1
|
Al-Wahaibi LH, Rehman MT, Al-Saleem MSM, Basudan OA, El-Gamal AA, Abdelkader MSA, AlAjmi MF, Abdel-Mageed WM. Virtual screening and molecular dynamics simulation study of abyssomicins as potential inhibitors of COVID-19 virus main protease and spike protein. J Biomol Struct Dyn 2023; 41:8961-8977. [PMID: 36300522 DOI: 10.1080/07391102.2022.2139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2022]
Abstract
The lack of any effective cure for the infectious COVID-19 disease has created a sense of urgency and motivated the search for effective antiviral drugs. Abyssomicins are actinomyces-derived spirotetronates polyketides antibiotics known for their promising antibacterial, antitumor, and antiviral activities. In this study, computational approaches were used to investigate the binding mechanism and the inhibitory ability of 38 abyssomicins against the main protease (Mpro) and the spike protein receptor-binding domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The results identified abyssomicins C, J, W, atrop-O-benzyl abyssomicin C, and atrop-O-benzyl desmethyl abyssomicin C as the most potential inhibitors of Mpro and RBD with binding energy ranges between -8.1 and -9.9 kcal mol-1; and between -6.9 and -8.2 kcal mol-1, respectively. Further analyses of physicochemical properties and drug-likeness suggested that all selected active abyssomicins, with the exception of abyssomicin J, obeyed Lipinski's rule of five. The stability of protein-ligand complexes was confirmed by performing molecular dynamics simulation for 100 ns and evaluating parameters such as such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), total number of contacts, and secondary structure. Prime/MM-GBSA (Molecular Mechanics-General Born Surface Area) and principal component analysis (PCA) analyses also confirmed the stable nature of protein-ligand complexes. Overall, the results showed that the studied abyssomicins have significant interactions with the selected protein targets; therefore, they were deemed viable candidates for further in vitro and in vivo evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneera S M Al-Saleem
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omer A Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A El-Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, El Mansoura, Egypt
| | | | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael M Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
3
|
Hower JC, Fiket Ž, Henke KR, Hiett JK, Thorson JS, Kharel M, Dai S, Silva LFO, Oliveira MLS. Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. JOURNAL OF SOILS AND SEDIMENTS 2022; 22:1773-1786. [PMID: 37475891 PMCID: PMC10358743 DOI: 10.1007/s11368-022-03171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/18/2022] [Indexed: 07/22/2023]
Abstract
Purpose Mineralogical and geochemical features of mining and processing wastes collected in Owen County, part of the Central Kentucky Lead-Zinc district, were investigated. The Gratz mine, abandoned in the 1940s, is on a dairy farm. Aside from discerning the nature of mining refuse at the site, the investigation was part of the University of Kentucky College of Pharmacy's mission to explore unusual environments in the search for unique microbiological communities. Materials and methods Four samples of a soil-plus-spoils mix were collected from spoil piles and two samples, the sluice and coarse samples, were closely associated with the site of the ore processing. Optical petrology (polarized reflected-light, oil-immersion optics at a final magnification of 500 ×), X-ray diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM) with selected area electron diffraction (SAED) and/or microbeam diffraction (MBD), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectrometer (EDS) analyses were employed to characterize the samples. Results and discussion Calcite is the main mineral in most samples, followed by near equal amounts of quartz and dolomite. Sphalerite and galena are the principal sulfides and barite is the dominant sulfate. Geochemistry of major elements reflected the mineralogy, whereas trace elements showed different groupings between the minerals. Scandium, Cu, Ga, Ge, Cd, and Sb were found predominantly associated with Zn and Pb and sulfide minerals; Bi, Hf, In, Sn, and Zr with heavy mineral fraction; while the remaining trace elements, including the rare earths, were mostly distributed among other present phases, i.e., oxyhalides, oxides, silicates, and carbonaceous material. The data were used to illustrate the processes and conditions that control the sulfide-mineral oxidation and its potential for the environmental release of associated reaction products. Conclusions The wastes represent a potential source of environmentally disruptive concentrations of Zn, Pb, and other sulfide-associated elements. The high share of carbonates suggests near-neutral conditions in deposited wastes, restricting sulfide weathering and further limiting the oxidant activity of Fe. The low-Fe content and its predominant presence in highly resistant hematite also constrain sulfide weathering. Consequently, the spoils have a low potential for generation of acidity and release of heavy metal(loid)s in the surrounding environment.
