical and Biochemical Research “G. Ronzoni”, Milan, Italy
| | - Björn Scheffler
- DKFZ Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner site, University Hospital Essen and German Cancer Research Center, Heidelberg, Germany
| | - Sang-Yong Lee
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Viviani LG, Kokh DB, Wade RC, T-do Amaral A. Molecular Dynamics Simulations of the Human Ecto-5'-Nucleotidase (h-ecto-5'-NT, CD73): Insights into Protein Flexibility and Binding Site Dynamics. J Chem Inf Model 2023; 63:4691-4707. [PMID: 37532679 DOI: 10.1021/acs.jcim.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Human ecto-5'-nucleotidase (h-ecto-5'-NT, CD73) is a homodimeric Zn2+-binding metallophosphoesterase that hydrolyzes adenosine 5'-monophosphate (5'-AMP) to adenosine and phosphate. h-Ecto-5'-NT is a key enzyme in purinergic signaling pathways and has been recognized as a promising biological target for several diseases, including cancer and inflammatory, infectious, and autoimmune diseases. Despite its importance as a biological target, little is known about h-ecto-5'-NT dynamics, which poses a considerable challenge to the design of inhibitors of this target enzyme. Here, to explore h-ecto-5'-NT flexibility, all-atom unbiased molecular dynamics (MD) simulations were performed. Remarkable differences in the dynamics of the open (catalytically inactive) and closed (catalytically active) conformations of the apo-h-ecto-5'-NT were observed during the simulations, and the nucleotide analogue inhibitor AMPCP was shown to stabilize the protein structure in the closed conformation. Our results suggest that the large and complex domain motion that enables the h-ecto-5'-NT open/closed conformational switch is slow, and therefore, it could not be completely captured within the time scale of our simulations. Nonetheless, we were able to explore the faster dynamics of the h-ecto-5'-NT substrate binding site, which is mainly located at the C-terminal domain and well conserved among the protein's open and closed conformations. Using the TRAPP ("Transient Pockets in Proteins") approach, we identified transient subpockets close to the substrate binding site. Finally, conformational states of the substrate binding site with higher druggability scores than the crystal structure were identified. In summary, our study provides valuable insights into h-ecto-5'-NT structural flexibility, which can guide the structure-based design of novel h-ecto-5'-NT inhibitors.
Collapse
Affiliation(s)
- Lucas G Viviani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Antonia T-do Amaral
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
10
|
Zhang M, Dai X, Xiang Y, Xie L, Sun M, Shi J. Advances in CD73 inhibitors for immunotherapy: Antibodies, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2023; 258:115546. [PMID: 37302340 DOI: 10.1016/j.ejmech.2023.115546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Tumors, a disease with a high mortality rate worldwide, have become a serious threat to human health. Exonucleotide-5'-nucleotidase (CD73) is an emerging target for tumor therapy. Its inhibition can significantly reduce adenosine levels in the tumor microenvironment. It has a better therapeutic effect on adenosine-induced immunosuppression. In the immune response, extracellular ATP exerts immune efficacy by activating T cells. However, dead tumor cells release excess ATP, overexpress CD39 and CD73 on the cell membrane and catabolize this ATP to adenosine. This leads to further immunosuppression. There are a number of inhibitors of CD73 currently under investigation. These include antibodies, synthetic small molecule inhibitors and a number of natural compounds with prominent roles in the anti-tumor field. However, only a small proportion of the CD73 inhibitors studied to date have successfully reached the clinical stage. Therefore, effective and safe inhibition of CD73 in oncology therapy still holds great therapeutic potential. This review summarizes the currently reported CD73 inhibitors, describes their inhibitory effects and pharmacological mechanisms, and provides a brief review of them. It aims to provide more information for further research and development of CD73 inhibitors.
Collapse
Affiliation(s)
- Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xiaoqin Dai
- Department of Traditional Chinese Medicine, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
11
|
Bi C, Schäkel L, Mirza S, Sylvester K, Pelletier J, Lee SY, Pillaiyar T, Sévigny J, Müller CE. Synthesis and structure-activity relationships of ticlopidine derivatives and analogs as inhibitors of ectonucleotidase CD39. Bioorg Chem 2023; 135:106460. [PMID: 37023582 DOI: 10.1016/j.bioorg.2023.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.
Collapse
|
12
|
das Neves GM, Kagami LP, Battastini AMO, Figueiró F, Eifler-Lima VL. Targeting ecto-5'-nucleotidase: A comprehensive review into small molecule inhibitors and expression modulators. Eur J Med Chem 2023; 247:115052. [PMID: 36599229 DOI: 10.1016/j.ejmech.2022.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The purinergic signaling has drawn attention from academia and more recently from pharmaceutical industries as a potential therapeutic route for cancer treatment, since ATP may act as chemotactic agent and possess in vitro antineoplastic activity. On the other way, adenosine, produced in extracellular medium by ecto-5'-NT, acts as immunosuppressor and is related to neoangiogenesis, vasculogenesis and evasion to the immune system. Consequently, inhibitors of ecto-5'-NT may prevent tumor progression, reducing adenosine concentrations, preventing escape from the host's immune system and slowing cancer's growth. This review aims to highlight important biochemical and structural features of ecto-5'NT, highlight its expression profile in normal and cancer cell lines detailing compounds which may act as expression regulators and to review the several classes of ecto-5'NT inhibitors developed in the past 12 years, in order to build a general structure-activity relationship model to guide further compound design.
