1
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
2
|
Ahmed H, Wallimann R, Gisler L, Elghazawy NH, Gruber S, Keller C, Liang SH, Sippl W, Haider A, Ametamey SM. Characterization of ( R)- and ( S)-[ 18F]OF-NB1 in Rodents as Positron Emission Tomography Probes for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors. ACS Chem Neurosci 2023; 14:4323-4334. [PMID: 38060344 DOI: 10.1021/acschemneuro.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [18F]OF-NB1 in rodents. Particularly, the (R)- and (S)- enantiomers were evaluated using in silico docking, in vitro autoradiography, in vivo PET imaging, and ex vivo biodistribution studies. A select panel of GluN1/2B antagonists (CP-101,606, CERC-301, and eliprodil) and the off-target sigma-1 receptor ligands (fluspidine and SA4503) were used to determine the specificity and selectivity of the tested enantiomers. Additionally, a nonmetal-mediated radiofluorination strategy was devised that harnesses the potential of diaryliodoniums in the nucleophilic radiofluorination of nonactivated aromatic compounds. Both enantiomers exhibited known GluN1/2B binding patterns; however, the R-enantiomer showed higher GluN1/2B-specific accumulation in rodent autoradiography and higher brain uptake in PET imaging experiments compared to the S-enantiomer. Molecular simulation studies provided further insights with respect to the difference in binding, whereby a reduced ligand-receptor interaction was observed for the S-enantiomer. Nonetheless, both enantiomers showed dose dependency when two different doses (1 and 5 mg/kg) of the GluN1/2B antagonist, CP-101,606, were used in the PET imaging study. Taken together, (R)-[18F]OF-NB1 appears to exhibit the characteristics of a suitable PET probe for imaging of GluN2B-containing NMDARs in clinical studies.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Schmidt TJ, Liang SH, Ametamey SM, Wünsch B, Haider A. Synthesis and Biological Evaluation of Enantiomerically Pure ( R) - and ( S) -[18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA Receptors. J Med Chem 2023; 66:16018-16031. [PMID: 37979148 DOI: 10.1021/acs.jmedchem.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A novel synthetic approach was successfully developed, which allows for the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 and the translation of the probe to the clinic. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in the rodent brain by small animal PET studies.
Collapse
Affiliation(s)
- Marvin Korff
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
4
|
Ritter N, Disse P, Aymanns I, Mücher L, Schreiber JA, Brenker C, Strünker T, Schepmann D, Budde T, Strutz-Seebohm N, Ametamey SM, Wünsch B, Seebohm G. Downstream Allosteric Modulation of NMDA Receptors by 3-Benzazepine Derivatives. Mol Neurobiol 2023; 60:7238-7252. [PMID: 37542648 PMCID: PMC10657792 DOI: 10.1007/s12035-023-03526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
N-Methyl-D-aspartate receptors (NMDARs) composed of different splice variants display distinct pH sensitivities and are crucial for learning and memory, as well as for inflammatory or injury processes. Dysregulation of the NMDAR has been linked to diseases like Parkinson's, Alzheimer's, schizophrenia, and drug addiction. The development of selective receptor modulators, therefore, constitutes a promising approach for numerous therapeutical applications. Here, we identified (R)-OF-NB1 as a promising splice variant selective NMDAR antagonist. We investigated the interaction of (R)-OF-NB1 and NMDAR from a biochemical, bioinformatical, and electrophysiological perspective to characterize the downstream allosteric modulation of NMDAR by 3-benzazepine derivatives. The allosteric modulatory pathway starts at the ifenprodil binding pocket in the amino terminal domain and immobilizes the connecting α5-helix to the ligand binding domain, resulting in inhibition. In contrast, the exon 5 splice variant GluN1-1b elevates the NMDARs flexibility and promotes the open state of its ligand binding domain.
Collapse
Affiliation(s)
- Nadine Ritter
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.
- Chembion, University of Münster, 48149, Münster, Germany.