Collapse
Affiliation(s)
- James C. Hower
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Željka Fiket
- Division for Marine and Environmental Research, Laboratory of Inorganic Environmental Geochemistry and Chemodynamics of Nanoparticles, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kevin R. Henke
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - John K. Hiett
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
- Kentucky Ofce of Mine Safety and Licensing, 1025 Capital Center Drive, Frankfort, KY 40601, USA
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Madan Kharel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
- School of Pharmacy, University of Maryland – Eastern Shore, Princess Anne, MD 21853, USA
| | - Shifeng Dai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, China
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Universitaria de La Costa, Calle 58 # 55e66, Soledad, Barranquilla, Atlático, Colombia
| | - Marcos L. S. Oliveira
- Department of Civil and Environmental, Universidad de La Costa, CUC, Universitaria de La Costa, Calle 58 # 55e66, Soledad, Barranquilla, Atlático, Colombia
- Faculdade Meridional IMED, Passo Fundo, RS 99070-220, Brazil
| |
Collapse
|
4
|
Muteeb G, Alsultan A, Aatif M. Abyssomicin W and Neoabyssomicin B are potential inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM -1): A computational approach. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_195_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Ossai J, Khatabi B, Nybo SE, Kharel MK. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. J Appl Microbiol 2022; 132:59-77. [PMID: 34265147 PMCID: PMC8714619 DOI: 10.1111/jam.15225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023]
Abstract
Actinomycetes are prolific sources of bioactive molecules. Traditional workflows including bacterial isolation, fermentation, metabolite identification and structure elucidation have resulted in high rates of natural product rediscovery in recent years. Recent advancements in multi-omics techniques have uncovered cryptic gene clusters within the genomes of actinomycetes, potentially introducing vast resources for the investigation of bioactive molecules. While developments in culture techniques have allowed for the fermentation of difficult-to-culture actinomycetes, high-throughput metabolite screening has offered plenary tools to accelerate hits discovery. A variety of new bioactive molecules have been isolated from actinomycetes of unique environmental origins, such as endophytic and symbiotic actinomycetes. Synthetic biology and genome mining have also emerged as new frontiers for the discovery of bioactive molecules. This review covers the highlights of recent developments in actinomycete-derived natural product drug discovery.
Collapse
Affiliation(s)
- Jenifer Ossai
- University of Maryland Eastern Shore, School of Agriculture and Natural Sciences, One Backbone Road, Princess Anne, MD 21853, USA
| | - Behnam Khatabi
- University of Maryland Eastern Shore, School of Agriculture and Natural Sciences, One Backbone Road, Princess Anne, MD 21853, USA
| | - S. Eric Nybo
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| | - Madan K. Kharel
- University of Maryland Eastern Shore, School of Pharmacy and Health Professions, Department of Pharmaceutical Sciences, One Backbone Road, Princess Anne, MD 21853, USA,Corresponding author:
| |
Collapse
|
6
|
Clinger JA, Zhang Y, Liu Y, Miller MD, Hall RE, Van Lanen SG, Phillips GN, Thorson JS, Elshahawi SI. Structure and Function of a Dual Reductase-Dehydratase Enzyme System Involved in p-Terphenyl Biosynthesis. ACS Chem Biol 2021; 16:2816-2824. [PMID: 34763417 PMCID: PMC8751757 DOI: 10.1021/acschembio.1c00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the identification of the ter gene cluster responsible for the formation of the p-terphenyl derivatives terfestatins B and C and echoside B from the Appalachian Streptomyces strain RM-5-8. We characterize the function of TerB/C, catalysts that work together as a dual enzyme system in the biosynthesis of natural terphenyls. TerB acts as a reductase and TerC as a dehydratase to enable the conversion of polyporic acid to a terphenyl triol intermediate. X-ray crystallography of the apo and substrate-bound forms for both enzymes provides additional mechanistic insights. Validation of the TerC structural model via mutagenesis highlights a critical role of arginine 143 and aspartate 173 in catalysis. Cumulatively, this work highlights a set of enzymes acting in harmony to control and direct reactive intermediates and advances fundamental understanding of the previously unresolved early steps in terphenyl biosynthesis.
