1
|
Mongia M, Yasaka TM, Liu Y, Guler M, Lu L, Bhagwat A, Behsaz B, Wang M, Dorrestein PC, Mohimani H. Fast mass spectrometry search and clustering of untargeted metabolomics data. Nat Biotechnol 2024; 42:1672-1677. [PMID: 38168990 DOI: 10.1038/s41587-023-01985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 01/05/2024]
Abstract
The throughput of mass spectrometers and the amount of publicly available metabolomics data are growing rapidly, but analysis tools such as molecular networking and Mass Spectrometry Search Tool do not scale to searching and clustering billions of mass spectral data in metabolomics repositories. To address this limitation, we designed MASST+ and Networking+, which can process datasets that are up to three orders of magnitude larger than those processed by state-of-the-art tools.
Collapse
Affiliation(s)
- Mihir Mongia
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yudong Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mustafa Guler
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Liang Lu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aditya Bhagwat
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bahar Behsaz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Chemia Biosciences Inc., Pittsburgh, PA, USA
| | - Mingxun Wang
- Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Pharmacology and Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Cai G, Hu X, Zhang R, Wang J, Fang X, Pang X, Bai J, Zhang T, Zhang T, Lv H, You X, He W, Yu L. Subplenones A-J: Dimeric Xanthones with Antibacterial Activity from the Endophytic Fungus Subplenodomus sp. CPCC 401465. JOURNAL OF NATURAL PRODUCTS 2023; 86:2474-2486. [PMID: 37862150 DOI: 10.1021/acs.jnatprod.3c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Subplenones A-J (1-10), 10 new xanthone dimers, have been isolated and characterized from the endophytic fungus Subplenodomus sp. CPCC 401465, which resides within the Chinese medicinal plant Gentiana straminea. The isolation process was guided by antibacterial assays and molecular-networking-based analyses. The chemical structures of these compounds were elucidated through the interpretation of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. Furthermore, the relative configuration of the compounds was determined using NMR and single-crystal X-ray diffraction analyses, and the absolute configuration was established using electronic circular dichroism calculations. All of the isolated compounds exhibited significant inhibitory activity against Gram-positive bacteria. Notably, compounds 1, 5, and 7 displayed remarkable inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 700698, with a minimum inhibitory concentration (MIC) of 0.25 μg/mL, and against vancomycin-resistant Enterococcus faecium (VRE) ATCC 700221, with MIC values ranging from 0.5 to 1.0 μg/mL.
Collapse
Affiliation(s)
- Guowei Cai
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinxin Hu
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| | - Ran Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - JuXian Wang
- Department of Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaomei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| | - Xu Pang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jinglin Bai
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| | - Hui Lv
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xuefu You
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| | - Wenni He
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, People's Republic of China
| |
Collapse
|
3
|
Le DD, Yu S, Dang T, Lee M. Molecular Networking and Bioassay-Guided Preparation and Separation of Active Extract and Constituents from Vicia tenuifolia Roth. Antioxidants (Basel) 2023; 12:1876. [PMID: 37891955 PMCID: PMC10604256 DOI: 10.3390/antiox12101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Molecular networking drove the selection of material from V. tenuifolia organs that targeted active flavonoid glycosides. To optimize the extraction process, the flowers of V. tenuifolia were used to produce an anti-inflammatory extract. The effects of variables-organic solvent ratio; extraction time; and temperature-were investigated by the response of anti-inflammatory activity. Bioactivities-guided experiments helped identify fractions with high total phenolic and flavonoid content as well as antioxidant potential. Furthermore, one new compound (1), 19 first isolated together, and two known compounds were obtained and identified from the active fraction of this plant. Among them, compounds (15 and 22) were first reported for nuclear magnetic resonance (NMR) data from this study. All the isolates were evaluated for their anti-inflammatory capacity throughout, modulating nitric oxide (NO), interleukin (IL)-1β, and IL-8 production. Active compounds were further investigated for their regulation and binding affinity to the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins by Western blot and in silico approaches, respectively. The findings of this study suggested that the developed extract method, active fraction, and pure components should be further investigated as promising candidates for treating inflammation and oxidation.
