1
|
Gao N, Bai P, Fang C, Wu W, Bi C, Wang J, Shan A. Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. ACS NANO 2024; 18:25446-25464. [PMID: 39240217 DOI: 10.1021/acsnano.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The alarming rise in global antimicrobial resistance underscores the urgent need for effective antibacterial drugs. Drawing inspiration from the bacterial-entrapment mechanism of human defensin 6, we have fabricated biomimetic peptide nanonets composed of multiple functional fragments for bacterial eradication. These biomimetic peptide nanonets are designed to address antimicrobial resistance challenges through a dual-approach strategy. First, the resulting nanofibrous networks trap bacteria and subsequently kill them by loosening the membrane structure, dissipating proton motive force, and causing multiple metabolic perturbations. Second, these trapped bacterial clusters reactivate macrophages to scavenge bacteria through enhanced chemotaxis and phagocytosis via the PI3K-AKT signaling pathway and ECM-receptor interaction. In vivo results have proven that treatment with biomimetic peptide nanonets can alleviate systemic bacterial infections without causing noticeable systemic toxicity. As anticipated, the proposed strategy can address stubborn infections by entrapping bacteria and awakening antibacterial immune responses. This approach might serve as a guide for the design of bioinspired materials for future clinical applications.
Collapse
Affiliation(s)
- Nan Gao
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Bai
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanpeng Wu
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Wang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Ouyang X, Li B, Yang T, Yang Y, Ba Z, Zhang J, Yang P, Liu Y, Wang Y, Zhao Y, Mao W, Wu X, Zeng X, Zhong C, Liu H, Zhang Y, Gou S, Ni J. High Therapeutic Index α-Helical AMPs and Their Therapeutic Potential on Bacterial Lung and Skin Wound Infections. ACS Infect Dis 2024; 10:3138-3157. [PMID: 39141008 DOI: 10.1021/acsinfecdis.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial peptides (AMPs) possess strong antibacterial activity and low drug resistance, making them ideal candidates for bactericidal drugs for addressing the issue of traditional antibiotic resistance. In this study, a template (G(XXKK)nI, G = Gly; X = Leu, Ile, Phe, or Trp; n = 2, 3, or 4; K = Lys; I = Ile.) was employed for the devised of a variety of novel α-helical AMPs with a high therapeutic index. The AMP with the highest therapeutic index, WK2, was ultimately chosen following a thorough screening process. It demonstrates broad-spectrum and potent activity against both standard and multidrug-resistant bacteria, while also showing low hemolysis and rapid and efficient time-kill kinetics. Additionally, WK2 exhibits excellent efficacy in treating mouse models of Klebsiella pneumonia-induced lung infections and methicillin-resistant Staphylococcus aureus (MRSA)-induced skin wound infections while demonstrating good safety profiles in vivo. In conclusion, the template-based design methodology for novel AMPs with high therapeutic indices offers new insights into addressing antibiotic resistance problems. WK2 represents a promising antimicrobial agent.
Collapse
Affiliation(s)
- Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoxuan Zeng
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Li S, Wang Z, Song S, Tang Y, Zhou J, Liu X, Zhang X, Chang M, Wang K, Peng Y. Membrane-Active All-Hydrocarbon-Stapled α-Helical Amphiphilic Tat Peptides: Broad-Spectrum Antibacterial Activity and Low Incidence of Drug Resistance. ACS Infect Dis 2024; 10:1839-1855. [PMID: 38725407 DOI: 10.1021/acsinfecdis.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanyuan Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Shang L, Chen C, Sun R, Guo J, Liu J, Wang M, Zhang L, Fei C, Xue F, Liu Y, Gu F. Engineered Peptides Harboring Cation Motifs Against Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5522-5535. [PMID: 38266749 DOI: 10.1021/acsami.3c15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Multidrug-resistant (MDR) pathogens pose a serious threat to the health and life of humans, necessitating the development of new antimicrobial agents. Herein, we develop and characterize a panel of nine amino acid peptides with a cation end motif. Bioactivity analysis revealed that the short peptide containing "RWWWR" as a central motif harboring mirror structure "KXR" unit displayed not only high activity against MDR planktonic bacteria but also a clearance rate of 92.33% ± 0.58% against mature biofilm. Mechanically, the target peptide (KLR) killed pathogens by excessively accumulating reactive oxygen species and physically disrupting membranes, thereby enhancing its robustness for controlling drug resistance. In the animal model of sepsis infection by MDR bacteria, the peptide KLR exhibited strong therapeutic effects. Collectively, this study provided the dominant structure of short antimicrobial peptides (AMPs) to replenish our arsenals for combating bacterial infections and illustrated what could be harnessed as a new agent for fighting MDR bacteria.
Collapse
Affiliation(s)
- Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Rui Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Juan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
5
|
Li C, Zhou Z, Wang W, Zhao Y, Yin X, Meng Y, Zhao P, Wang M, Liu X, Wang X, Wang S, Ren B, Zhang L, Xia X. Development of Antibacterial Peptides with Membrane Disruption and Folate Pathway Inhibitory Activities against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:1044-1060. [PMID: 38173250 DOI: 10.1021/acs.jmedchem.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antimicrobial peptides (AMPs) offer an opportunity to overcome multidrug resistance. Here, novel peptides were designed based on AMP fragments derived from sea cucumber hemolytic lectin to enhance anti-methicillin-resistant Staphylococcus aureus (MRSA) activity with less side effects. Two designed peptides, CGS19 (LARVARRVIRFIRRAW-NH2) and CGS20 (RRRLARRLIFFIRRAW-NH2), exhibited strong antibacterial activities against clinically isolated MRSA with MICs of 3-6 μM, but no obvious cytotoxicity was observed. Consistently, CGS19 and CGS20 exerted rapid bactericidal activity and effectively induced 5.9 and 5.8 log reduction of MRSA counts in mouse subeschar, respectively. Further, CGS19 and CGS20 kill bacteria not only through disturbing membrane integrity but also by binding formate-tetrahydrofolate ligase, a key enzyme in the folate metabolism pathway, thereby inhibiting the folate pathway of MRSA. CGS19 and CGS20 are promising lead candidates for drug development against MRSA infection. The dual mechanisms on the identical peptide sequence or scaffold might be an underappreciated manner of treating life-threatening pathogens.
Collapse
Affiliation(s)
- Chunlei Li
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Department of Pharmacy, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ziyi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitao Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yanqiu Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Yin
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yiwei Meng
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peipei Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Mengmeng Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
6
|
Arora A, Singh M, Saini V, Mehta D, Safwan SM, Pandey N, Verma V, Bajaj A. Cholic Acid-Derived Gemini Amphiphile Can Eradicate Interkingdom Polymicrobial Biofilms and Wound Infections. ACS Infect Dis 2024; 10:138-154. [PMID: 38146853 DOI: 10.1021/acsinfecdis.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biofilm infections are mainly caused by Gram-positive bacteria (GPB) like Staphylococcus aureus, Gram-negative bacteria (GNB) like Pseudomonas aeruginosa, and fungi like Candida albicans. These infections are responsible for antimicrobial tolerance, and commensal interactions of these microbes pose a severe threat to chronic infections. Treatment therapies against biofilm infections are limited to eradicating only 20-30% of infections. Here, we present the synthesis of a series of bile acid-derived molecules using lithocholic acid, deoxycholic acid, and cholic acid where two bile acid molecules are tethered through 3'-hydroxyl or 24'-carboxyl terminals with varying spacer length (trimethylene, pentamethylene, octamethylene, and dodecamethylene). Our structure-activity relationship investigations revealed that G21, a cholic acid-derived gemini amphiphile having trimethylene spacer tethered through the C24 position, is a broad-spectrum antimicrobial agent. Biochemical studies witnessed that G21 interacts with negatively charged lipoteichoic acid, lipopolysaccharide, and phosphatidylcholine moieties of GPB, GNB, and fungi and disrupts the microbial cell membranes. We further demonstrated that G21 can eradicate polymicrobial biofilms and wound infections and prevent bacteria and fungi from developing drug resistance. Therefore, our findings revealed the potential of G21 as a versatile antimicrobial agent capable of effectively targeting polymicrobial biofilms and wound infections, suggesting that it is a promising antimicrobial agent for future applications.