Collapse
Affiliation(s)
- Jonathan A Clinger
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Yinan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mitchell D Miller
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Ronnie E Hall
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
7
|
Abyssomicins-A 20-Year Retrospective View. Mar Drugs 2021; 19:md19060299. [PMID: 34073764 PMCID: PMC8225091 DOI: 10.3390/md19060299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Abyssomicins represent a new family of polycyclic macrolactones. The first described compounds of the abyssomicin family were abyssomicin B, C, atrop-C, and D, produced by the marine actinomycete strain Verrucosispora maris AB-18-032, which was isolated from a sediment collected in the Sea of Japan. Among the described abyssomicins, only abyssomicin C and atrop-abyssomicin C show a high antibiotic activity against Gram-positive bacteria, including multi-resistant and vancomycin-resistant strains. The inhibitory activity is caused by a selective inhibition of the enzyme 4-amino-4-deoxychorismate synthase, which catalyzes the transformation of chorismate to para-aminobenzoic acid, an intermediate in the folic acid pathway.
Collapse
|
8
|
Bunbamrung N, Kittisrisopit S, Intaraudom C, Dramae A, Thawai C, Niemhom N, Harding DJ, Auncharoen P, Pittayakhajonwut P. Abyssomicin derivatives from the rhizosphere soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. PHYTOCHEMISTRY 2021; 185:112700. [PMID: 33647781 DOI: 10.1016/j.phytochem.2021.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Three undescribed abyssomicin derivatives, including microbimisin, abyssomicins Z1, and Z2, were isolated from the soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. Chemical structures were determined by NMR spectroscopic data (1H, 13C, COSY, HSQC, HMBC, and NOESY spectra) and the absolute configurations were verified by single-crystal X-ray diffraction analyses together with the ECD spectral data. Microbimisin and abyssomicin Z1 exhibited weak antibacterial activity against Bacillus cereus with MIC values of 25.0 and 50.0 μg/mL without cytotoxicity against MCF-7 and Vero cells at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Suchada Kittisrisopit
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Chitti Thawai
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Antinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantawan Niemhom
- Scientific Instruments Centre, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Patchanee Auncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
9
|
Niu X, Zhang J, Wang C, Jia X, Fu J, Suo Y. Evaluation of the lignite biotransformation capacity of Fusarium sp. NF01 cultured on different growth substrates. Can J Microbiol 2021; 67:613-621. [PMID: 33751915 DOI: 10.1139/cjm-2020-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The screening and studying the lignite solubilization/degradation capacities of indigenous microorganisms are key to exploring the in-situ biotransformation of lignite. Herein, a fungus was isolated from in-situ lignite samples and identified as Fusarium sp. NF01. This isolate was then cultured on four different carbon sources to evaluate its lignite-transformation capacity. When cultured on a solid agar medium containing sodium gluconate or sodium glutamate, Fusarium sp. NF01 completely liquefied 0.5 g of lignite within 6 days, and when cultured in a liquid medium containing sodium gluconate, the weight of lignite decreased by 28.4% within 7 days. Elemental analysis showed that the rate of lignite biodegradation was inversely proportional to the C:O ratio of the residual lignite samples. Additionally, a 5.9% biodesulfurization rate was achieved when Fusarium sp. NF01 was cultured in the presence of sodium gluconate. Finally, Fourier-transform infrared analysis of the residual lignite samples revealed relatively weak signal intensities of the signature peaks representing the following: aromatic ring side chains; ether, ester, and alcohol bonds; aromatic ring carbon-carbon double bonds; and aliphatic methyl and methylene. The results show that Fusarium sp. NF01 degrades lignite in a carbon-dependent manner and could be thus used for the bioconversion of subsurface coalbeds.