Collapse
Affiliation(s)
| | | | | | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (S.Y.); (T.D.)
| |
Collapse
|
4
|
Dong X, Wu J, Jia H, Cen S, Cheng W, Lin W. Targeted Isolation of Dolabellane Diterpenoids from the Soft Coral Clavularia viridis Using Molecular Networking. ACS OMEGA 2023; 8:21254-21264. [PMID: 37332774 PMCID: PMC10268628 DOI: 10.1021/acsomega.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
LC-MS/MS-based molecular networking annotation coupled 1H NMR detection allowed the depiction of the soft coral Clavularia viridis to produce a profile of dolabellane-type diterpenoids. Chromatographic separation of the EtOAc fraction resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely, clavirolides J-U (1-12). Their structures were characterized by the extensive analysis of the spectroscopic data, including the calculated ECD and X-ray diffraction for the configurational assignments. Clavirolides J-K are characterized by a 1,11- and 5,9-fused tricyclic tetradecane scaffold fused with a α,β-unsaturated-δ-lactone, and clavirolide L possesses a 1,11- and 3,5-fused tricyclic tetradecane scaffold, which extend the dolabellane-type scaffolds. Clavirolides L and G showed significant inhibition against HIV-1 without RT enzyme inhibition, providing additional non-nucleosides with different mechanisms from efavirenz.
Collapse
Affiliation(s)
- Xin Dong
- State
Key Laboratory of Natural and Biomimetic Drugs, Ningbo Institute of
Marine Medicine, Peking University, Beijing 100191, P.R. China
| | - Jingshuai Wu
- State
Key Laboratory of Natural and Biomimetic Drugs, Ningbo Institute of
Marine Medicine, Peking University, Beijing 100191, P.R. China
| | - Hongli Jia
- State
Key Laboratory of Natural and Biomimetic Drugs, Ningbo Institute of
Marine Medicine, Peking University, Beijing 100191, P.R. China
| | - Shan Cen
- Key
Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, P.R. China
| | - Wei Cheng
- State
Key Laboratory of Natural and Biomimetic Drugs, Ningbo Institute of
Marine Medicine, Peking University, Beijing 100191, P.R. China
| | - Wenhan Lin
- State
Key Laboratory of Natural and Biomimetic Drugs, Ningbo Institute of
Marine Medicine, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
5
|
Long J, Mao Q, Peng Y, Liu L, Hong Y, Xiang H, Ma M, Zou H, Kuang J. Three New Benzophenone Derivatives from Selaginella tamariscina. Molecules 2023; 28:4582. [PMID: 37375139 DOI: 10.3390/molecules28124582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Six compounds including three new benzophenones, selagibenzophenones D-F (1-3), two known selaginellins (4-5) and one known flavonoid (6), were isolated from Selaginella tamariscina. The structures of new compounds were established by 1D-, 2D-NMR and HR-ESI-MS spectral analyses. Compound 1 represents the second example of diarylbenzophenone from natural sources. Compound 2 possesses an unusual biphenyl-bisbenzophenone structure. Their cytotoxicity against human hepatocellular carcinoma HepG2 and SMCC-7721 cells and inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells were evaluated. Compound 2 showed moderate inhibitory activity against HepG2 and SMCC-7721 cells, and compounds 4 and 5 showed moderate inhibitory activity to HepG2 cells. Compounds 2 and 5 also exhibited inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production.
Collapse
Affiliation(s)
- Jiayin Long
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Qingqing Mao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yujie Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Lei Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yin Hong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Honglin Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Junwei Kuang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Zhu QF, Luo TT, Chen Q, Gao BB, Zeng AF, Ao JL, Xu GB, Liao SG, He X. Three New Selaginellin Derivatives from Selaginella pulvinata and Their α-Glucosidase Inhibitory Activity. Chem Biodivers 2023; 20:e202300109. [PMID: 36786210 DOI: 10.1002/cbdv.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Three new selaginellin derivatives, selaginpulvilins V-X (1-3), together with seven known analogs (4-10) were isolated from whole plants of Selaginella pulvinata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR, HR-ESI-MS and chemical derivatization method. Compound 1 represents a rare example of naturally occurring selaginellin with an alkynylphenol-trimmed skeleton. Biological evaluation showed that compounds 2, 6 and 8 displayed moderate inhibition against α-glucosidase with IC50 values of 3.71, 2.04 and 4.00 μM, respectively.