Collapse
Affiliation(s)
- Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
7
|
Li X, Hao Y, Yang N, Mao R, Teng D, Wang J. Plectasin: from evolution to truncation, expression, and better druggability. Front Microbiol 2023; 14:1304825. [PMID: 38188573 PMCID: PMC10771296 DOI: 10.3389/fmicb.2023.1304825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Non-computational classical evolution analysis of plectasin and its functional relatives can especially contribute tool value during access to meet requirements for their better druggability in clinical use. Staphylococcus aureus is a zoonotic pathogen that can infect the skin, blood, and other tissues of humans and animals. The impact of pathogens on humans is exacerbated by the crisis of drug resistance caused by the misuse of antibiotics. In this study, we analyzed the evolution of anti-Staphylococcus target functional sequences, designed a series of plectasin derivatives by truncation, and recombinantly expressed them in Pichia pastoris X-33, from which the best recombinant Ple-AB was selected for the druggability study. The amount of total protein reached 2.9 g/L following 120 h of high-density expression in a 5-L fermenter. Ple-AB was found to have good bactericidal activity against gram-positive bacteria, with minimum inhibitory concentration (MIC) values ranging between 2 and 16 μg/mL. It showed good stability and maintained its bactericidal activity during high temperatures, strong acid and alkali environments. Notably, Ple-AB exhibited better druggability, including excellent trypsin resistance, and still possessed approximately 50% of its initial activity following exposure to simulated intestinal fluids for 1 h. In vitro safety testing of Ple-AB revealed low hemolytic activity against mouse erythrocytes and cytotoxicity against murine-derived macrophages. This study successfully realized the high expression of a new antimicrobial peptide (AMP), Ple-AB, in P. pastoris and the establishment of its oral administration as an additive form with high trypsin resistance; the study also revealed its antibacterial properties, indicating that truncation design is a valuable tool for improving druggability and that the candidate Ple-AB may be a novel promising antimicrobial agent.
Collapse
Affiliation(s)
- Xuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Ma X, Chen Y, Shu A, Jiang Y, Chen X, Ma C, Zhou M, Wang T, Chen T, Shaw C, Wang L. A Novel Antimicrobial Peptide, Dermaseptin-SS1, with Anti-Proliferative Activity, Isolated from the Skin Secretion of Phyllomedusa tarsius. Molecules 2023; 28:6558. [PMID: 37764334 PMCID: PMC10535717 DOI: 10.3390/molecules28186558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has severely increased the burden on the global health system, and such pathogenic infections are considered a great threat to human well-being. Antimicrobial peptides, due to their potent antimicrobial activity and low possibility of inducing resistance, are increasingly attracting great interest. Herein, a novel dermaseptin peptide, named Dermaseptin-SS1 (SS1), was identified from a skin-secretion-derived cDNA library of the South/Central American tarsier leaf frog, Phyllomedusa tarsius, using a 'shotgun' cloning strategy. The chemically synthesized peptide SS1 was found to be broadly effective against Gram-negative bacteria with low haemolytic activity in vitro. A designed synthetic analogue of SS1, named peptide 14V5K, showed lower salt sensitivity and more rapid bacteria killing compared to SS1. Both peptides employed a membrane-targeting mechanism to kill Escherichia coli. The antiproliferative activity of SS1 and its analogues against lung cancer cell lines was found to be significant.
Collapse
Affiliation(s)
- Xiaonan Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China; (Y.C.); (A.S.)
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China; (Y.C.); (A.S.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.M.); (X.C.); (C.M.); (M.Z.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
9
|
Mao M, Li J, Dong K, Li RP, Chen X, Liu J, Tang S. Metal-Free Late-Stage Alkylation of Tryptophan and Tryptophan-Containing Peptides with 1,3-Dithiane Derivatives. Org Lett 2023; 25:5784-5789. [PMID: 37503958 DOI: 10.1021/acs.orglett.3c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. We report a simple, metal-free, late-stage reductive C2 alkylation of tryptophan and tryptophan-containing peptides using readily available 1,3-dithianes. This alkylation protocol has a wide substrate scope and an excellent tolerance for reactive functional groups.
Collapse
Affiliation(s)
- Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xi Chen
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
10
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Lyu Y, Tan M, Xue M, Hou W, Yang C, Shan A, Xiang W, Cheng B. Broad-spectrum hybrid antimicrobial peptides derived from PMAP-23 with potential LPS binding ability. Biochem Pharmacol 2023; 210:115500. [PMID: 36921633 DOI: 10.1016/j.bcp.2023.115500] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Antimicrobial peptides, as an integral part of the innate immune system, kill bacteria through a special mechanism of action, making them less susceptible to drug resistance. However, Lipopolysaccharide (LPS) as the permeation barrier on the bacterial membrane, inhibits the antibacterial activity of antimicrobial peptides and triggers the inflammatory response. GWKRKRFG is an LPS binding sequence with a β-boomerang motif that can be linked to antimicrobial peptides to enhance their LPS affinity and reduce the possibility of LPS-induced inflammatory responses. In this study, a series of hybrid peptides were designed by conjugating the reported LPS binding sequence to the C-/N-terminal sequences of the natural porcine antimicrobial peptide PMAP-23 to increase the LPS affinity of peptides. Among all the designed hybrid peptides, 4R-PP-G8 showed the best antibacterial activity, nonhemolytic activity, and excellent cell selectivity. The presence of LPS not only induced the secondary structure transformation of 4R-PP-G8 from a random structure to an α-helical structure but also reduced the antibacterial activity of 4R-PP-G8 in a dose-dependent manner, indicating the excellent binding ability of 4R-PP-G8 to LPS. The LPS/LTA binding assay further verified the interaction between the peptide and LPS. The membrane permeability test verified that 4R-PP-G8 possessed a strong capability to penetrate the bacterial membrane after interacting with LPS. More direct membrane disruption was observed under FE-SEM and TEM. In conclusion, we provided a simple and efficient method to improve the LPS binding ability of antimicrobial peptides and enhance their antimicrobial activity, resulting in the peptide 4R-PP-G8 with clinical application potential.
Collapse
Affiliation(s)
- Yinfeng Lyu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meishu Tan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meng Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Wenjing Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Chengyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China.