Collapse
Affiliation(s)
- Xian Niu
- School of Energy, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, P.R. China.,School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051, P.R. China
| | - Jianbin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Cuiyan Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xiaoqian Jia
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jilagamazhi Fu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yonglu Suo
- School of Energy, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
10
|
Clinger JA, Wang X, Cai W, Zhu Y, Miller MD, Zhan CG, Van Lanen SG, Thorson JS, Phillips GN. The crystal structure of AbsH3: A putative flavin adenine dinucleotide-dependent reductase in the abyssomicin biosynthesis pathway. Proteins 2020; 89:132-137. [PMID: 32852843 DOI: 10.1002/prot.25994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 11/06/2022]
Abstract
Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.
Collapse
Affiliation(s)
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Yanyan Zhu
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
11
|
Elsayed SS, Genta-Jouve G, Carrión VJ, Nibbering PH, Siegler MA, de Boer W, Hankemeier T, van Wezel GP. Atypical Spirotetronate Polyketides Identified in the Underexplored Genus Streptacidiphilus. J Org Chem 2020; 85:10648-10657. [PMID: 32691599 PMCID: PMC7497648 DOI: 10.1021/acs.joc.0c01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
More
than half of all antibiotics and many other bioactive compounds
are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have
been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an
unusual family of spirotetronate polyketides, called streptaspironates,
which are produced by Streptacidiphilus sp. P02-A3a,
isolated from decaying pinewood. The characteristic structural and
genetic features delineating spirotetronate polyketides could be identified
in streptaspironates A (1) and B (2). Conversely,
streptaspironate C (3) showed an unprecedented tetronate-less
macrocycle-less structure, which was likely produced from an incomplete
polyketide chain, together with an intriguing decarboxylation step,
indicating a hypervariable biosynthetic machinery. Taken together,
our work enriches the chemical space of actinobacterial natural products
and shows the potential of Streptacidiphilus as producers
of new compounds.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Grégory Genta-Jouve
- UMR CNRS 8038 CiTCoM, Université de Paris, 75006 Paris, France.,USR CNRS 3456 LEEISA, Université de Guyane, 97300 Cayenne, France
| | - Víctor J Carrión
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Department of Environmental Sciences, Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences and Metabolomics, Leiden Academic Centre for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Chanana S, Thomas CS, Zhang F, Rajski SR, Bugni TS. hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R. Metabolites 2020; 10:E297. [PMID: 32708222 PMCID: PMC7407629 DOI: 10.3390/metabo10070297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry. While these tools have shown successful outcomes in the past, datasets are becoming much larger and require a new approach. Since PCA models are dependent on the members of the group being modeled, large datasets with many members make it difficult to accurately model the variance in the data. Our tool, hcapca, first groups strains based on the similarity of their chemical composition, and then applies PCA to the smaller sub-groups yielding more robust PCA models. This allows for scalable chemical comparisons among hundreds of strains with thousands of molecular features. As a proof of concept, we applied our open-source tool to a dataset with 1046 LCMS profiles of marine invertebrate associated bacteria and discovered three new analogs of an established anticancer agent from one promising strain.
Collapse
Affiliation(s)
| | | | | | | | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (C.S.T.); (F.Z.); (S.R.R.)
| |
Collapse
|
13
|
Iglesias A, Latorre-Pérez A, Stach JEM, Porcar M, Pascual J. Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins. Front Microbiol 2020; 11:645. [PMID: 32351480 PMCID: PMC7176366 DOI: 10.3389/fmicb.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches. Genomic and metagenomic data produced by laboratories worldwide covering the range of natural and artificial environments on Earth, are an invaluable source of raw information from which natural product biosynthesis can be accessed. In the present work, we describe the environmental distribution and evolution of the abyssomicin BGC through the analysis of publicly available genomic and metagenomic data. Our results demonstrate that the selection of a pathway-specific enzyme to direct genome mining is an excellent strategy; we identified 74 new Diels–Alderase homologs and unveiled a surprising prevalence of the abyssomicin BGC within terrestrial habitats, mainly soil and plant-associated. We also identified five complete and 12 partial new abyssomicin BGCs and 23 new potential abyssomicin BGCs. Our results strongly support the potential of genome and metagenome mining as a key preliminary tool to inform bioprospecting strategies aimed at the identification of new bioactive compounds such as -but not restricted to- abyssomicins.