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Chembion, University of Münster, 48149, Münster, Germany
| | - Isabel Aymanns
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Julian A Schreiber
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstr. 11, 48149, Münster, Germany
| | - Timo Strünker
- Chembion, University of Münster, 48149, Münster, Germany
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstr. 11, 48149, Münster, Germany
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster, 48149, Münster, Germany
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Bernhard Wünsch
- Chembion, University of Münster, 48149, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Chembion, University of Münster, 48149, Münster, Germany
| |
Collapse
|
5
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Ritter N, Disse P, Wünsch B, Seebohm G, Strutz-Seebohm N. Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes. Biomedicines 2023; 11:1367. [PMID: 37239037 PMCID: PMC10216354 DOI: 10.3390/biomedicines11051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The number of N-Methyl-D-aspartate receptor (NMDAR) linked neurodegenerative diseases such as Alzheimer's disease and dementia is constantly increasing. This is partly due to demographic change and presents new challenges to societies. To date, there are no effective treatment options. Current medications are nonselective and can lead to unwanted side effects in patients. A promising therapeutic approach is the targeted inhibition of NMDARs in the brain. NMDARs containing different subunits and splice variants display different physiological properties and play a crucial role in learning and memory, as well as in inflammatory or injury processes. They become overactivated during the course of the disease, leading to nerve cell death. Until now, there has been a lack of understanding of the general functions of the receptor and the mechanism of inhibition, which need to be understood in order to develop inhibitors. Ideal compounds should be highly targeted and even splice-variant-selective. However, a potent and splice-variant-selective NMDAR-targeting drug has yet to be developed. Recently developed 3-benzazepines are promising inhibitors for further drug development. The NMDAR splice variants GluN1-1b-4b carry a 21-amino-acid-long, flexible exon 5. Exon 5 lowers the NMDAR's sensitivity to allosteric modulators by probably acting as an NMDAR modulator itself. The role of exon 5 in NMDAR modulation is still poorly understood. In this review, we summarize the structure and pharmacological relevance of tetrahydro-3-benzazepines.
Collapse
Affiliation(s)
- Nadine Ritter
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Bernhard Wünsch
- Chembion, University of Münster, D-48149 Münster, Germany;
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
| |
Collapse
|
7
|
Zhuang D, Jiang S, Wang Y, Wang X, Shen S, Yan R. I 2-Mediated [6 + 1] Annulation of Alkynes with MsONH 3OTf: Direct Synthesis of Benzo[ b]azepines. Org Lett 2023; 25:3007-3012. [PMID: 37083284 DOI: 10.1021/acs.orglett.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The synthesis of benzo[b]azepines using protonated aminating reagent (MsONH3OTf) and alkynes through I2-mediated [6 + 1] annulation reaction has been developed. This protocol features excellent functional group tolerance and mild reaction conditions and affords the benzo[b]azepines in moderate to good yields under metal-free reaction conditions.
Collapse
Affiliation(s)
- Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Youzhi Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Xiajun Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Siwei Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| |
Collapse
|
8
|