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
12
|
Zheng Y, Chen S, Mao K, Zhu X, Jiang M, Wu CJ, Lu J, Zhu H. de Novo-designed antimicrobial peptides with broad-spectrum antimicrobial potency and rapid wound disinfection. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
Du Y, Li L, Zheng Y, Liu J, Gong J, Qiu Z, Li Y, Qiao J, Huo YX. Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Appl Environ Microbiol 2022; 88:e0161722. [PMID: 36416555 PMCID: PMC9746297 DOI: 10.1128/aem.01617-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The emergence of antimicrobial resistance is a global health concern and calls for the development of novel antibiotic agents. Antimicrobial peptides seem to be promising candidates due to their diverse sources, mechanisms of action, and physicochemical characteristics, as well as the relatively low emergence of resistance. The incorporation of noncanonical amino acids into antimicrobial peptides could effectively improve their physicochemical and pharmacological diversity. Recently, various antimicrobial peptides variants with improved or novel properties have been produced by the incorporation of single and multiple distinct noncanonical amino acids. In this review, we summarize strategies for the incorporation of noncanonical amino acids into antimicrobial peptides, as well as their features and suitabilities. Recent applications of noncanonical amino acid incorporation into antimicrobial peptides are also presented. Finally, we discuss the related challenges and prospects.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Li
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Yue Zheng
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jiaheng Liu
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Julia Gong
- Marymount High School, Los Angeles, California, USA
| | - Zekai Qiu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yanni Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Mohammed EH, Lohan S, Ghaffari T, Gupta S, Tiwari RK, Parang K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J Med Chem 2022; 65:15819-15839. [PMID: 36442155 PMCID: PMC9743092 DOI: 10.1021/acs.jmedchem.2c01469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We designed a library of 24 cyclic peptides containing arginine (R) and tryptophan (W) residues in a sequential manner [RnWn] (n = 2-7) to study the impact of the hydrophilic/hydrophobic ratio, charge, and ring size on the antibacterial activity against Gram-positive and Gram-negative strains. Among peptides, 5a and 6a demonstrated the highest antimicrobial activity. In combination with 11 commercially available antibiotics, 5a and 6a showed remarkable synergism against a large panel of resistant pathogens. Hemolysis (HC50 = 340 μg/mL) and cell viability against mammalian cells demonstrated the selective lethal action of 5a against bacteria over mammalian cells. Calcein dye leakage and scanning electron microscopy studies revealed the membranolytic effect of 5a. Moreover, the stability in human plasma (t1/2 = 3 h) and the negligible ability of pathogens to develop resistance further reflect the potential of 5a for further development as a peptide-based antibiotic.
Collapse
Affiliation(s)
- Eman H.
M. Mohammed
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,Department
of Chemistry, Faculty of Science, Menoufia
University, Shebin
El-Koam51132, Egypt,AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Tarra Ghaffari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Shilpi Gupta
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,. Fax: +1-714-516-548. Phone: +1-714-516-5483
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,. Fax: +1-714-516-5481. Phone: +1-714-516-5489
| |
Collapse
|
16
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
17
|
Cheng Q, Zeng P. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides. Curr Pharm Des 2022; 28:3527-3537. [PMID: 36056849 DOI: 10.2174/1381612828666220902124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The antimicrobial peptide (AMP) is a class of molecules that are active against a variety of microorganisms, from bacterial and cancer cells to fungi. Most AMPs are natural products, as part of an organism's own defense system against harmful microbes. However, the growing prevalence of drug resistance has forced researchers to design more promising engineered antimicrobial agents. Inspired by the amphiphilic detergents, the hydrophobic-hydrophilic alternation pattern was considered to be a simple but effective way to de novo design AMPs. In this model, hydrophobic amino acids (leucine, isoleucine etc.) and hydrophilic amino acids (arginine, lysine etc.) were arranged in an alternating way in the peptide sequence. The majority of this type of peptides have a clear hydrophilic-hydrophobic interface, which allows the molecules to have good solubility in both water and organic solvents. When they come into contact with hydrophobic membranes, many peptides undergo a conformational transformation, facilitating themself to insert into the cellular envelope. Moreover, positive-charged peptide amphiphiles tended to have an affinity with negatively-charged membrane interfaces and further led to envelope damage and cell death. Herein, several typical design patterns have been reviewed. Though varying in amino acid sequence, they all basically follow the rule of alternating arrangement of hydrophilic and hydrophobic residues. Based on that, researchers synthesized some lead compounds with favorable antimicrobial activities and preliminarily investigated their possible mode of action. Besides membrane disruption, these AMPs are proven to kill microbes in multiple mechanisms. These results deepened our understanding of AMPs' design and provided a theoretical basis for constructing peptide candidates with better biocompatibility and therapeutic potential.
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
18
|
Casciaro B, Loffredo MR, Cappiello F, O’Sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. KDEON WK-11: A short antipseudomonal peptide with promising potential. Front Chem 2022; 10:1000765. [PMID: 36465859 PMCID: PMC9713011 DOI: 10.3389/fchem.2022.1000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 μM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Niamh O’Sullivan
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, Rome, Italy
| | - Rizwan Manzer
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Sougata Karmakar
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Alan Haskell
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Syed K. Hasan
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
C-terminal modification of a de novo designed antimicrobial peptide via capping of macrolactam rings. Bioorg Chem 2022; 130:106251. [DOI: 10.1016/j.bioorg.2022.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
20
|
Zou W, Zhang Y, Zhou M, Chen X, Ma C, Wang T, Jiang Y, Chen T, Shaw C, Wang L. Exploring the active core of a novel antimicrobial peptide, palustrin-2LTb, from the Kuatun frog, Hylarana latouchii, using a bioinformatics-directed approach. Comput Struct Biotechnol J 2022; 20:6192-6205. [DOI: 10.1016/j.csbj.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
21
|
The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater 2022; 153:557-572. [PMID: 36115654 DOI: 10.1016/j.actbio.2022.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are considered to be powerful weapons in the fight against traditional antibiotic resistance due to their unique membrane-disruptive mechanism. The combination of traditional and classical hydrophobic tryptophan (W) residues and hydrophilic charged arginine (R) residues is considered as the first choice for the minimalist design of AMPs due to its potent performance in antibacterial activity. However, some W- and R-rich AMPs that are not rationally designed and contain excessive repeats of W and R residues may cause severe cytotoxicity and hemolysis. To address this issue, we designed the (WRX)n (where X = hydrophilic uncharged amino residues; n = number of repeat units) series engineered peptides with high cell selectivity by introducing hydrophilic uncharged threonine (T), serine (S), glutamine (Q) or asparagine (N) residues into the minimalist design of W- and R-rich AMPs. The results showed that the introduction of these hydrophilic uncharged amino residues, especially T residues, significantly improved the cell selectivity of the W- and R-rich engineered peptides. Among (WRX)n series engineered peptides, T6 presents a mixture structure of β-turn and α-helix. It has broad spectrum and potent antibacterial activity (no activity against probiotics), good biocompatibility, high selectivity index, strong tolerance (physiological salts, serum acid, alkali, and heat conditions), rapid and efficient time-kill kinetics, and no tendency of resistance. Studies on antibacterial mechanism show that T6 exert antibacterial activity mainly by disrupting bacterial cell membrane and inducing the accumulation of reactive oxygen species in bacterial cells. Furthermore, T6 exhibited potent antibacterial and anti-inflammatory capabilities in vivo in a mouse peritonitis-sepsis model infected with Escherichia coli. In conclusion, our study confirms an effective strategy for the minimalist design of highly cell selective W- and R-rich AMPs by introducing hydrophilic uncharged T residues, which may trigger widespread attention to hydrophilic uncharged amino acid residues, including T residues, and provide new insights into the design of peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: We have introduced hydrophilic uncharged T, S, Q or N residues into the minimalist design of W- and R-rich engineered peptides and found that the introduction of these hydrophilic uncharged amino residues, especially the T residues, can significantly improve the cell selectivity of W- and R-rich engineered peptides. The target compound T6 showed potent antibacterial activity, high cell selectivity, strong tolerance, good in vivo efficacy and killed bacteria through multiple mechanisms mainly membrane-disruptive. These findings may spark widespread interest in hydrophilic uncharged amino acid residues, and provide new insights into the design of peptide-based antimicrobial biomaterials.