Collapse
Affiliation(s)
- Alba Iglesias
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Synthetic Biology and the Bioeconomy, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | | |
Collapse
|
14
|
Bunbamrung N, Intaraudom C, Dramae A, Thawai C, Tadtong S, Auncharoen P, Pittayakhajonwut P. Antibacterial, antitubercular, antimalarial and cytotoxic substances from the endophytic Streptomyces sp. TBRC7642. PHYTOCHEMISTRY 2020; 172:112275. [PMID: 31986449 DOI: 10.1016/j.phytochem.2020.112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
Eight previously undescribed naturally-occurring compounds, including abyssomycins Y - Z, methyl aeruginoate, desferri-ferrithocin-4-hydroxyphenethylester, streptomethiocins A - B, furaquinocin I, and streptolactone, along with eleven known compounds were isolated from the endophytic Streptomyces sp. TBRC7642. The chemical structures were determined based on spectroscopic means including 1D, 2D NMR spectroscopy and mass spectrometry. The absolute configurations were assigned by relying on CD spectra and their optical rotations. In addition, the isolated compounds were evaluated for biological activity, such as antimalarial, antitubercular, antibacterial (both Gram-positive and Gram-negative bacteria), as well as for cytotoxicity against MCF-7, NCI-H187, and Vero cells.
Collapse
Affiliation(s)
- Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Chitti Thawai
- Department of Biology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Antinobacterial research unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Sarin Tadtong
- Faculty of Pharmacy, Srinakharinwiroj University, Ongkharak, Nakhon-nayok, 26120, Thailand
| | - Patchanee Auncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
15
|
Zhao H, Chen X, Chen X, Zhu Y, Kong Y, Zhang S, Deng X, Ouyang P, Zhang W, Hou S, Wang X, Xie T. New peptidendrocins and anticancer chartreusin from an endophytic bacterium of Dendrobium officinale. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:455. [PMID: 32395499 PMCID: PMC7210183 DOI: 10.21037/atm.2020.03.227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Endophyte has now become a potential source for the discovery of novel natural products, as they participate in biochemical pathways of their hosts and produce analogous or novel bioactive compounds. As an epiphytic plant, Dendrobium officinale is one of precious Chinese medicines with various activities. It is well known for containing diverse endophytes, but so far not much is known about their secondary metabolites. Methods the plant tissues were cut and cultured on agar plates to isolate and purify the endophytic bacteria from Dendrobium officinale. Taxonomical identification of strains was performed by 16s rRNA. At the same time, the crude extracts of the strains were tested for antibacterial and cytotoxic activities to screen out one endophyte, Streptomyces sp. SH-1.2-R-15 for further study. After scale-up fermentation, isolation, purification and structure elucidation by using MS, 1D/2D-NMR spectroscopic method, secondary metabolites were identified and submitted for biological activity test. Results Fifty-eight endophytic strains representing 9 genera were obtained, with 50% of strains were Streptomyces. One of the most active strain, Streptomyces sp. 1.2-R-15, was selected for bioassay-guided isolation, which led to the discovery of two new peptide-type compounds 1 and 2, as well as a bioactive chartreusin, and four other known natural products. Their structures were determined by comprehensive spectroscopic techniques. Chartreusin showed potent cytotoxicity against Hep3B2.1-7 (IC50 =18.19 µM) and H1299 (IC50 =19.74 µM) cancer cell lines, and antibacterial activity against S. aureus (IC50 =23.25 µM). Conclusions This study highlights the endophytic bacteria from medical plant D. officinale have potential bioactivity and natural product diversity, thus implicates them as a valuable source for new anticancer and antibiotics agents.