Collapse
Affiliation(s)
- Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Li J, Chen L, Billedeau RJ, Stanton TF, Chiang JTP, Lee CC, Li W, Steggerda S, Emberley E, Gross M, Bhupathi D, Che X, Chen J, Dang R, Huang T, Ma Y, MacKinnon A, Makkouk A, Marguier G, Neou S, Sotirovska N, Spurlock S, Zhang J, Zhang W, van Zandt M, Yuan L, Savoy J, Parlati F, Sjogren EB. Discovery of a Series of Potent, Selective, and Orally Bioavailable Nucleoside Inhibitors of CD73 That Demonstrates In Vivo Antitumor Activity. J Med Chem 2023; 66:345-370. [PMID: 36529947 DOI: 10.1021/acs.jmedchem.2c01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD73 (ecto-5'-nucleotidase) has emerged as an attractive target for cancer immunotherapy of many cancers. CD73 catalyzes the hydrolysis of adenosine monophosphate (AMP) into highly immunosuppressive adenosine that plays a critical role in tumor progression. Herein, we report our efforts in developing orally bioavailable and highly potent small-molecule CD73 inhibitors from the reported hit molecule 2 to lead molecule 20 and then finally to compound 49. Compound 49 was able to reverse AMP-mediated suppression of CD8+ T cells and completely inhibited CD73 activity in serum samples from various cancer patients. In preclinical in vivo studies, orally administered 49 showed a robust dose-dependent pharmacokinetic/pharmacodynamic (PK/PD) relationship that correlated with efficacy. Compound 49 also demonstrated the expected immune-mediated antitumor mechanism of action and was efficacious upon oral administration not only as a single agent but also in combination with either chemotherapeutics or checkpoint inhibitor in the mouse tumor model.
Collapse
Affiliation(s)
- Jim Li
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Lijing Chen
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Roland J Billedeau
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Timothy F Stanton
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - John T P Chiang
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Clarissa C Lee
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Weiqun Li
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Susanne Steggerda
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Ethan Emberley
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Matthew Gross
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Deepthi Bhupathi
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | | | - Jason Chen
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Rosalyn Dang
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Tony Huang
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Yong Ma
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Andrew MacKinnon
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Amani Makkouk
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Gisele Marguier
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Silinda Neou
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Natalija Sotirovska
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Sandra Spurlock
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Jing Zhang
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Winter Zhang
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | | | - Lin Yuan
- NEDP, Branford, Connecticut 06405, United States
| | | | - Francesco Parlati
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Eric B Sjogren
- Calithera Biosciences, 343 Oyster Point Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
Noureldeen AFH, Aziz SW, Shouman SA, Mohamed MM, Attia YM, Ramadan RM, Elhady MM. Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)-Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013624. [PMID: 36294202 PMCID: PMC9603487 DOI: 10.3390/ijerph192013624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.
Collapse
Affiliation(s)
- Amani F. H. Noureldeen
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Safa W. Aziz
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Samia A. Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Magdy M. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Attia
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Mostafa M. Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
15
|
An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Schäkel L, Mirza S, Winzer R, Lopez V, Idris R, Al-Hroub H, Pelletier J, Sévigny J, Tolosa E, Müller CE. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004660. [PMID: 35981785 PMCID: PMC9394215 DOI: 10.1136/jitc-2022-004660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. Methods We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. Results The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1–10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. Conclusions CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riekje Winzer
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham Idris
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eva Tolosa
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Yegutkin GG, Boison D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol Rev 2022; 74:797-822. [PMID: 35738682 DOI: 10.1124/pharmrev.121.000528] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
18
|
Losenkova K, Takeda A, Ragauskas S, Cerrada-Gimenez M, Vähätupa M, Kaja S, Paul ML, Schmies CC, Rolshoven G, Müller CE, Sandholm J, Jalkanen S, Kalesnykas G, Yegutkin GG. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci 2022; 79:152. [PMID: 35212809 PMCID: PMC8881442 DOI: 10.1007/s00018-022-04187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
Abstract
ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5′-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local “purinergic junctions” with CD39low/CD73− neuronal cell bodies and CD39high/CD73− retinal blood vessels. The relevance of the CD73–adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.
Collapse
Affiliation(s)
- Karolina Losenkova
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Marius L Paul
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.,Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Georg Rolshoven
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
19
|
Scortichini M, Idris RM, Moschütz S, Keim A, Salmaso V, Dobelmann C, Oliva P, Losenkova K, Irjala H, Vaittinen S, Sandholm J, Yegutkin GG, Sträter N, Junker A, Müller CE, Jacobson KA. Structure-Activity Relationship of 3-Methylcytidine-5'-α,β-methylenediphosphates as CD73 Inhibitors. J Med Chem 2022; 65:2409-2433. [PMID: 35080883 PMCID: PMC8865918 DOI: 10.1021/acs.jmedchem.1c01852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.