Cai L, Liow JS, Morse CL, Telu S, Davies R, Manly LS, Zoghbi SS, Chin FT, Innis RB, Pike VW. Candidate 3-benzazepine-1-ol type GluN2B receptor radioligands ( 11C-NR2B-Me enantiomers) have high binding in cerebellum but not to σ1 receptors. EJNMMI Res 2023; 13:28. [PMID: 37017827 PMCID: PMC10076467 DOI: 10.1186/s13550-023-00975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION We recently reported 11C-NR2B-SMe ([S-methyl-11C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated 11C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of 11C-NR2B-SMe as new candidate GluN2B radioligands. PET was used to evaluate these radioligands in rats and to assess potential cross-reactivity to σ1 receptors. METHODS NR2B-Me was assayed for binding affinity and selectivity to GluN2B in vitro. 11C-NR2B-Me and its enantiomers were prepared by Pd-mediated treatment of boronic ester precursors with 11C-iodomethane. Brain PET scans were conducted after radioligand intravenous injection into rats. Various ligands for GluN2B receptors or σ1 receptors were administered at set doses in pre-blocking or displacement experiments to assess their impact on imaging data. 18F-FTC146 and enantiomers of 11C-NR2B-SMe were used for comparison. Radiometabolites from brain and plasma were measured ex vivo and in vitro. RESULTS NR2B-Me enantiomers showed high GluN2B affinity and selectivity in vitro. 11C-NR2B-Me enantiomers gave high early whole rat brain uptake of radioactivity, including high uptake in cerebellum, followed by slower decline. Radioactivity in brain at 30 min ex vivo was virtually all unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. When 11C-(R)-NR2B-Me was used, three high-affinity GluN2B ligands-NR2B-SMe, Ro25-6981, and CO101,244-showed increasing pre-block of whole brain radioactivity retention with increasing dose. Two σ1 receptor antagonists, FTC146 and BD1407, were ineffective pre-blocking agents. Together, these results strongly resemble those obtained with 11C-NR2B-SMe enantiomers, except that 11C-NR2B-Me enantiomers showed faster reversibility of binding. When 18F-FTC146 was used as a radioligand, FTC146 and BD1407 showed strong pre-blocking effects whereas GluN2B ligands showed only weak blocking effects. CONCLUSION 11C-NR2B-Me enantiomers showed specific binding to GluN2B receptors in rat brain in vivo. High unexpected specific binding in cerebellum was not due to σ1 receptors. Additional investigation is needed to identify the source of the high specific binding.
Collapse
Affiliation(s)
- Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA.
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Riley Davies
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Rm. PS049, Stanford, CA, 94305-584, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Korff M, Steigerwald R, Bechthold E, Schepmann D, Schreiber JA, Meuth SG, Seebohm G, Wünsch B. Chemical, pharmacodynamic and pharmacokinetic characterization of the GluN2B receptor antagonist 3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1 H-3-benzazepine-1,7-diol - starting point for PET tracer development. Biol Chem 2023; 404:279-289. [PMID: 36215695 DOI: 10.1515/hsz-2022-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
GluN2B-NMDA receptors play a key role in several neurological and neurodegenerative disorders. In order to develop novel negative allosteric GluN2B-NMDA receptor modulators, the concept of conformational restriction was pursued, i.e. the flexible aminoethanol substructure of ifenprodil was embedded into a more rigid tetrahydro-3-benzazepine system. The resulting tetrahydro-3-benzazepine-1,7-diol (±)-2 (WMS-1410) showed promising receptor affinity in receptor binding studies (K i = 84 nM) as well as pharmacological activity in two-electrode-voltage-clamp experiments (IC 50 = 116 nM) and in cytoprotective assays (IC 50 = 18.5 nM). The interactions of (R)-2 with the ifenprodil binding site of GluN2B-NMDA receptors were analyzed on the molecular level and the "foot-in-the-door" mechanism was developed. Due to promising pharmacokinetic parameters (logD7.4 = 1.68, plasma protein binding of 76-77%, sufficient metabolic stability) F-substituted analogs were prepared and evaluated as tracers for positron emission tomography (PET). Both fluorine-18-labeled PET tracers [18F]11 and [18F]15 showed high brain uptake, specific accumulation in regions known for high GluN2B-NMDA receptor expression, but no interactions with σ 1 receptors. Radiometabolites were not observed in the brain. Both PET tracers might be suitable for application in humans.