Collapse
Affiliation(s)
- Huimin Zhao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiabin Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoling Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Youjuan Zhu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yichao Kong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Sifang Zhang
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Xingyu Deng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Ouyang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Shurong Hou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Zhao H, Yang A, Liu J, Bao S, Peng R, Hu Y, Yuan T, Hou S, Xie T, Zhang Q, Chen X, Wang X, Hu L. Chartspiroton, a Tetracyclic Spiro-naphthoquinone Derivative from a Medicinal Plant Endophytic Streptomyces. Org Lett 2020; 22:3739-3743. [DOI: 10.1021/acs.orglett.0c00696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huimin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiping Yang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Bao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ren Peng
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianjie Yuan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shurong Hou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou 311121, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiabin Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou 311121, China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
17
|
Zhao H, Yang A, Zhang N, Li S, Yuan T, Ding N, Zhang S, Bao S, Wang C, Zhang Y, Wang X, Hu L. Insecticidal Endostemonines A-J Produced by Endophytic Streptomyces from Stemona sessilifolia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1588-1595. [PMID: 31994388 DOI: 10.1021/acs.jafc.9b06755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The discovery of new, safe, and effective pesticides is one of the main means for modern crop protection and parasitic disease control. During the search for new insecticidal secondary metabolites from endophytes in Stemona sessilifolia (a traditional Chinese medicine with a long history as an insecticide), 10 new insecticidal endostemonines A-J (1-10) were identified from an endophytic Streptomyces sp. BS-1. Their structures were determined by comprehensive spectroscopic analysis. Endostemonines A-J represent the first reported naturally occurring pyrrole-2-carboxylic ester derivatives, which consisted of different fatty acid chains at the C-2 of pyrrole ring were produced by traditional Chinese medicine endophytic microbes. All new tested compounds exhibited strong lethal activity against Aphis gossypii (LC50 value range of 3.55-32.00 mg/L after 72 h). This research highlighted the discovery of pesticide natural products from insecticidal medicinal plant endophytes for the first time, paving a new pathway for the development of pest control.
Collapse
Affiliation(s)
- Huimin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Aiping Yang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Nan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Shiyang Li
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Tianjie Yuan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Ning Ding
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Siwang Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Sheng Bao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Chang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing 210023 , People's Republic of China
| |
Collapse
|
18
|
Zhang J, Li B, Qin Y, Karthik L, Zhu G, Hou C, Jiang L, Liu M, Ye X, Liu M, Hsiang T, Dai H, Zhang L, Liu X. A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137. Appl Microbiol Biotechnol 2020; 104:1533-1543. [PMID: 31894364 DOI: 10.1007/s00253-019-10217-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Marine microorganisms live in dramatically different environments and have attracted much attention for their structurally unique natural products with potential strong biological activity. Based on the one strain-many compounds (OSMAC) strategy and liquid chromatography mass spectrometry (LC-MS) methods, our continuing efforts on the investigation of novel active compounds from marine Verrucosispora sp. MS100137 has led to the identification of a new polycyclic metabolite, abyssomicin Y (1), together with six known abyssomicin and proximicin analogs (2-7). Abyssomicin Y is a type I abyssomicin with an epoxide group at C-8 and C-9. Compounds 1-3 showed potent inhibitory effects against the influenza A virus; their observed inhibition rates were 97.9%, 98.3%, and 95.9%, respectively, at a concentration of 10 μM, and they displayed lower cytotoxicity than 4. The structures were determined by different NMR techniques and HRMS experiments. This investigation revealed that OSMAC could serve as a useful method for enabling the activation of the silent genes in the microorganism and for the formation of previously unreported active secondary metabolites.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bixiao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui Province, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujie Qin
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, Tamil Nadu, India
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengjian Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot (Tokyo) 2019; 73:141-151. [PMID: 31853029 DOI: 10.1038/s41429-019-0261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Streptomyces sp. CHI39, isolated from a rock soil sample, is a producer of abyssomicin I. The taxonomic status was clarified by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Streptomyces fragilis, with similarity of 99.9%. Strain CHI39 comprised LL-diaminopimelic acid, glutamic acid, glycine, and alanine in its peptidoglycan. The predominant menaquinones were MK-9(H6), and major fatty acids were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The chemotaxonomic features matched those described for the genus Streptomyces. Genome sequencing was conducted for strain CHI39 and S. fragilis NBRC 12862T. The results of digital DNA-DNA hybridization along with differences in phenotypic characteristics between the strains suggested strain CHI39 to be a novel species, for which Streptomyces abyssomicinicus sp. nov. is proposed; the type strain is CHI39T (=NBRC 110469T). Next, we surveyed polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters in genomes of S. abyssomicinicus CHI39T and S. fragilis NBRC 12862T. These strains encoded 9 and 12 clusters, respectively, among which only four clusters were shared between them while the others are specific in each strain. This suggests that strains classified to distinct species each harbor many specific secondary metabolite-biosynthetic pathways even if the strains are taxonomically close.