Collapse
Affiliation(s)
- Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Riham Mohammed Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Antje Keim
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clemens Dobelmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Discovery and Optimization of Betulinic Acid Derivatives as Novel Potent CD73 Inhibitors. Bioorg Med Chem 2022; 59:116672. [DOI: 10.1016/j.bmc.2022.116672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
|
21
|
Akber Aisa H, Zhao J, Guo H, Nie L, Bozorov K. Synthesis and Antitumor Activity of Novel Linear Tricyclic Compounds Derived from Purine. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Bhujbal SP, Hah JM. Generation of Non-Nucleotide CD73 Inhibitors Using a Molecular Docking and 3D-QSAR Approach. Int J Mol Sci 2021; 22:ijms222312745. [PMID: 34884548 PMCID: PMC8657903 DOI: 10.3390/ijms222312745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy and chemotherapy are conventional cancer treatments. Around 60% of all patients who are diagnosed with cancer receive radio- or chemotherapy in combination with surgery during their disease. Only a few patients respond to the blockage of immune checkpoints alone, or in combination therapy, because their tumours might not be immunogenic. Under these circumstances, an increasing level of extracellular adenosine via the activation of ecto-5’-nucleotidase (CD73) and consequent adenosine receptor signalling is a typical mechanism that tumours use to evade immune surveillance. CD73 is responsible for the conversion of adenosine monophosphate to adenosine. CD73 is overexpressed in various tumour types. Hence, targetting CD73’s signalling is important for the reversal of adenosine-facilitated immune suppression. In this study, we selected a potent series of the non-nucleotide small molecule inhibitors of CD73. Molecular docking studies were performed in order to examine the binding mode of the inhibitors inside the active site of CD73 and 3D-QSAR was used to study the structure–activity relationship. The obtained CoMFA (q2 = 0.844, ONC = 5, r2 = 0.947) and CoMSIA (q2 = 0.804, ONC = 4, r2 = 0.954) models showed reasonable statistical values. The 3D-QSAR contour map analysis revealed useful structural characteristics that were needed to modify non-nucleotide small molecule inhibitors. We used the structural information from the overall docking and 3D-QSAR results to design new, potent CD73 non-nucleotide inhibitors. The newly designed CD73 inhibitors exhibited higher activity (predicted pIC50) than the most active compound of all of the derivatives that were selected for this study. Further experimental studies are needed in order to validate the new CD73 inhibitors.
Collapse
Affiliation(s)
- Swapnil P. Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Korea;
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Korea;
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Korea
- Correspondence: ; Tel.: +82-31-400-5803
| |
Collapse
|
23
|
Schäkel L, Mirza S, Pietsch M, Lee SY, Keuler T, Sylvester K, Pelletier J, Sévigny J, Pillaiyar T, Namasivayam V, Gütschow M, Müller CE. 2-Substituted thienotetrahydropyridine derivatives: Allosteric ectonucleotidase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100300. [PMID: 34697820 DOI: 10.1002/ardp.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Markus Pietsch
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Faculty of Medicine and University Hospital Cologne, Institute II of Pharmacology, Centre of Pharmacology, University of Cologne, Cologne, Germany
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Tim Keuler
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Thanigaimalai Pillaiyar
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Liu S, Li D, Liu J, Wang H, Horecny I, Shen R, Zhang R, Wu H, Hu Q, Zhao P, Zhang F, Yan Y, Feng J, Zhuang L, Li J, Zhang L, Tao W. A Novel CD73 Inhibitor SHR170008 Suppresses Adenosine in Tumor and Enhances Anti-Tumor Activity with PD-1 Blockade in a Mouse Model of Breast Cancer. Onco Targets Ther 2021; 14:4561-4574. [PMID: 34466002 PMCID: PMC8403083 DOI: 10.2147/ott.s326178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cells, and promote anti-PD-1 mAb therapy-induced immune escape. Consequently, developing a CD73 inhibitor as monotherapy and a potential beneficial combination partner with immune-checkpoint inhibitors needs investigation. Methods CD73 inhibitors were evaluated in vitro with soluble and membrane-bound CD73 enzymes, as well as its PD biomarker responses in human peripheral blood mononuclear cells (PBMC) by flow cytometry and ELISA. The binding modes of the molecules were analyzed via molecular modeling. The anti-tumor activity and synergistic effect of SHR170008 in combination with anti-PD-1 mAb were evaluated in a syngeneic mouse breast cancer model. Results SHR170008 was discovered during the initial structural modifications on the link between the ribose and the α-phosphate of AMPCP, which significantly improved the stability of the compound confirmed by the metabolite identification study. Further modifications on the adenine base of AMPCP improved the potency due to forming stronger interactions with CD73 protein. It exhibited potent inhibitory activities on soluble and endogenous membrane-bound CD73 enzymes, and induced IFNγ production, reversed AMP-suppressed CD25+ and CD8+/CD25+ expression, and enhanced granzyme B production on CD8+ T cells in human PBMC. SHR170008 showed dose-dependent anti-tumor efficacy with suppression of adenosine in the tumors in EMT6 mouse breast tumor model. The increase of adenosine in tumor tissue by anti-PD-1 mAb alone was suppressed by SHR170008 in the combination groups. Simultaneous inhibition of CD73 and PD-1 neutralization synergistically enhanced antitumor immunity and biomarkers in response, and exposures of SHR170008 were correlated with the efficacy readouts. Conclusion Our findings suggest that CD73 may serve as an immune checkpoint by generating adenosine, which suppresses the antitumor activity of anti-PD-1 mAb, and inhibition of CD73 may be a potential beneficial combination partner with immune-checkpoint inhibitors to improve their therapeutic outcomes in general.