Collapse
Affiliation(s)
- Marvin Korff
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Ruben Steigerwald
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Elena Bechthold
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Julian A Schreiber
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
- Department of Cardiovascular Medicine, Westfälische Wilhelms-Universität Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Sven G Meuth
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Guiscard Seebohm
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Department of Cardiovascular Medicine, Westfälische Wilhelms-Universität Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
10
|
Haider A, Elghazawy NH, Dawoud A, Gebhard C, Wichmann T, Sippl W, Hoener M, Arenas E, Liang SH. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener 2023; 18:11. [PMID: 36759912 PMCID: PMC9912681 DOI: 10.1186/s13024-023-00600-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects elderly people and constitutes a major source of disability worldwide. Notably, the neuropathological hallmarks of PD include nigrostriatal loss and the formation of intracellular inclusion bodies containing misfolded α-synuclein protein aggregates. Cardinal motor symptoms, which include tremor, rigidity and bradykinesia, can effectively be managed with dopaminergic therapy for years following symptom onset. Nonetheless, patients ultimately develop symptoms that no longer fully respond to dopaminergic treatment. Attempts to discover disease-modifying agents have increasingly been supported by translational molecular imaging concepts, targeting the most prominent pathological hallmark of PD, α-synuclein accumulation, as well as other molecular pathways that contribute to the pathophysiology of PD. Indeed, molecular imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can be leveraged to study parkinsonism not only in animal models but also in living patients. For instance, mitochondrial dysfunction can be assessed with probes that target the mitochondrial complex I (MC-I), while nigrostriatal degeneration is typically evaluated with probes designed to non-invasively quantify dopaminergic nerve loss. In addition to dopaminergic imaging, serotonin transporter and N-methyl-D-aspartate (NMDA) receptor probes are increasingly used as research tools to better understand the complexity of neurotransmitter dysregulation in PD. Non-invasive quantification of neuroinflammatory processes is mainly conducted by targeting the translocator protein 18 kDa (TSPO) on activated microglia using established imaging agents. Despite the overwhelming involvement of the brain and brainstem, the pathophysiology of PD is not restricted to the central nervous system (CNS). In fact, PD also affects various peripheral organs such as the heart and gastrointestinal tract - primarily via autonomic dysfunction. As such, research into peripheral biomarkers has taken advantage of cardiac autonomic denervation in PD, allowing the differential diagnosis between PD and multiple system atrophy with probes that visualize sympathetic nerve terminals in the myocardium. Further, α-synuclein has recently gained attention as a potential peripheral biomarker in PD. This review discusses breakthrough discoveries that have led to the contemporary molecular concepts of PD pathophysiology and how they can be harnessed to develop effective imaging probes and therapeutic agents. Further, we will shed light on potential future trends, thereby focusing on potential novel diagnostic tracers and disease-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| | - Nehal H Elghazawy
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas Wichmann
- Department of Neurology/School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Ernest Arenas
- Karolinska Institutet, MBB, Molecular Neurobiology, Stockholm, Sweden
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Liang SH, Ametamey SM, Wünsch B, Haider A. Synthesis and Biological Evaluation of Enantiomerically Pure ( R)- and ( S)-[ 18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA receptors. RESEARCH SQUARE 2023:rs.3.rs-2516002. [PMID: 36747738 PMCID: PMC9901044 DOI: 10.21203/rs.3.rs-2516002/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. As part of our PET ligand development program, we have recently reported on the preclinical evaluation of [18F]OF-NB1 - a GluN2B PET ligand with promising attributes for potential clinical translation. However, the further development of [18F]OF-NB1 is currently precluded by major limitations in the radiolabeling procedure. These limitations include the use of highly corrosive reactants and racemization during the radiosynthesis. As such, the aim of this study was to develop a synthetic approach that allows an enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A two-step radiosynthesis involving radiofluorination of the boronic acid pinacol ester, followed by coupling to the 3-benzazepine core structure via reductive amination was employed. The new synthetic approach yielded enantiomerically pure (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, while concurrently circumventing the use of corrosive reactants. In vitro autoradiograms with mouse and rat brain sections revealed a higher selectivity of (R)-[18F]OF-NB1 over (S)-[18F]OFNB1 for GluN2B-rich brain regions. In concert with these observations, blockade studies with commercially available GluN2B antagonist, CP101606, showed a significant signal reduction, which was more pronounced for (R)-[18F]OF-NB1 than for (S)-[18F]OF-NB1. Conversely, blockade experiments with sigma2 ligand, FA10, did not result in a significant reduction of tracer binding for both enantiomers. PET imaging experiments with CD1 mice revealed a higher brain uptake and retention for (R)-[18F]OF-NB1, as assessed by visual inspection and volumes of distribution from Logan graphical analyses. In vivo blocking experiments with sigma2 ligand, FA10, did not result in a significant reduction of the brain signal for both enantiomers, thus corroborating the selectivity over sigma2 receptors. In conclusion, we have developed a novel synthetic approach that is suitable for upscale to human use and allows the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in small animal PET studies.