Collapse
|
22
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
23
|
Li G, Yuan X, Chen H, Li B, Shao C, Zhu Y, Lai Z, Shan A. Optimization of Antibacterial Activity in Tibetan Swine α-Helix Peptide TP by Site-Directed Mutagenesis. Front Microbiol 2022; 13:864374. [PMID: 35859740 PMCID: PMC9289672 DOI: 10.3389/fmicb.2022.864374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted extensive attention because of their broad-spectrum antibacterial activity and low level of induced bacterial resistance. However, the development of some natural AMPs does not consider the perfect balance of structural characteristics, resulting in some empirical and controversial practices still existing. To further explore and complete the relationship between parameters and function of α-helix peptide, in this study, the natural antimicrobial peptide TP secreted from Bacillus strain of Tibetan pigs was selected as a template to investigate the effect of systematic mutations in the hydrogen bond formation site of the α-helical antimicrobial peptide on the activity and cell selectivity of the antimicrobial peptide. The target peptide TP(i+4) 1&2&5 with modification of two pairs of positively charged amino acids and a pair of hydrophobic amino acids showed excellent antibacterial ability and the best selectivity index (SI = 64) in vitro. At the same time, TP(i+4) 1&2&5 remained active in the presence of physiological salts and serum. The results of fluorescence, flow cytometry, and electron microscopy showed that the optimized sequences showed good antibacterial activity by membrane infiltration and membrane destruction. The potential of TP(i+4) 1&2&5 in vivo was tested in a mouse peritonitis model. Organ bacterial loads in the liver, kidney, spleen, and lungs of mice treated with TP(i+4) 1&2&5 were significantly lower compared to the infected group (p < 0.05). Overall, these findings contribute to the design and optimization of antimicrobial peptides with high activity and low toxicity and may accelerate the clinical application of antimicrobial peptides.
Collapse
|
24
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
25
|
Tan P, Tang Q, Xu S, Zhang Y, Fu H, Ma X. Designing Self-Assembling Chimeric Peptide Nanoparticles with High Stability for Combating Piglet Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105955. [PMID: 35285170 PMCID: PMC9109057 DOI: 10.1002/advs.202105955] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Indexed: 05/14/2023]
Abstract
As a novel type of antibiotic alternative, peptide-based antibacterial drug shows potential application prospects attributable to their unique mechanism for lysing the membrane of pathogenic bacteria. However, peptide-based antibacterial drugs suffer from a series of problems, most notably their immature stability, which seriously hinders their application. In this study, self-assembling chimeric peptide nanoparticles (which offer excellent stability in the presence of proteases and salts) are constructed and applied to the treatment of bacterial infections. In vitro studies are used to demonstrate that peptide nanoparticles NPs1 and NPs2 offer broad-spectrum antibacterial activity and desirable biocompatibility, and they retain their antibacterial ability in physiological salt environments. Peptide nanoparticles NPs1 and NPs2 can resist degradation under high concentrations of proteases. In vivo studies illustrate that the toxicity caused by peptide nanoparticles NPs1 and NPs2 is negligible, and these nanoparticles can alleviate systemic bacterial infections in mice and piglets. The membrane permeation mechanism and interference with the cell cycle differ from that of antibiotics and mean that the nanoparticles are at a lower risk of inducing drug resistance. Collectively, these advances may accelerate the development of peptide-based antibacterial nanomaterials and can be applied to the construction of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Peng Tan
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Qi Tang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Shenrui Xu
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yucheng Zhang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Huiyang Fu
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xi Ma
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
26
|
Cholic Acid-Based Antimicrobial Peptide Mimics as Antibacterial Agents. Int J Mol Sci 2022; 23:ijms23094623. [PMID: 35563014 PMCID: PMC9101178 DOI: 10.3390/ijms23094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022] Open
Abstract
There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure–activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.
Collapse
|
27
|
Mohammed EHM, Lohan S, Tiwari RK, Parang K. Amphiphilic cyclic peptide [W 4KR 5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur J Med Chem 2022; 235:114278. [PMID: 35339840 DOI: 10.1016/j.ejmech.2022.114278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
Linear and cyclic amphiphilic peptides, (W4KR5) and [W4KR5], were evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including four multi-drug resistant strains and the corresponding four non-resistant strains. Cyclic peptide [W4KR5] showed higher antibacterial activity than the linear (W4KR5) counterpart. Cyclic [W4KR5] was subjected to combination (physical mixture or covalent conjugation) with meropenem as a model antibiotic to study the impact of the combination on antimicrobial activity. A physical mixture of meropenem and [W4KR5] showed synergistic antibacterial activity against Gram-negative P. aeruginosa (ATCC BAA-1744) and P. aeruginosa (ATCC 27883) strains. [W4KR5] was further subjected to extensive antibacterial studies against additional 10 bacteria strains, showing significant antibacterial efficacy against Gram-positive bacteria strains. Combinations studies of [W4KR5] with an additional 9 commercially available antibiotics showed significant enhancement in antibacterial activity for all tested combinations, especially with tetracycline, tobramycin, levofloxacin, clindamycin, daptomycin, polymyxin, kanamycin, and vancomycin. Time-kill kinetics assay and flow cytometry results exhibited that [W4KR5] had a time-dependent synergistic effect and membrane disruption property. These data indicate that [W4KR5] improves the antibacterial activity, presumably by facilitating the internalization of antibiotics and their interaction with the intracellular targets. This study introduces a potential strategy for treating multidrug-resistant pathogens by combining [W4KR5] and a variety of classical antibiotics to improve the antibacterial effectiveness.
Collapse
Affiliation(s)
- Eman H M Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA; Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, 51132, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
28
|
Shang L, Wu Y, Wei N, Yang F, Wang M, Zhang L, Fei C, Liu Y, Xue F, Gu F. Novel Arginine End-Tagging Antimicrobial Peptides to Combat Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2022; 14:245-258. [PMID: 34964342 DOI: 10.1021/acsami.1c19305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of multidrug-resistant microorganisms has been termed one of the most common global health threats, emphasizing the discovery of new antibacterial agents. To address this issue, we engineered peptides harboring "RWWWR" as a central motif plus arginine (R) end-tagging and then tested them in vitro and in vivo. Our results demonstrate that Pep 6, one of the engineered peptides, shows great potential in combating Escherichia coli bacteremia and the Staphylococcus aureus skin burn infection model, which induces a 62-90% reduction in bacterial burden. Remarkably, after long serial passages of S. aureus and E. coli for 30 days, Pep 6 is still highly efficient in killing pathogens, compared with 64- and 128-fold increase in minimal inhibitory concentrations (MICs) for vancomycin and polymyxin B, respectively. We also found that Pep 6 exhibited robust biofilm-inhibiting activity and eliminated 61.33% of the mature methicillin-resistant Staphylococcus aureus (MRSA) biofilm with concentration in the MIC level. These results suggest that the RWWWR motif and binding of arginine end-tagging could be harnessed as a new agent for combating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yuting Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Nan Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
29
|
Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin. J Microbiol 2021; 60:89-99. [PMID: 34964945 DOI: 10.1007/s12275-022-1368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022]
Abstract
The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.
Collapse
|
30
|
Chen T, Lyu Y, Tan M, Yang C, Li Y, Shao C, Zhu Y, Shan A. Fabrication of Supramolecular Antibacterial Nanofibers with Membrane-Disruptive Mechanism. J Med Chem 2021; 64:16480-16496. [PMID: 34783241 DOI: 10.1021/acs.jmedchem.1c00829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By studying the principles of self-assembly and combining the structural parameters required for the asymmetric distribution of antimicrobial peptides (AMPs), we newly designed and screened the high-activity and low-toxicity AMP F2I-LL. This peptide can form a supramolecular hydrogel with a nanofiber microstructure in a simulated physiological environment (phosphate buffered saline), which exhibits broad-spectrum antibacterial activity. Compared with monomeric peptides, the introduction of a self-assembly strategy not only improved the bactericidal titer but also enhanced the serum stability of AMPs. Mechanistic studies showed that the positive charge enriched on the surface of the nanofiber was conducive to its rapid binding to the negatively charged part of the outer membrane of bacteria and further entered the inner membrane, increasing its permeability and ultimately leading to cell membrane rupture and death. This work provides insights into the design of nanopeptides with broad-spectrum antibacterial activity and provides new results for the development of biomedicine.