Collapse
Affiliation(s)
- Suxing Liu
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Di Li
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jian Liu
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Huiyun Wang
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Ivana Horecny
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Ru Shen
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Rumin Zhang
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Heping Wu
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Qiyue Hu
- Department of Molecular Modeling, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Peng Zhao
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Fengqi Zhang
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Yinfa Yan
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jun Feng
- Department of Process Chemistry, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Linghang Zhuang
- Department of Chemistry, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Jing Li
- Department of Biology, Eternity Bioscience Inc., Cranbury, NJ, 08512, USA
| | - Lianshan Zhang
- R&D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| | - Weikang Tao
- R&D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, 200245, People's Republic of China
| |
Collapse
|
25
|
Scaletti E, Huschmann FU, Mueller U, Weiss MS, Sträter N. Substrate binding modes of purine and pyrimidine nucleotides to human ecto-5'-nucleotidase (CD73) and inhibition by their bisphosphonic acid derivatives. Purinergic Signal 2021; 17:693-704. [PMID: 34403084 PMCID: PMC8677862 DOI: 10.1007/s11302-021-09802-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Human ecto-5-nucleotidase (CD73) is involved in purinergic signalling, which influences a diverse range of biological processes. CD73 hydrolyses AMP and is the major control point for the levels of extracellular adenosine. Inhibitors of CD73 thus block the immunosuppressive action of adenosine, a promising approach for cancer immunotherapy. Interestingly, ADP and ATP are competitive inhibitors of CD73, with the most potent small-molecule inhibitors to date being non-hydrolysable ADP analogues. While AMP is the major substrate of the enzyme, CD73 has been reported to hydrolyse other 5′-nucleoside monophosphates. Based on a fragment screening campaign at the BESSY II synchrotron, we present the binding modes of various deoxyribo- and ribonucleoside monophosphates and of four additional fragments binding to the nucleoside binding site of the open form of the enzyme. Kinetic analysis of monophosphate hydrolysis shows that ribonucleotide substrates are favoured over their deoxyribose equivalents with AMP being the best substrate. We characterised the initial step of AMP hydrolysis, the binding mode of AMP to the open conformation of CD73 and compared that to other monophosphate substrates. In addition, the inhibitory activity of various bisphosphonic acid derivatives of nucleoside diphosphates was determined. Although AMPCP remains the most potent inhibitor, replacement of the adenine base with other purines or with pyrimidines increases the Ki value only between twofold and sixfold. On the other hand, these nucleobases offer new opportunities to attach substituents for improved pharmacological properties.
Collapse
Affiliation(s)
- Emma Scaletti
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Franziska U Huschmann
- Helmholtz-Zentrum Berlin Für Materialien Und Energie, BESSY II, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Uwe Mueller
- Helmholtz-Zentrum Berlin Für Materialien Und Energie, BESSY II, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin Für Materialien Und Energie, BESSY II, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
26
|
Oliva P, Scortichini M, Dobelmann C, Jain S, Gopinatth V, Toti KS, Phung NB, Junker A, Jacobson KA. Structure-activity relationships of pyrimidine nucleotides containing a 5'-α,β-methylene diphosphonate at the P2Y 6 receptor. Bioorg Med Chem Lett 2021; 45:128137. [PMID: 34048882 PMCID: PMC8276771 DOI: 10.1016/j.bmcl.2021.128137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,β-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), β-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,β-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.
Collapse
Affiliation(s)
- Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clemens Dobelmann
- University of Münster, European Institute for Molecular Imaging (EIMI), Waldeyerstraße 15, D-48149 Münster, Germany
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Varun Gopinatth
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ngan B Phung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Junker
- University of Münster, European Institute for Molecular Imaging (EIMI), Waldeyerstraße 15, D-48149 Münster, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Knaup FH, Meyners C, Charalampidou A, Krajczy P, Purder PL, Ross T, Hausch F. Med Chem Remote: The Frontiers in Medicinal Chemistry 2021. ChemMedChem 2021; 16:2411-2416. [PMID: 34101362 DOI: 10.1002/cmdc.202100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/21/2022]
Abstract
Digital, but delicious! The Frontiers in Medicinal Chemistry 2021 meeting, originally intended to take place in Darmstadt, carried on as an online event from March 8-10 this year. Even with pandemic restrictions, the event co-presented by the Medicinal Chemistry Division of the German Chemical Society (GDCh), the German Pharmaceutical Society (DPhG), and the Swiss Chemical Society (SCS) proved to be a success, showcasing excellent speakers and facilitating participant interaction in an ingenious virtual setting. Over 350 participants from more than 10 countries gathered to discuss the latest trends and directions in medicinal chemistry, with sessions on molecular glues, covalent fragments, transient binding pockets and more. This report presents a summary of the key lectures and activities at the event.