Collapse
Affiliation(s)
- Marvin Korff
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
12
|
Development and Validation of [3H]OF-NB1 for Preclinical Assessment of GluN1/2B Candidate Drugs. Pharmaceuticals (Basel) 2022; 15:ph15080960. [PMID: 36015108 PMCID: PMC9416150 DOI: 10.3390/ph15080960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
GluN2B-enriched N-methyl-D-aspartate receptors (NMDARs) are implicated in several neurodegenerative and psychiatric diseases, such as Alzheimer’s disease. No clinically valid GluN1/2B therapeutic exists due to a lack of selective GluN2B imaging tools, and the state-of-the-art [3H]ifenprodil shows poor selectivity in drug screening. To this end, we developed a tritium-labeled form of OF-NB1, a recently reported selective GluN1/2B positron emission tomography imaging (PET) agent, with a molar activity of 1.79 GBq/µmol. The performance of [3H]OF-NB1 and [3H]ifenprodil was compared through head-to-head competitive binding experiments, using the GluN1/2B ligand CP-101,606 and the sigma-1 receptor (σ1R) ligand SA-4503. Contrary to [3H]ifenprodil, the usage of [3H]OF-NB1 differentiated between GluN1/2B and σ1R binding components. These results were corroborated by observations from PET imaging experiments in Wistar rats using the σ1R radioligand [18F]fluspidine. To unravel the binding modes of OF-NB1 and ifenprodil in GluN1/2B and σ1Rs, we performed a retrospective in silico study using a molecular operating environment. OF-NB1 maintained similar interactions to GluN1/2B as ifenprodil, but only ifenprodil successfully fitted in the σ1R pocket, thereby explaining the high GluN1/2B selectivity of OF-NB1 compared to ifenprodil. We successfully showed in a proof-of-concept study the superiority of [3H]OF-NB1 over the gold standard [3H]ifenprodil in the screening of potential GluN1/2B drug candidates.
Collapse
|
13
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
14
|
Rischka L, Vraka C, Pichler V, Rasul S, Nics L, Gryglewski G, Handschuh P, Murgaš M, Godbersen GM, Silberbauer LR, Unterholzner J, Wotawa C, Haider A, Ahmed H, Schibli R, Mindt T, Mitterhauser M, Wadsak W, Hahn A, Lanzenberger R, Hacker M, Ametamey SM. First-in-Humans Brain PET Imaging of the GluN2B-Containing N-methyl-d-aspartate Receptor with ( R)- 11C-Me-NB1. J Nucl Med 2022; 63:936-941. [PMID: 34620732 PMCID: PMC9157734 DOI: 10.2967/jnumed.121.262427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) plays a crucial role in neurodegenerative diseases such as Alzheimer disease and in the treatment of major depression by fast-acting antidepressants such as ketamine. Given their broad implications, GluN2B-containing NMDARs have been of interest as diagnostic and therapeutic targets. Recently, (R)-11C-Me-NB1 was investigated preclinically and shown to be a promising radioligand for imaging GluN2B subunits. Here, we report on the performance characteristics of this radioligand in a first-in-humans PET study. Methods: Six healthy male subjects were scanned twice on a fully integrated PET/MR scanner with (R)-11C-Me-NB1 for 120 min. Brain uptake and tracer distribution over time were investigated by SUVs. Test-retest reliability was assessed with the absolute percentage difference and the coefficient of variation. Exploratory total volumes of distribution (VT) were computed using an arterial input function and the Logan plot as well as a constrained 2-tissue-compartment model with the ratio of rate constants between plasma and tissue compartments (K1/k2) coupled (2TCM). SUV was correlated with VT to investigate its potential as a surrogate marker of GluN2B expression. Results: High and heterogeneous radioligand uptake was observed across the entire gray matter with reversible kinetics within the scan time. SUV absolute percentage difference ranged from 6.9% to 8.5% and coefficient of variation from 4.9% to 6.0%, indicating a high test-retest reliability. A moderate correlation was found between SUV averaged from 70 to 90 min and VT using Logan plot (Spearman ρ = 0.44). Correlation between VT Logan and 2TCM was r = 0.76. Conclusion: The radioligand (R)-11C-Me-NB1 was highly effective in mapping GluN2B-enriched NMDARs in the human brain. With a heterogeneous uptake and a high test-retest reliability, this radioligand offers promise to deepen our understanding of the GluN2B-containing NMDAR in the pathophysiology and treatment of neuropsychiatric disease such as Alzheimer disease and major depression. Additionally, it could help in the selection of appropriate doses of GluN2B-targeting drugs.