Collapse
Affiliation(s)
- Tingting Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Meishu Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Chengyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Ying Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| |
Collapse
|
31
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
32
|
Wang Z, Li Q, Li J, Li J, Shang L, Chou S, Lyu Y, Shan A. The Trp-rich Antimicrobial Amphiphiles With Intramolecular Aromatic Interactions for the Treatment of Bacterial Infection. Front Microbiol 2021; 12:733441. [PMID: 34721331 PMCID: PMC8548882 DOI: 10.3389/fmicb.2021.733441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance is emerging as a hot issue with the abuse and overuse of antibiotics, and the shortage of effective antimicrobial agents against multidrug resistant bacteria creates a huge problem to treat the threatening nosocomial skin and soft tissue infection. Antimicrobial peptides (AMPs) exhibite enormous potential as one of the most promising candidates of antibiotic to fight against pathogenic infections because of its unique membrane penetration mechanism to kill pathogens, whereas the clinical application of AMPs still faces the challenges of production cost, stability, safety, and design strategy. Herein, a series of Trp-rich peptides was designed following the principle of paired Trp plated at the ith and ith+4 position on the backbone of peptides, based on the template (VKKX)4, where X represents W, A, or L, to study the effect of intramolecular aromatic interactions on the bioactivity of AMPs. Through comparing the antimicrobial performance, hemolysis, cytotoxicity, and stability, VW5 which is equipped with the characters of direct antimicrobial efficacy (GM=1.68μM) and physical destruction of bacterial membrane (SEM and electron microscopy) stood out from the engineering peptides. VW5 also performed well in mice models, which could significantly decrease the bacterial colony (VW5 vs infection group, 12.72±2.26 vs 5.52±2.01×109CFU/abscess), the area of dermo-necrosis (VW5 vs infection group, 0.74±0.29 vs 1.86±0.98mm2) and the inflammation cytokine levels at the abscess site without causing toxicity to the skin. Overall, this study provides a strategy and template to diminish the randomness in the exploration and design of novel peptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Jiménez-Vargas JM, Ramírez-Carreto S, Corzo G, Possani LD, Becerril B, Ortiz E. Structural and functional characterization of NDBP-4 family antimicrobial peptides from the scorpion Mesomexovis variegatus. Peptides 2021; 141:170553. [PMID: 33862164 DOI: 10.1016/j.peptides.2021.170553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Six peptides, belonging to the NDBP-4 family of scorpion antimicrobial peptides were structurally and functionally characterized. The sequence of the mature peptides VpCT1, VpCT2, VpCT3 and VpCT4 was inferred by transcriptomic analysis of the venom gland of the scorpion Mesomexovis variegatus. Analysis of their amino acid sequences revealed patterns that are also present in previously reported peptides that show differences in their hemolytic and antimicrobial activities in vitro. Two other variants, VpCT3W and VpCTConsensus were designed to evaluate the effect of sequence changes of interest on their structure and activity. The synthesized peptides were evaluated by circular dichroism to confirm their α-helical conformation in a folding promoting medium. The peptides were assayed on two Gram-positive and three Gram-negative bacterial strains, and on two yeast strains. They preferentially inhibited the growth of Staphylococcus aureus, were mostly ineffective on Pseudomonas aeruginosa, and moderately inhibited the growth of Candida yeasts. All six peptides exhibited hemolytic activity on human erythrocytes in the range of 4.8-83.7 μM. VpCT3W displayed increased hemolytic and anti-yeast activities, but showed no change in antibacterial activity, relative to its parental peptide, suggesting that Trp6 may potentiate the interaction of VpCT3 with eukaryotic cell membranes. VpCTConsensus showed broader and enhanced antimicrobial activity relative to several of the natural peptides. The results presented here contribute new information on the structure and function of NDBP-4 antimicrobial peptides and provides clues for the design of less hemolytic and more effective antimicrobial peptides.
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), CDMX, Mexico
| | - Santos Ramírez-Carreto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Baltazar Becerril
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ernesto Ortiz
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
34
|
Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang J, Ouyang X, Zhang T, Li B, Xie J, Ni J. New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. ACS Infect Dis 2021; 7:1619-1637. [PMID: 33829758 DOI: 10.1021/acsinfecdis.0c00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of tackling the increasingly serious antimicrobial resistance and improving the clinical potential of AMPs, a facile de novo strategy was adopted in this study, and a series of new peptides comprising repeating unit (WRX)n (X represents I, L, F, W, and K; n = 2, 3, 4, or 5) and amidation at C-terminus were designed. Most of the newly designed peptides exhibited a broad range of excellent antimicrobial activities against various bacteria, especially difficult-to-kill multidrug-resistant bacteria clinical isolates. Among (WRK)4 and (WRK)5, with n = 4 and n = 5 of repeating unit WRK, the highest selectivity for anionic bacterial membranes over a zwitterionic mammalian cell membrane is presented with strong antimicrobial potential and low toxicity. Additionally, both (WRK)4 and (WRK)5 emerged with fast killing speed and low tendency of resistance in sharp contrast to the conventional antibiotics ciprofloxacin, gentamicin, and imipenem, as well as having antimicrobial activity through multiple mechanisms including a membrane-disruptive mechanism and an intramolecular mechanism (nucleic acid leakage, DNA binding and ROS generation) characterized by a series of assays. Furthermore, (WRK)4 exerted impressive therapeutic effects in vivo similarly to polymyxin B but displayed much lower toxicity in vivo than polymyxin B. Taken together, the newly designed peptides (WRK)4 and (WRK)5 presented tremendous potential as novel antimicrobial candidates in response to the growing antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| |
Collapse
|
35
|
Liu H, Yang N, Teng D, Mao R, Hao Y, Ma X, Wang J. Design and Pharmacodynamics of Recombinant Fungus Defensin NZL with Improved Activity against Staphylococcus hyicus In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22115435. [PMID: 34063982 PMCID: PMC8196787 DOI: 10.3390/ijms22115435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus hyicus is recognized as a leading pathogen of exudative epidermitis in modern swine industry. Antimicrobial peptides are attractive candidates for development as potential therapeutics to combat the serious threats of the resistance of S. hyicus. In this study, a series of derivatives were designed based on the NZ2114 template with the aim of obtaining peptides with more potent antimicrobial activity through changing net positive charge or hydrophobicity. Among them, a variant designated as NZL was highly expressed in Pichia pastoris (P. pastoris) with total secreted protein of 1505 mg/L in a 5-L fermenter and exhibited enhanced antimicrobial activity relative to parent peptide NZ2114. Additionally, NZL could kill over 99% of S. hyicus NCTC10350 in vitro within 8 h and in Hacat cells. The results of membrane permeabilization assay, morphological observations, peptide localization assay showed that NZL had potent activity against S. hyicus, which maybe kill S. hyicus through action on the cell wall. NZL also showed an effective therapy in a mouse peritonitis model caused by S. hyicus, superior to NZ2114 or ceftriaxone. Overall, these findings can contribute to explore a novel potential candidate against S. hyicus infections.