Collapse
Affiliation(s)
- Fabian H Knaup
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Anna Charalampidou
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Patrick L Purder
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Tatjana Ross
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
28
|
Nocentini A, Capasso C, Supuran CT. Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present). Expert Opin Ther Pat 2021; 31:867-876. [PMID: 33909515 DOI: 10.1080/13543776.2021.1923694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Hydrolysis of AMP to adenosine and inorganic phosphate is catalyzed by 5´-ectonucleotidase, e5NT, alias CD73, a metalloenzyme incorporating two zinc ions at its active site. e5NT is involved in crucial physiological and pathological processes, such as immune ho meostasis, inflammation, and tumor progression. CD73 inhibitors belonging to the monoclonal antibodies (MAbs) and small molecules started to be considered as candidates for the immunotherapy of tumors. AREAS COVERED We review the drug design landscape in the scientific and patent literature on CD73 inhibitors from 2017 to the present. Small-molecule inhibitors were mostly discussed, although the MAbs are also considered. EXPERT OPINION Considerable advances have been reported in the design of nucleotide/nucleoside-based CD73 inhibitors, after the X-ray crystal structure of the enzyme in complex with the non-hydrolyzable ADP analog, adenosine (α,β)-methylene diphosphate (AMPCP), was reported. A large number of highly effective such inhibitors are now available, through modifications of the nucleobase, sugar and zinc-binding groups of the lead. Few classes of non-nucleotide inhibitors were also reported, including flavones, anthraquinone ssulfonates, and primary sulfonamides. A highly potent ssmall-molecule CD73 inhibitor, AB680, is presently in the early phase of clinical trials as immunotherapeutic agents against various types of cancer.
Collapse
Affiliation(s)
- Alessio Nocentini
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Università Degli Studi Di Firenze, Sesto Fiorentino (Florence), Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Università Degli Studi Di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
29
|
Battastini AMO, Figueiró F, Leal DBR, Doleski PH, Schetinger MRC. CD39 and CD73 as Promising Therapeutic Targets: What Could Be the Limitations? Front Pharmacol 2021; 12:633603. [PMID: 33815115 PMCID: PMC8014611 DOI: 10.3389/fphar.2021.633603] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Fabricio Figueiró
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Pedro Henrique Doleski
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
30
|
Zimmermann H. Ectonucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 2021; 17:117-125. [PMID: 33336318 PMCID: PMC7954995 DOI: 10.1007/s11302-020-09755-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5'-nucleotidase.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Wang Y, Wang C, Zhu Y, Zhang Y, Chen B, Wu Y, Yao J, Miao Z. Discovery of natural product ellagic acid as a potent CD73 and CD39 dual inhibitor. Bioorg Med Chem Lett 2021; 34:127758. [PMID: 33359608 DOI: 10.1016/j.bmcl.2020.127758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/18/2022]
Abstract
The ATP-adenosine pathway has been recently identified as an attractive immune-oncology target and several drug candidates have been entered clinic trials. Inspired by the report of the first small-molecule CD73inhibitor AB680, we describe the discovery of natural product ellagic acid as a dual CD73 and CD39 inhibitor with an IC50 value of 1.85 ± 0.21 μM and 0.50 ± 0.22 μM, respectively. The result of cytotoxicity assays indicated that ellagic acid is a valuable lead compound with low cytotoxicity effect for immune therapy.
Collapse
Affiliation(s)
- Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yazhao Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yanming Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Baobao Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Jianzhong Yao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
32
|
Lopez V, Schäkel L, Schuh HJM, Schmidt MS, Mirza S, Renn C, Pelletier J, Lee SY, Sévigny J, Alban S, Bendas G, Müller CE. Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Mar Drugs 2021; 19:md19020051. [PMID: 33499103 PMCID: PMC7911304 DOI: 10.3390/md19020051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Michael S. Schmidt
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Renn
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Susanne Alban
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany;
| | - Gerd Bendas
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
33
|
Abstract
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Collapse
|
34
|
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 2020; 187:114393. [PMID: 33359363 DOI: 10.1016/j.bcp.2020.114393] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Ashraf A, Shafiq Z, Khan Jadoon MS, Tahir MN, Pelletier J, Sevigny J, Yaqub M, Iqbal J. Synthesis, Characterization, and In Silico Studies of Novel Spirooxindole Derivatives as Ecto-5'-Nucleotidase Inhibitors. ACS Med Chem Lett 2020; 11:2397-2405. [PMID: 33335662 DOI: 10.1021/acsmedchemlett.0c00343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Ecto-5'-nucleotidase (ecto-5'-NT, CD73) inhibitors are promising drug candidates for cancer therapy. Traditional efforts used to inhibit the ecto-5'-nucleotidase have involved antibody therapy or development of small molecule inhibitors that can mimic the acidic and ionizable structure of adenosine 5'-monophosphate (AMP). Herein, we report an efficient, environment friendly route for the synthesis of non-nucleotide based small molecules, i.e., substituted spirooxindole derivatives 9a-9l and investigated their inhibitory potential on human and rat recombinant ecto-5'-nucleotidase isozymes. These attempts have resulted in the identification of compound 9f (IC50 = 0.15 ± 0.02 μM) inhibitor on h-ecto-5'-NT which showed 280-fold higher inhibition and compound 9h (IC50 ± 0.19 ± 0.03 μM) on r-ecto-5'-NT with 406-fold enhanced inhibition than reference standard sulfamic acid. Moreover, in silico studies were carried out to assess binding interactions of potent compounds within enzyme active sites and demonstrated excellent correlation with the experimental findings.