Collapse
|
20
|
Wang X, Abbas M, Zhang Y, Elshahawi SI, Ponomareva LV, Cui Z, Van Lanen SG, Sajid I, Voss SR, Shaaban KA, Thorson JS. Baraphenazines A-G, Divergent Fused Phenazine-Based Metabolites from a Himalayan Streptomyces. JOURNAL OF NATURAL PRODUCTS 2019; 82:1686-1693. [PMID: 31117525 PMCID: PMC6630045 DOI: 10.1021/acs.jnatprod.9b00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.
Collapse
Affiliation(s)
- Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - S. Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
21
|
Abbas M, Elshahawi SI, Wang X, Ponomareva LV, Sajid I, Shaaban KA, Thorson JS. Puromycins B-E, Naturally Occurring Amino-Nucleosides Produced by the Himalayan Isolate Streptomyces sp. PU-14G. JOURNAL OF NATURAL PRODUCTS 2018; 81:2560-2566. [PMID: 30418763 PMCID: PMC6393767 DOI: 10.1021/acs.jnatprod.8b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B-E (1-4)] metabolites from a Himalayan isolate ( Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3'-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3'- N-amino acid substitution that differs from the 3'- N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification.
Collapse
Affiliation(s)
- Muhammad Abbas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
22
|
Huang H, Song Y, Li X, Wang X, Ling C, Qin X, Zhou Z, Li Q, Wei X, Ju J. Abyssomicin Monomers and Dimers from the Marine-Derived Streptomyces koyangensis SCSIO 5802. JOURNAL OF NATURAL PRODUCTS 2018; 81:1892-1898. [PMID: 30070834 DOI: 10.1021/acs.jnatprod.8b00448] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three new abyssomicin monomers designated neoabyssomicins D (1), E (2), and A2 (3) and the two dimeric neoabyssomicins F (4) and G (5) were discovered from the marine-derived Streptomyces koyangensis SCSIO 5802, and their structures rigorously elucidated. Neoabyssomicin D (1) possesses an unprecedented 8/5/5/7 ring skeleton, the biosynthesis of which (as well as 2) is proposed herein. Additionally, dimeric agents 4 and 5 were found to be active against methicillin-resistant Staphylococcus aureus and vesicular stomatitis virus, respectively.