Collapse
Affiliation(s)
- Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Patricia Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Wotawa
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Achi Haider
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Hazem Ahmed
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Roger Schibli
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Thomas Mindt
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria; and
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria;
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria;
| | - Simon M Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland;
| |
Collapse
|
15
|
Xiao Z, Wei H, Xu Y, Haider A, Wei J, Yuan S, Rong J, Zhao C, Li G, Zhang W, Chen H, Li Y, Zhang L, Sun J, Zhang S, Luo HB, Yan S, Cai Q, Hou L, Che C, Liang SH, Wang L. Discovery of a highly specific 18F-labeled PET ligand for phosphodiesterase 10A enabled by novel spirocyclic iodonium ylide radiofluorination. Acta Pharm Sin B 2022; 12:1963-1975. [PMID: 35847497 PMCID: PMC9279629 DOI: 10.1016/j.apsb.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia–of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (Papp > 10 × 10−6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose–response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Zhiwei Xiao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yi Xu
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyu Yuan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huangcan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiyun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Qijun Cai
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| |
Collapse
|
16
|
An Z, Ren Y, Liu Y, Yan R. I 2 -Promoted Intramolecular Oxidative Cyclization of Butenyl Anilines: A Facile Route to Benzo[b]azepines. Chem Asian J 2021; 16:2614-2617. [PMID: 34342932 DOI: 10.1002/asia.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Indexed: 12/16/2022]
Abstract
A metal-free approach for the synthesis of seven-membered N-heterocycles has been developed by the I2 -promoted intramolecular cross-coupling/annulation of butenyl anilines. This cyclization reaction involves C-H activation and C-C bond formation and exhibits good functional group tolerance. A series of benzo[b]azepine derivatives are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi Ren
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yafeng Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750000, P. R. China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
17
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Sun JY, Kumata K, Chen Z, Zhang YD, Chen JH, Hatori A, Fu HL, Rong J, Deng XY, Yamasaki T, Xie L, Hu K, Fujinaga M, Yu QZ, Shao T, Collier TL, Josephson L, Shao YH, Du YF, Wang L, Xu H, Zhang MR, Liang SH. Synthesis and preliminary evaluation of novel 11C-labeled GluN2B-selective NMDA receptor negative allosteric modulators. Acta Pharmacol Sin 2021; 42:491-498. [PMID: 32661351 PMCID: PMC8027431 DOI: 10.1038/s41401-020-0456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/μmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Collapse
Affiliation(s)
- Ji-Yun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Ding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jia-Hui Chen
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Hua-Long Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiao-Yun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Qing-Zhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Han Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yun-Fei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Ahmed H, Wallimann R, Haider A, Hosseini V, Gruber S, Robledo M, Nguyen TAN, Herde AM, Iten I, Keller C, Vogel V, Schibli R, Wünsch B, Mu L, Ametamey SM. Preclinical Development of 18F-OF-NB1 for Imaging GluN2B-Containing N-Methyl-d-Aspartate Receptors and Its Utility as a Biomarker for Amyotrophic Lateral Sclerosis. J Nucl Med 2021; 62:259-265. [PMID: 32737247 DOI: 10.2967/jnumed.120.246785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