Collapse
Affiliation(s)
- Abida Ashraf
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan
- Department of Chemistry, Kuchery Campus, The Women University Multan, Multan, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | | | - Julie Pelletier
- Centre de Recherche du CHU de Québec, Québec, Québec, Canada G1V 4G2
| | - Jean Sevigny
- Centre de Recherche du CHU de Québec, Québec, Québec, Canada G1V 4G2
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
36
|
Stereochemistry of the α-carbon in the benzylic modifying moiety attached at the C-5 end of thymidine affects the potency of a newly identified anti-cancer lead nucleoside. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Schmies CC, Rolshoven G, Idris RM, Losenkova K, Renn C, Schäkel L, Al-Hroub H, Wang Y, Garofano F, Schmidt-Wolf IGH, Zimmermann H, Yegutkin GG, Müller CE. Fluorescent Probes for Ecto-5'-nucleotidase (CD73). ACS Med Chem Lett 2020; 11:2253-2260. [PMID: 33214837 DOI: 10.1021/acsmedchemlett.0c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) catalyzes the hydrolysis of AMP to anti-inflammatory, immunosuppressive adenosine. It is expressed on vascular endothelial, epithelial, and also numerous cancer cells where it strongly contributes to an immunosuppressive microenvironment. In the present study we designed and synthesized fluorescent-labeled CD73 inhibitors with low nanomolar affinity and high selectivity based on N 6 -benzyl-α,β-methylene-ADP (PSB-12379) as a lead structure. Fluorescein was attached to the benzyl residue via different linkers resulting in PSB-19416 (14b, K i 12.6 nM) and PSB-18332 (14a, K i 2.98 nM) as fluorescent high-affinity probes for CD73. These compounds are anticipated to become useful tools for biological studies, drug screening, and diagnostic applications.
Collapse
Affiliation(s)
- Constanze C. Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Riham M. Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn D-53127, Germany
| | - Francesca Garofano
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn D-53127, Germany
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn D-53127, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, D-60438 Frankfurt am Main, Germany
| | | | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
38
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Salmaso V, Jacobson KA. Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem 2020; 15:1958-1973. [PMID: 32803849 PMCID: PMC8276773 DOI: 10.1002/cmdc.202000465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/16/2022]
Abstract
The purinergic signaling system includes membrane-bound receptors for extracellular purines and pyrimidines, and enzymes/transporters that regulate receptor activation by endogenous agonists. Receptors include: adenosine (A1 , A2A , A2B, and A3 ) and P2Y (P2Y1 , P2Y2 , P2Y4 , P2Y6 , P2Y11 , P2Y12 , P2Y13 , and P2Y14 ) receptors (all GPCRs), as well as P2X receptors (ion channels). Receptor activation, especially accompanying physiological stress or damage, creates a temporal sequence of signaling to counteract this stress and either mobilize (P2Rs) or suppress (ARs) immune responses. Thus, modulation of this large signaling family has broad potential for treating chronic diseases. Experimentally determined structures represent each of the three receptor families. We focus on selective purinergic agonists (A1 , A3 ), antagonists (A3 , P2Y14 ), and allosteric modulators (P2Y1 , A3 ). Examples of applying structure-based design, including the rational modification of known ligands, are presented for antithrombotic P2Y1 R antagonists and anti-inflammatory P2Y14 R antagonists and A3 AR agonists. A3 AR agonists are a potential, nonaddictive treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Jeffrey JL, Lawson KV, Powers JP. Targeting Metabolism of Extracellular Nucleotides via Inhibition of Ectonucleotidases CD73 and CD39. J Med Chem 2020; 63:13444-13465. [PMID: 32786396 DOI: 10.1021/acs.jmedchem.0c01044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the tumor microenvironment, unusually high concentrations of extracellular adenosine promote tumor proliferation through various immunosuppressive mechanisms. Blocking adenosine production by inhibiting nucleotide-metabolizing enzymes, such as ectonucleotidases CD73 and CD39, represents a promising therapeutic strategy that may synergize with other immuno-oncology mechanisms and chemotherapies. Emerging small-molecule ectonucleotidase inhibitors have recently entered clinical trials. This Perspective will outline challenges, strategies, and recent advancements in targeting this class with small-molecule inhibitors, including AB680, the first small-molecule CD73 inhibitor to enter clinical development. Specific case studies, including structure-based drug design and lead optimization, will be outlined. Preclinical data on these molecules and their ability to enhance antitumor immunity will be discussed.
Collapse
Affiliation(s)
- Jenna L Jeffrey
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V Lawson
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P Powers
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
41
|
Du X, Moore J, Blank BR, Eksterowicz J, Sutimantanapi D, Yuen N, Metzger T, Chan B, Huang T, Chen X, Chen Y, Duong F, Kong W, Chang JH, Sun J, Zavorotinskaya T, Ye Q, Junttila MR, Ndubaku C, Friedman LS, Fantin VR, Sun D. Orally Bioavailable Small-Molecule CD73 Inhibitor (OP-5244) Reverses Immunosuppression through Blockade of Adenosine Production. J Med Chem 2020; 63:10433-10459. [PMID: 32865411 DOI: 10.1021/acs.jmedchem.0c01086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adenosinergic pathway represents an attractive new therapeutic approach in cancer immunotherapy. In this pathway, ecto-5-nucleotidase CD73 has the unique function of regulating production of immunosuppressive adenosine (ADO) through the hydrolysis of AMP. CD73 is overexpressed in many cancers, resulting in elevated levels of ADO that correspond to poor patient prognosis. Therefore, reducing the level of ADO via inhibition of CD73 is a potential strategy for treating cancers. Based on the binding mode of adenosine 5'-(α,β-methylene)diphosphate (AOPCP) with human CD73, we designed a series of novel monophosphonate small-molecule CD73 inhibitors. Among them, OP-5244 (35) proved to be a highly potent and orally bioavailable CD73 inhibitor. In preclinical studies, 35 completely inhibited ADO production in both human cancer cells and CD8+ T cells. Furthermore, 35 lowered the ratio of ADO/AMP significantly and reversed immunosuppression in mouse models, indicating its potential as an in vivo tool compound for further development.