Collapse
Affiliation(s)
- He Liu
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: ; Tel.: +86-10-82106081 or +86-10-82106079; Fax: +86-10-82106079
| |
Collapse
|
36
|
Zhou J, Zhang L, He Y, Liu K, Zhang F, Zhang H, Lu Y, Yang C, Wang Z, Fareed MS, Liang X, Yan W, Wang K. An optimized analog of antimicrobial peptide Jelleine-1 shows enhanced antimicrobial activity against multidrug resistant P. aeruginosa and negligible toxicity in vitro and in vivo. Eur J Med Chem 2021; 219:113433. [PMID: 33878564 DOI: 10.1016/j.ejmech.2021.113433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023]
Abstract
Due to the threat of escalating multi-drug resistant gram-negative bacteria to human health and life, novel antimicrobial agents against gram-negative pathogens are urgently needed. As antimicrobial peptides are not prone to induce bacteria resistance, they are believed to be one kind of promising class of potential antimicrobial agent candidates to combat multi-drug resistant bacteria for long-term use. Jelleine-1, first isolated from the royal jelly of honeybees, is a typical amphiphilic antimicrobial peptide and shows broad antimicrobial spectrum and negligible toxicity. To promote its antimicrobial activity and extend its potential of clinical use against multi-drug resistant gram-negative bacteria, novel analogs of jelleine-1 were designed, synthesized and their antimicrobial functions and toxicity were examined in this study. Our results showed that fine tuning of the cationic charge, polarity, and basicity of the sequence through amino acids substitution at position 3, 5, 7 and maintaining position 1, 4, 6, 8 unchanged could improve the bioactivity of jelleine-1 significantly. Meanwhile, we also found that the substitution of phenylalanine by tryptophan also could improve the antimicrobial activity of jelleine-1. Among all the analogs, analog 15, which is enriched in arginine and leucine, showed the most potent antimicrobial activity against both gram-negative and gram-positive bacteria, especially to multi-drug resistant Pseudomonas aeruginosa in vivo and in vitro. In addition, analog 15 also showed potent inhibition of the formation of multi-drug resistant P. aeruginosa biofilm and negligible toxicity, which was certified by MTT, hemolysis, blood assay, and biochemical analysis.
Collapse
Affiliation(s)
- Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Lishi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Kexin Liu
- School of Stomatology, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Fangfang Zhang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Hanru Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China; Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Yaqi Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Changyan Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Xiaolei Liang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China.
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| |
Collapse
|
37
|
Saur JS, Wirtz SN, Schilling NA, Krismer B, Peschel A, Grond S. Distinct Lugdunins from a New Efficient Synthesis and Broad Exploitation of Its MRSA-Antimicrobial Structure. J Med Chem 2021; 64:4034-4058. [PMID: 33779184 DOI: 10.1021/acs.jmedchem.0c02170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new solid-phase peptide synthesis and bioprofiling of the antimicrobial activity of lugdunin, a fibupeptide, enable a comprehensive structure-activity relationship (SAR) study (MRSA Staphylococcus aureus). Distinct lugdunin analogues with variation of the three important amino acids Val2, Trp3, and Leu4 are readily available based on the established high-output synthesis. This efficient synthesis concept takes advantage of the presynthesized thiazolidine building block. To gain further knowledge of SAR, d-Val2, and d-Leu4 were replaced with aliphatic amino acids. For l-Trp3 derivatization, a set of non-natural aromatic amino acids with manifold substitution and annulation patterns precisely shows structural imperatives, starting from the exchange of d-Val6 → d-Trp6 with a 2-fold improved biological activity. d-Trp6-lugdunin analogues with additional variation of d-Val2 and d-Leu4 residues were designed and synthesized followed by antimicrobial profiling. For the first time, these SAR studies deliver valuable information on the tolerance of other amino acids to d-Val2, l-Trp3, and d-Leu4 in the sequence of lugdunin.
Collapse
Affiliation(s)
- Julian S Saur
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Sebastian N Wirtz
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
38
|
Ang QA, Arfan G, Ong CYF, Ng FM, Ong EHQ, Chia CSB. Designing a leucine-rich antibacterial nonapeptide with potent activity against mupirocin-resistant MRSA via a structure-activity relationship study. Chem Biol Drug Des 2021; 97:1185-1193. [PMID: 33754480 DOI: 10.1111/cbdd.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is the main aetiological agent responsible for the majority of human skin infections. Of particular concern is the methicillin-resistant variety, commonly known as MRSA. The extensive use of the first-line topical antibiotic of choice, mupirocin, has inevitably resulted in the emergence of resistant strains, signalling an urgent need for the development of new antibacterials with new mechanisms of action. In this work, we describe how we designed a novel cationic nonapeptide, containing only leucine and two lysine residues, with potent anti-MRSA activity and a rapid bactericidal mode of action. Coupled to a favourable safety profile towards human skin fibroblasts, we believe nonapeptide 11 has high potential for further development as a mupirocin replacement candidate to treat skin infections caused by MRSA.
Collapse
Affiliation(s)
- Qi An Ang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Giovinna Arfan
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chu Yang Fann Ong
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Esther H Q Ong
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng San Brian Chia
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
39
|
Zhang Q, Yang N, Mao R, Hao Y, Ma X, Teng D, Fan H, Wang J. A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms. Appl Microbiol Biotechnol 2021; 105:1489-1504. [PMID: 33534018 DOI: 10.1007/s00253-021-11135-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Streptococcus dysgalactiae, considered one of the main pathogens that causes bovine mastitis, is a serious threat to humans and animals. However, the excessive use of antibiotics and the characteristic of S. dysgalactiae forming biofilms in mastitic teat canal have serious clinical implications. In this study, in vivo and in vitro multiple mechanisms of action of P2, a mutant of fungal defensin plectasin, against S. dysgalactiae were systematically and comprehensively investigated for the first time. P2 showed potent antibacterial activity against S. dysgalactiae (minimum inhibitory concentration, MIC = 0.23-0.46 μM) and rapid bactericidal action by 3.0 lg units reduction in 2-4 h. No resistant mutants appeared after 30-d serial passage of S. dysgalactiae in the presence of P2. The results of electron microscopy and flow cytometer showed that P2 induced membrane damage of S. dysgalactiae, causing the leakage of cellular content and eventually cell death. Besides, P2 effectively inhibited early biofilm formation, eradicated mature biofilms, and killed 99.9% persisters which were resistant to 100 × MIC vancomycin; and confocal laser scanning microscopy (CLSM) also revealed the potent antibacterial and antibiofilm activity of P2 (the thickness of biofilm reduced from 18.82 to 7.94 μm). The in vivo therapeutic effect of P2 in mouse mastitis model showed that it decreased the number of mammary bacteria and alleviated breast inflammation by regulating cytokines and inhibiting bacterial proliferation, which were superior to vancomycin. These data indicated that P2 maybe a potential candidate peptide for mastitis treatment of S. dysgalactiae infections. KEY POINTS: •P2 showed potential in vitro antibacterial characteristics towards S. dysgalactiae. •P2 eradicated biofilms, killed persisters, and induced cell death of S. dysgalactiae. •P2 could effectively protect mice from S. dysgalactiae infection in gland.