As part of our continuous efforts to develop a suitable 18F-labeled PET radioligand with improved characteristics for imaging the N-methyl-d-aspartate receptors (NMDARs) subtype 2B (GluN1/2B), we investigated in the current work ortho-fluorinated (OF) and meta-fluorinated (MF) analogs of 18F-para-fluorinated (PF)-NB1, a 3-benzazepine-based radiofluorinated probe. Methods: OF-NB1 and MF-NB1 were prepared using a multistep synthesis, and their binding affinities toward GluN2B subunits and selectivity over σ1 receptors (σ1Rs) were determined via competitive binding assays. 18F-OF-NB1 was synthesized via copper-mediated radiofluorination and was evaluated in Wistar rats by in vitro autoradiography, PET imaging, ex vivo biodistribution, metabolite experiments, and receptor occupancy studies using CP-101,606, an established GluN2B antagonist. To determine in vivo selectivity, 18F-OF-NB1 was validated in wild-type and σ1R knock-out mice. Translational relevance was assessed in autoradiographic studies using postmortem human brain tissues from healthy individuals and ALS patients, the results of which were corroborated by immunohistochemistry. Results: The binding affinity values for OF-NB1 and MF-NB1 toward the GluN2B subunits were 10.4 ± 4.7 and 590 ± 36 nM, respectively. For σ1R binding, OF-NB1 and MF-NB1 exhibited inhibition constants of 410 and 2,700 nM, respectively. OF-NB1, which outperformed MF-NB1, was radiolabeled with 18F to afford 18F-OF-NB1 in more than 95% radiochemical purity and molar activities of 192 ± 33 GBq/μmol. In autoradiography experiments, 18F-OF-NB1 displayed a heterogeneous and specific binding in GluN2B subunit-rich brain regions such as the cortex, striatum, hypothalamus, and hippocampus. PET imaging studies in Wistar rats showed a similar heterogeneous uptake, and no brain radiometabolites were detected. A dose-dependent blocking effect was observed with CP-101,606 (0.5-15 mg/kg) and resulted in a 50% receptor occupancy of 8.1 μmol/kg. Postmortem autoradiography results revealed lower expression of the GluN2B subunits in ALS brain tissue sections than in healthy controls, in line with immunohistochemistry results. Conclusion:18F-OF-NB1 is a highly promising PET probe for imaging the GluN2B subunits of the N-methyl-d-aspartate receptor. It possesses utility for receptor occupancy studies and has potential for PET imaging studies in ALS patients and possibly other brain disorders.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Marvin Robledo
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Thi A N Nguyen
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Irina Iten
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; and
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; and
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
21
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
22
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
23
|
Ma H, Zhang X, Li N, Lu X, Wei Y, Yuan N, Tian G, Li S. Glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1, a potential target of miR-296, facilitates proliferation and migration of rectal cancer cells. Biosci Biotechnol Biochem 2020; 84:2077-2084. [PMID: 32657216 DOI: 10.1080/09168451.2020.1792267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of our article was to probe the influence of GRINA on rectal cancer and how GRINA is regulated in rectal cancer. Based on the public data, we found that GRINA was highly expressed in rectal cancer tissues and related to worse prognosis in rectal cancer patients. MiR-296 was predicted as an upstream regulatory miRNA of GRINA, which was further verified by dual-luciferase reporter assay. Moreover, we revealed that up-regulation/down-regulation of GRINA facilitated/suppressed SW1463/SW837 cell proliferation, migration, and invasion. Rescue assays indicated that the facilitating impact of GRINA on SW1463 cell proliferation and motility was abolished by miR-296 over-expression whilst the suppressing influence of GRINA on SW837 cell proliferation, migration, and invasion was reversed by miR-296 depletion. These consequences indicated that GRINA, which might be regulated by miR-296, acted stimulative important impact on rectal cancer cells, insinuating that GRINA might be a novel potential target for rectal cancer therapy.
Collapse
Affiliation(s)
- Huan Ma
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Xianyu Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Na Li
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Xiurong Lu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Yulei Wei
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Na Yuan
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Guiying Tian
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| | - Shuguang Li
- Department of Oncology, The First Affiliated Hospital of Hebei North University , Zhangjiakou, Hebei, P.R. China
| |
Collapse
|
24
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Wiesner
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|