Collapse
Affiliation(s)
- Xiaohui Du
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Jared Moore
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Brian R Blank
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - John Eksterowicz
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Dena Sutimantanapi
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Natalie Yuen
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Todd Metzger
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Brenda Chan
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Tom Huang
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Xi Chen
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Yuping Chen
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Frank Duong
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Wayne Kong
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Jae H Chang
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Jessica Sun
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Tatiana Zavorotinskaya
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Qiuping Ye
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Melissa R Junttila
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Chudi Ndubaku
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Lori S Friedman
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Valeria R Fantin
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| | - Daqing Sun
- ORIC Pharmaceuticals, 240 E. Grand Avenue, Floor 2, South San Francisco, California 94080, United States
| |
Collapse
|
42
|
Schäkel L, Schmies CC, Idris RM, Luo X, Lee SY, Lopez V, Mirza S, Vu TH, Pelletier J, Sévigny J, Namasivayam V, Müller CE. Nucleotide Analog ARL67156 as a Lead Structure for the Development of CD39 and Dual CD39/CD73 Ectonucleotidase Inhibitors. Front Pharmacol 2020; 11:1294. [PMID: 33013365 PMCID: PMC7508162 DOI: 10.3389/fphar.2020.01294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) inhibitors have potential as novel drugs for the (immuno)therapy of cancer. They increase the extracellular concentration of immunostimulatory ATP and reduce the formation of AMP, which can be further hydrolyzed by ecto-5'-nucleotidase (CD73) to immunosuppressive, cancer-promoting adenosine. In the present study, we synthesized analogs and derivatives of the standard CD39 inhibitor ARL67156, a nucleotide analog which displays a competitive mechanism of inhibition. Structure-activity relationships were analyzed at the human enzyme with respect to substituents in the N 6- and C8-position of the adenine core, and modifications of the triphosph(on)ate chain. Capillary electrophoresis coupled to laser-induced fluorescence detection employing a fluorescent-labeled ATP derivative was employed to determine the compounds' potency. Selected inhibitors were additionally evaluated in an orthogonal, malachite green assay versus the natural substrate ATP. The most potent CD39 inhibitors of the present series were ARL67156 and its derivatives 31 and 33 with Ki values of around 1 µM. Selectivity studies showed that all three nucleotide analogs additionally blocked CD73 acting as dual-target inhibitors. Docking studies provided plausible binding modes to both targets. The present study provides a full characterization of the frequently applied CD39 inhibitor ARL67156, presents structure-activity relationships, and provides a basis for future optimization towards selective CD39 and dual CD39/CD73 inhibitors.
Collapse
Affiliation(s)
- Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham M Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Xihuan Luo
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Vittoria Lopez
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - The Hung Vu
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Lawson KV, Kalisiak J, Lindsey EA, Newcomb ET, Leleti MR, Debien L, Rosen BR, Miles DH, Sharif EU, Jeffrey JL, Tan JBL, Chen A, Zhao S, Xu G, Fu L, Jin L, Park TW, Berry W, Moschütz S, Scaletti E, Sträter N, Walker NP, Young SW, Walters MJ, Schindler U, Powers JP. Discovery of AB680: A Potent and Selective Inhibitor of CD73. J Med Chem 2020; 63:11448-11468. [DOI: 10.1021/acs.jmedchem.0c00525] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kenneth V. Lawson
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jaroslaw Kalisiak
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Erick A. Lindsey
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Eric T. Newcomb
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Manmohan Reddy Leleti
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Laurent Debien
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Brandon R. Rosen
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Dillon H. Miles
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ehesan U. Sharif
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jenna L. Jeffrey
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Joanne B. L. Tan
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ada Chen
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Sharon Zhao
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Guifen Xu
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Lijuan Fu
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Lixia Jin
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Tim W. Park
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Wade Berry
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Emma Scaletti
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Nigel P. Walker
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Stephen W. Young
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Matthew J. Walters
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Uli Schindler
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P. Powers
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
44
|
Soleimani A, Farshchi HK, Mirzavi F, Zamani P, Ghaderi A, Amini Y, Khorrami S, Mashayekhi K, Jaafari MR. The therapeutic potential of targeting CD73 and CD73-derived adenosine in melanoma. Biochimie 2020; 176:21-30. [PMID: 32585229 DOI: 10.1016/j.biochi.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