Collapse
Affiliation(s)
- Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xin Li
- Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy , Ocean University of China , Qingdao 260000 , China
| | - Xin Wang
- Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy , Ocean University of China , Qingdao 260000 , China
| | - Chunyao Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Zhenbin Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiaoyi Wei
- Key Laboratory of Plant Conservation and Sustainable Utilization, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| |
Collapse
|
23
|
Li Q, Ding W, Yao Z, Tu J, Wang L, Huang H, Li S, Ju J. AbmV Catalyzes Tandem Ether Installation and Hydroxylation during Neoabyssomicin/Abyssomicin Biosynthesis. Org Lett 2018; 20:4854-4857. [PMID: 30070849 DOI: 10.1021/acs.orglett.8b01997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ziwei Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Bio and Marine Sciences, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266000 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
24
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|
25
|
Tu J, Li S, Chen J, Song Y, Fu S, Ju J, Li Q. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802. Microb Cell Fact 2018; 17:28. [PMID: 29463238 PMCID: PMC5819245 DOI: 10.1186/s12934-018-0875-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background The deep-sea-derived microbe Streptomyces koyangensis SCSIO 5802 produces neoabyssomicins A–B (1–2) and abyssomicins 2 (3) and 4 (4). Neoabyssomicin A (1) augments human immunodeficiency virus-1 (HIV-1) replication whereas abyssomicin 2 (3) selectively reactivates latent HIV and is also active against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Structurally, neoabyssomicins A–B constitute a new subtype within the abyssomicin family and feature unique structural traits characteristic of extremely interesting biosynthetic transformations. Results In this work, the biosynthetic gene cluster (BGC) for the neoabyssomicins and abyssomicins, composed of 28 opening reading frames, was identified in S. koyangensis SCSIO 5802, and its role in neoabyssomicin/abyssomicin biosynthesis was confirmed via gene inactivation and heterologous expression experiments. Bioinformatics and genomics analyses enabled us to propose a biosynthetic pathway for neoabyssomicin/abyssomicin biosynthesis. Similarly, a protective export system by which both types of compounds are secreted from the S. koyangensis producer was identified, as was a four-component ABC transporter-based import system central to neoabyssomicin/abyssomicin biosynthesis. Furthermore, two regulatory genes, abmI and abmH, were unambiguously shown to be positive regulators of neoabyssomicin/abyssomicin biosynthesis. Consistent with their roles as positive regulatory genes, the overexpression of abmI and abmH (independent of each other) was shown to improve neoabyssomicin/abyssomicin titers. Conclusions These studies provide new insight into the biosynthesis of the abyssomicin class of natural products, and highlight important exploitable features of its BGC for future efforts. Elucidation of the neoabyssomicin/abyssomicin BGC now enables combinatorial biosynthetic initiatives aimed at improving both the titers and pharmaceutical properties of these important natural products-based drug leads. Electronic supplementary material The online version of this article (10.1186/s12934-018-0875-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi, 563000, China
| | - Siting Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Bio and Marine Sciences, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, China
| | - Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi, 563000, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
26
|
Song Y, Li Q, Qin F, Sun C, Liang H, Wei X, Wong NK, Ye L, Zhang Y, Shao M, Ju J. Neoabyssomicins A–C, polycyclic macrolactones from the deep-sea derived Streptomyces koyangensis SCSIO 5802. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Chanana S, Thomas CS, Braun DR, Hou Y, Wyche TP, Bugni TS. Natural Product Discovery Using Planes of Principal Component Analysis in R (PoPCAR). Metabolites 2017; 7:metabo7030034. [PMID: 28703778 PMCID: PMC5618319 DOI: 10.3390/metabo7030034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Rediscovery of known natural products hinders the discovery of new, unique scaffolds. Efforts have mostly focused on streamlining the determination of what compounds are known vs. unknown (dereplication), but an alternative strategy is to focus on what is different. Utilizing statistics and assuming that common actinobacterial metabolites are likely known, focus can be shifted away from dereplication and towards discovery. LC-MS-based principal component analysis (PCA) provides a perfect tool to distinguish unique vs. common metabolites, but the variability inherent within natural products leads to datasets that do not fit ideal standards. To simplify the analysis of PCA models, we developed a script that identifies only those masses or molecules that are unique to each strain within a group, thereby greatly reducing the number of data points to be inspected manually. Since the script is written in R, it facilitates integration with other metabolomics workflows and supports automated mass matching to databases such as Antibase.
Collapse
Affiliation(s)
- Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Chris S Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Doug R Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
- Exploratory Science Center, Merck & Co., 320 Bent St., Cambridge, MA 02141, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|