Collapse
Affiliation(s)
- Qingjuan Zhang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.,Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.,College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuanxuan Ma
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
40
|
Shao C, Zhu Y, Jian Q, Lai Z, Tan P, Li G, Shan A. Cross-Strand Interaction, Central Bending, and Sequence Pattern Act as Biomodulators of Simplified β-Hairpin Antimicrobial Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003899. [PMID: 33354914 DOI: 10.1002/smll.202003899] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Novel antimicrobial peptides (AMPs) have revolutionarily evolved into formidable candidates for antibiotic substitute materials against pathogenic infections. However, cost, lability, disorderly sequences, systemic toxicology, and biological profiles have plagued the perennial search. Here, a progressive β-hairpin solution with the simplest formulation is implanted into an AMP-based therapeutic strategy to systematically reveal the complex balance between function and toxicity of structural moieties, including cationicity, hydrophobicity, cross-strand interactions, center bending, and sequence pattern. Comprehensive implementation of structural identification, ten microorganisms, eleven in vitro barriers, four mammalian cells, and a diversified membrane operation setup led to the emergence of β-hairpin prototypes from a 24-member library. Lead amphiphiles, WKF-PG and WRF-NG, can tackle bacterial infection through direct antimicrobial efficacy and potential inflammation-limiting capabilities, such as an Escherichia coli challenge in a mouse peritonitis-sepsis model, without observed toxicity after systemic administration. Their optimal states with dissimilar modulators and the unavailable drug resistance related to membrane lytic mechanisms, also provide an usher for renewed innovation among β-sheet peptide-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
41
|
Guo X, Rao J, Yan T, Zhang B, Yang W, Sun W, Xie J. Feleucin-K3 Analogue with an α-(4-Pentenyl)-Ala Substitution at the Key Site Has More Potent Antimicrobial and Antibiofilm Activities in Vitro and in Vivo. ACS Infect Dis 2021; 7:64-78. [PMID: 33296183 DOI: 10.1021/acsinfecdis.0c00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of antimicrobial compounds is now regarded as an urgent problem. Antimicrobial peptides (AMPs) have great potential to become novel antimicrobial drugs. Feleucin-K3 is an α-helical cationic AMP isolated from the skin secretion of the Asian bombinid toad species Bombina orientalis and has antimicrobial activity. In our previous studies, amino acid scanning of Feleucin-K3 was performed to determine the key site affecting its activity. In this study, we investigated and synthesized a series of analogues that have either a natural or an unnatural hydrophobic amino acid substitution at the fourth amino acid residue of Feleucin-K3. Among these analogues, Feleucin-K59 (K59), which has an α-(4-pentenyl)-Ala substitution, was shown to have increased antimicrobial activity against both standard and drug-resistant strains of clinical common bacteria, improved stability, no hemolytic activity at antimicrobial concentrations, and no resistance. In addition, K59 has potent antibiofilm activity in vitro. More importantly, K59 showed better antimicrobial and antibiofilm activities against drug-resistant bacteria in in vivo experiments in mice than traditional antibiotics. In this preliminary study of the mechanism of action, we found that K59 could rapidly kill bacteria by a dual-action mechanism of disrupting the cell membrane and binding to intracellular DNA, thus making it difficult for bacteria to develop resistance.
Collapse
Affiliation(s)
- Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jing Rao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Huo S, Chen C, Lyu Z, Zhang S, Wang Y, Nie B, Yue B. Overcoming Planktonic and Intracellular Staphylococcus aureus-Associated Infection with a Cell-Penetrating Peptide-Conjugated Antimicrobial Peptide. ACS Infect Dis 2020; 6:3147-3162. [PMID: 33236626 DOI: 10.1021/acsinfecdis.0c00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a primary pathogen responsible for causing postoperative infections as it survives and persists in host cells, including osteoblasts and macrophages. These cells then serve as reservoirs resulting in chronic infections. Most traditional antibiotics have poor effects on intracellular S. aureus because they cannot enter the cell. Herein, a cell-penetrating peptide TAT-KR-12 was derived from the trans-activating transcription (TAT) peptide and KR-12 (residues 18-29 of human cathelicidin LL-37). The TAT acts as a "trojan horse" to deliver KR-12 peptide into the cells to kill S. aureus. Moreover, effective antibacterial properties and biocompatibility were observed in vitro, demonstrating that TAT-KR-12 is effective not only in eliminating planktonic S. aureus, but also in eliminating intracellular S. aureus cells in vitro. TAT-KR-12, as with LL-37, also elicits strong anti-inflammatory activities in LPS-stimulated macrophages, as demonstrated by significant inhibition of NO, TNF-α, and IL-1β expression and secretion from LPS-stimulated RAW264.7 cells. In the subcutaneous infection mouse model of planktonic and intracellular infections, the growth of S. aureus in vivo is evidently inhibited without cytotoxicity. These results suggest that the novel antimicrobial TAT-KR-12 may prove to be an effective treatment option to overcome antibiotic resistance caused by intracellular bacterial infections.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| |
Collapse
|
43
|
Ramezanzadeh M, Saeedi N, Mesbahfar E, Farrokh P, Salimi F, Rezaei A. Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity. Biochimie 2020; 181:42-51. [PMID: 33271197 DOI: 10.1016/j.biochi.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (AMPs) are promising alternative agents for treating multidrug-resistant bacterial infections. Aurein 1.2 is a natural 13-amino acid AMP with antibacterial activity against Gram-positive bacteria. In this study, we designed three novel AMPs: aurein M1 (A10W), aurein M2 (D4K, E11K), and aurein M3 (A10W, D4K, E11K) to analyze the effect of Trp substitution and enhancement of positive charge on the activity of aurein 1.2. The AMP probability, physicochemical properties, secondary and tertiary structures, and amphipathic structure were predicted by various bioinformatics tools. After the synthesis of the peptides, their antibacterial activity, hemolysis, cytotoxicity, and structural analysis were assayed. Compared to the selectivity of aurein 1.2, the selectivity of aurein M2 and M3 with a net positive charge of +5 was improved 11.30- and 8.00-fold against Gram-positive and -negative bacteria, respectively. The hemolytic activity of aurein M2 was lower than that of aurein 1.2 and M3, while the higher percentage of human fibroblast cells were alive in the presence of aurein M3. Also, the MICs of aurein M3 toward Staphylococcus aureus and Escherichia coli at the physiologic salt were ≤16, which is recommended as a promising candidate for clinical investigation. Circular dichroism analysis indicated an alpha-helical structure in the peptide analogs that is similar to aurein 1.2 in the presence of 10 mM SDS. Therefore, increasing positive charge can be used successfully as an approach for improving the potency and selectivity of AMPs. Moreover, the beneficial effect of Trp substitution depends on its position and the sequence of peptides.
Collapse
Affiliation(s)
| | - Nasrin Saeedi
- School of Biology, Damghan University, Damghan, Iran
| | | | - Parisa Farrokh
- School of Biology, Damghan University, Damghan, Iran; Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | | | - Arezou Rezaei
- School of Biology, Damghan University, Damghan, Iran; Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
44
|
Shang L, Li J, Song C, Nina Z, Li Q, Chou S, Wang Z, Shan A. Hybrid Antimicrobial Peptide Targeting Staphylococcus aureus and Displaying Anti-infective Activity in a Murine Model. Front Microbiol 2020; 11:1767. [PMID: 33042031 PMCID: PMC7516806 DOI: 10.3389/fmicb.2020.01767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Broad-spectrum antimicrobial peptides (AMPs) kill bacteria indiscriminately, increasing the possibility of an ecological imbalance in the microbiota. To solve this problem, new types of AMPs, which kill pathogenic bacteria without breaking the micro-ecological balance of the body, were proposed. Here, we successfully designed a targeting AMP, S2, which is a fusion peptide composed of a species-specific targeting domain and broad-spectrum AMP domain. In the current study, S2 showed specific killing activity against Staphylococcus aureus, and almost no resistance induced compared to penicillin. Mechanism studies indicated that S2 killed S. aureus by destroying the bacterial membrane. Meanwhile, S2 possessed excellent salt-tolerance properties and biocompatibility. Importantly, S2 exhibited perfect treatment efficacy against an S. aureus subcutaneous infection model and remained nontoxic. In conclusion, this study provides a promising strategy for designing specific AMPs against growing bacterial infections.