The hypoxic environment of melanoma results in CD73 upregulation on the surface of various tumor microenvironment (TME) cells including tumor cells, stromal cells and infiltrated immune cells. Consequently, CD73 through both enzymatic and none enzymatic functions affect melanoma progression. Overaccumulation of CD73-derived adenosine through interaction with its four G coupled receptors (A1AR, A2AAR, A2BAR, and A3AR) mediate tumor growth, immune suppression, angiogenesis, and metastasis. This paper aims to comprehensively review the therapeutic potential of CD73 ectonucleotidase targeting in melanoma. To reach this goal, firstly, we summarize the structure, function, regulation, and clinical outcome of CD73 ectonucleotidase. Then, we depict the metabolism and signaling of CD73-derived adenosine along with its progressive role in development of melanoma. Furthermore, the therapeutic potentials of CD73 -adenosine axis targeting is assessed in both preclinical and clinical studies. Targeting CD73-derived adenosine via small molecule inhibitor or monoclonal antibodies studies especially in combination with immune checkpoint blockers including PD-1 and CTLA-4 have shown desirable results for management of melanoma in preclinical studies and several clinical trials have recently been started to evaluate the therapeutic potential of CD73-derived adenosine targeting in solid tumors. Indeed, targeting of CD73-derived adenosine signaling could be considered as a new therapeutic target in melanoma.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helale Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Beatty JW, Lindsey EA, Thomas-Tran R, Debien L, Mandal D, Jeffrey JL, Tran AT, Fournier J, Jacob SD, Yan X, Drew SL, Ginn E, Chen A, Pham AT, Zhao S, Jin L, Young SW, Walker NP, Leleti MR, Moschütz S, Sträter N, Powers JP, Lawson KV. Discovery of Potent and Selective Non-Nucleotide Small Molecule Inhibitors of CD73. J Med Chem 2020; 63:3935-3955. [DOI: 10.1021/acs.jmedchem.9b01713] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joel W. Beatty
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Erick A. Lindsey
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Rhiannon Thomas-Tran
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Laurent Debien
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Debashis Mandal
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jenna L. Jeffrey
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Anh T. Tran
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jeremy Fournier
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Steven D. Jacob
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Xuelei Yan
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Samuel L. Drew
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Elaine Ginn
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ada Chen
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Amber T. Pham
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Sharon Zhao
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Lixia Jin
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Stephen W. Young
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Nigel P. Walker
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Manmohan Reddy Leleti
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Jay P. Powers
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V. Lawson
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
46
|
Bhattarai S, Pippel J, Scaletti E, Idris R, Freundlieb M, Rolshoven G, Renn C, Lee SY, Abdelrahman A, Zimmermann H, El-Tayeb A, Müller CE, Sträter N. 2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5'-nucleotidase (CD73) Inhibitors with Variable Binding Modes. J Med Chem 2020; 63:2941-2957. [PMID: 32045236 DOI: 10.1021/acs.jmedchem.9b01611] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,β-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Pippel
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Emma Scaletti
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Riham Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Marianne Freundlieb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, D-60438 Frankfurt am Main, Germany
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| |
Collapse
|
47
|
Viviani LG, Piccirillo E, Ulrich H, Amaral ATD. Virtual Screening Approach for the Identification of Hydroxamic Acids as Novel Human Ecto-5′-Nucleotidase Inhibitors. J Chem Inf Model 2019; 60:621-630. [DOI: 10.1021/acs.jcim.9b00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lucas G. Viviani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Erika Piccirillo
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Antonia T.-do Amaral
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
48
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
49
|
Bhattarai S, Pippel J, Meyer A, Freundlieb M, Schmies C, Abdelrahman A, Fiene A, Lee S, Zimmermann H, El‐Tayeb A, Yegutkin GG, Sträter N, Müller CE. X‐Ray Co‐Crystal Structure Guides the Way to Subnanomolar Competitive Ecto‐5′‐Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Jan Pippel
- Institute of Bioanalytical ChemistryCenter for Biotechnology and BiomedicineLeipzig University Deutscher Platz 5 04103 Leipzig Germany
| | - Anne Meyer
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Marianne Freundlieb
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Constanze Schmies
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Sang‐Yong Lee
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and NeuroscienceGoethe‐University Frankfurt am Main Germany
| | - Ali El‐Tayeb
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| | | | - Norbert Sträter
- Institute of Bioanalytical ChemistryCenter for Biotechnology and BiomedicineLeipzig University Deutscher Platz 5 04103 Leipzig Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of Bonn An der Immenburg 4 D‐53121 Bonn Germany
| |
Collapse
|
50
|
Ghoteimi R, Nguyen >VT, Rahimova R, Grosjean F, Cros‐Perrial E, Uttaro J, Mathé C, Chaloin L, Jordheim LP, Peyrottes S. Synthesis of Substituted 5′‐Aminoadenosine Derivatives and Evaluation of Their Inhibitory Potential toward CD73. ChemMedChem 2019; 14:1431-1443. [DOI: 10.1002/cmdc.201900348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Rayane Ghoteimi
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| | - >Van Tai Nguyen
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| | - Rahila Rahimova
- Institut de Recherche en Infectiologie de Montpellier (IRIM)Université MontpellierCNRS 34293 Montpellier France
| | - Felix Grosjean
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| | - Emeline Cros‐Perrial
- Université Claude Bernard Lyon 1INSERM 1052, CNRS 5286, Centre Léon BérardCentre de Recherche en Cancérologie de Lyon 69008 Lyon France
| | - Jean‐Pierre Uttaro
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| | - Christophe Mathé
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM)Université MontpellierCNRS 34293 Montpellier France
| | - Lars Petter Jordheim
- Université Claude Bernard Lyon 1INSERM 1052, CNRS 5286, Centre Léon BérardCentre de Recherche en Cancérologie de Lyon 69008 Lyon France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247 CNRSUniversité MontpellierENSCM Campus Triolet, cc1705, Place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|