Collapse
Affiliation(s)
- Lu Shang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunsheng Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zaytseva Nina
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qiuke Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhihua Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Li J, Shang L, Lan J, Chou S, Feng X, Shi B, Wang J, Lyu Y, Shan A. Targeted and Intracellular Antibacterial Activity against S. agalactiae of the Chimeric Peptides Based on Pheromone and Cell-Penetrating Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44459-44474. [PMID: 32924418 DOI: 10.1021/acsami.0c12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The significance of the complex bacterial ecosystem in the human body and the impediment of the mammalian membrane against many antibiotics together emphasize the necessity to develop antimicrobial agents with precise antimicrobial and cell-penetrating activities. A simple and feasible method for generating dual-function antimicrobial peptides inspired by highly hydrophobic peptide pheromone and cationic cell-penetrating peptides is presented. Furthermore, the extension of the peptide candidate library is achieved by modifying the charged domain. The bacteria-selective peptides L1, L2, L10, and L11 kill Streptococcus agalactiae by disrupting the membrane structure, and the targeted mechanism is suggested where the peptides offset the entrapment of S. agalactiae rather than of other bacteria. Moreover, L2 and L10 possess intracellular antibacterial activity and carrier property, which is mainly dependent on endocytosis. Given their suitable biocompatibility, high tolerance, no drug resistance, and effective antimicrobial capacity in a mouse mastitis model, L2 and L10 can be powerful weapons against S. agalactiae pathogen infection.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Lu Shang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jing Lan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
46
|
Yang Y, Wang C, Gao N, Lyu Y, Zhang L, Zhang S, Wang J, Shan A. A Novel Dual-Targeted α-Helical Peptide With Potent Antifungal Activity Against Fluconazole-Resistant Candida albicans Clinical Isolates. Front Microbiol 2020; 11:548620. [PMID: 33101226 PMCID: PMC7554340 DOI: 10.3389/fmicb.2020.548620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Due to compromised immune system, fungal infection incidences have markedly increased in the last few decades. Pathogenic fungi have developed resistance to the clinically available antifungal agents. Antifungal resistance poses a great challenge to clinical treatment and has stimulated the demand for novel antifungal agents. A promising alternative to the treatment of fungal diseases is the use of antimicrobial peptides (AMPs). However, the antifungal activities of AMPs have not been fully determined. Therefore, this study aimed at designing and screening α-helical peptides with potential antifungal activities. The effects of key physicochemical parameters on antifungal activities were also investigated. A series of lengthened and residue-substituted derivatives of the template peptide KV, a hexapeptide truncated from the α-helical region of porcine myeloid antimicrobial peptide-36, were designed and synthesized. Enhancement of hydrophobicity by introducing aromatic hydrophobic amino acids (tryptophan and phenylalanine) significantly increased the efficacies of the peptides against Candida albicans strains, including fluconazole-resistant isolates. Increased hydrophobicity also elevated the toxic properties of these peptides. RF3 with moderate hydrophobicity exhibited potent anticandidal activities (GM = 6.96 μM) and modest hemolytic activities (HC10 > 64 μM). Additionally, repeated exposure to a subinhibitory concentration of RF3 did not induce resistance development. The antifungal mechanisms of RF3 were due to membrane disruptions and induction of reactive oxygen species production. Such a dual-targeted mechanism was active against drug-resistant fungi. These results show the important role of hydrophobicity and provide new insights into designing and developing antifungal peptides. Meanwhile, the successful design of RF3 highlights the potential utility of AMPs in preventing the spread of drug-resistant fungal infections.
Collapse
Affiliation(s)
- Yang Yang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenxi Wang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Licong Zhang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Sujiang Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science, Tarim University, Alar, China
| | - Jiajun Wang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
47
|
Gao J, Zhang M, Zhang F, Wang Y, Ouyang J, Luo X, Yang H, Zhang D, Chen Y, Yu H, Wang Y. Design of a Sea Snake Antimicrobial Peptide Derivative with Therapeutic Potential against Drug-Resistant Bacterial Infection. ACS Infect Dis 2020; 6:2451-2467. [PMID: 32786271 DOI: 10.1021/acsinfecdis.0c00255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infections caused by drug-resistant pathogens are a worldwide challenge for public health. Antimicrobial peptides (AMPs) are regarded as promising antibiotic alternatives for the treatment of drug-resistant infections. In the present study, a series of small peptides were designed based on our previously reported sea snake AMP Hc-CATH. From them, the lead peptide HC1-D2, a truncated peptide entirely substituted by d-amino acids, was selected. HC1-D2 exhibited significantly improved stability and antibiofilm and anti-inflammatory activities. Meanwhile, HC1-D2 retained potent, broad-spectrum, and rapid antimicrobial properties against bacteria and fungi, especially drug-resistant bacteria. Moreover, HC1-D2 showed low propensity to induce bacterial resistance and low cytotoxicity and hemolytic activity. Notably, HC1-D2 showed potent in vivo anti-infective ability in mouse peritonitis models infected by both standard and drug-resistant bacteria. It significantly decreased the bacterial counts in the abdominal cavity and spleen of mice and apparently increased the survival rates of the mice. Acting through the MAPKs inflammatory pathway, HC1-D2 selectively induced the production of chemokine and the subsequent immune cell recruitment to the infection site, while inhibiting the production of pro-inflammatory cytokines with undesirable toxicities. These much improved properties make HC1-D2 a promising candidate for the development of novel peptide anti-infective agents against drug-resistant infections.
Collapse
Affiliation(s)
- Jiuxiang Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Minghui Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Wang
- Biology Department, Guizhou Normal University, Guiyang, Guizhou 550000, China
| | - Jianhong Ouyang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuanjin Luo
- Biology Department, Guizhou Normal University, Guiyang, Guizhou 550000, China
| | - Huaixin Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haining Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
48
|
Liu Y, Shi J, Tong Z, Jia Y, Yang K, Wang Z. Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:microorganisms8091398. [PMID: 32932906 PMCID: PMC7564829 DOI: 10.3390/microorganisms8091398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and prevalence of multidrug-resistant (MDR) bacteria particularly Gram-negative bacteria presents a global crisis for human health. Colistin and tigecycline were recognized as the last resort of defenses against MDR Gram-negative pathogens. However, the emergence and prevalence of MCR or Tet(X)-mediated acquired drug resistance drastically impaired their clinical efficacy. It has been suggested that antimicrobial peptides might act a crucial role in combating antibiotic resistant bacteria owing to their multiple modes of action and characteristics that are not prone to developing drug resistance. Herein, we report a safe and stable tryptophan-rich amphiphilic peptide termed WRK-12 with broad-spectrum antibacterial activity against various MDR bacteria, including MRSA, colistin and tigecycline-resistant Escherichia coli. Mechanistical studies showed that WRK-12 killed resistant E. coli through permeabilizing the bacterial membrane, dissipating membrane potential and triggering the production of reactive oxygen species (ROS). Meanwhile, WRK-12 significantly inhibited the formation of an E. coli biofilm in a dose-dependent manner. These findings revealed that amphiphilic peptide WRK-12 is a promising drug candidate in the fight against MDR bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
49
|
Lee H, Yang S, Shin SY. Improved Cell Selectivity of Symmetric α‐Helical Peptides Derived From Trp‐Rich Antimicrobial Peptides. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyunhee Lee
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
| | - Sungtae Yang
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
- Department of Microbiology, School of Medicine Chosun University Gwangju 61452 Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
- Department of Cellular and Molecular Medicine School of Medicine, Chosun University Gwangju 61452 Republic of Korea
| |
Collapse
|
50
|
Zhu Y, Shao C, Li G, Lai Z, Tan P, Jian Q, Cheng B, Shan A. Rational Avoidance of Protease Cleavage Sites and Symmetrical End-Tagging Significantly Enhances the Stability and Therapeutic Potential of Antimicrobial Peptides. J Med Chem 2020; 63:9421-9435. [DOI: 10.1021/acs.jmedchem.0c00583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongjie Zhu
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Changxuan Shao
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Guoyu Li
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Peng Tan
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qiao Jian
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Baojing Cheng
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|