Collapse
Affiliation(s)
- Qin-Feng Zhu
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Tian-Tian Luo
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Qian Chen
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Bei-Bei Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Ai-Fen Zeng
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Jun-Li Ao
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Guo-Bo Xu
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Shang-Gao Liao
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| | - Xun He
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, P. R. China
| |
Collapse
|
7
|
Guo R, Duan ZK, Li Q, Yao GD, Song SJ, Huang XX. Guide isolation of guaiane-type sesquiterpenoids from Daphne tangutica maxim. And their anti-inflammatory activities. PHYTOCHEMISTRY 2023; 206:113523. [PMID: 36442577 DOI: 10.1016/j.phytochem.2022.113523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Using liquid chromatography with tandem mass spectrometry guided molecular networking, 12 undescribed guaiane-type sesquiterpenoids, namely tanguticatins A-L, 19 known analogs and a previously undescribed triterpene (tanguticatin M) were obtained from Daphne tangutica Maxim and characterized. Their planar structures and configurations were elucidated and unequivocally assigned by detailed spectroscopic analyses, electronic circular dichroism spectral calculations and single single-crustal X-ray diffraction analysis. All the isolated compounds were evaluated for lipopolysaccharide-induced nitric oxide production in murine microglial BV2 cells. Tanguticatin E and K exhibited more potent inhibitory effects than minocycline (positive control).
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Gomes PWP, de Tralia Medeiros TC, Maimone NM, Leão TF, de Moraes LAB, Bauermeister A. Microbial Metabolites Annotation by Mass Spectrometry-Based Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:225-248. [PMID: 37843811 DOI: 10.1007/978-3-031-41741-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Since the discovery of penicillin, microbial metabolites have been extensively investigated for drug discovery purposes. In the last decades, microbial derived compounds have gained increasing attention in different fields from pharmacognosy to industry and agriculture. Microbial metabolites in microbiomes present specific functions and can be associated with the maintenance of the natural ecosystems. These metabolites may exhibit a broad range of biological activities of great interest to human purposes. Samples from either microbial isolated cultures or microbiomes consist of complex mixtures of metabolites and their analysis are not a simple process. Mass spectrometry-based metabolomics encompass a set of analytical methods that have brought several improvements to the microbial natural products field. This analytical tool allows the comprehensively detection of metabolites, and therefore, the access of the chemical profile from those biological samples. These analyses generate thousands of mass spectra which is challenging to analyse. In this context, bioinformatic metabolomics tools have been successfully employed to accelerate and facilitate the investigation of specialized microbial metabolites. Herein, we describe metabolomics tools used to provide chemical information for the metabolites, and furthermore, we discuss how they can improve investigation of microbial cultures and interactions.
Collapse
Affiliation(s)
- Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Talita Carla de Tralia Medeiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Naydja Moralles Maimone
- Departamento de Ciências Exatas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Tiago F Leão
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anelize Bauermeister
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Reginaldo FPS, Bueno PCP, Lourenço EMG, de Matos Costa IC, Moreira LGL, de Araújo Roque A, Barbosa EG, Fett-Neto AG, Cavalheiro AJ, Giordani RB. Methyl jasmonate induces selaginellin accumulation in Selaginella convoluta. Metabolomics 2022; 19:2. [PMID: 36542160 DOI: 10.1007/s11306-022-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Selaginellins are specialized metabolites and chemotaxonomic markers for Selaginella species. Despite the growing interest in these compounds as a result of their bioactivities, they are accumulated at low levels in the plant. Hence, their isolation and chemical characterization are often difficult, time consuming, and limiting for biological tests. Elicitation with the phytohormone methyl jasmonate (MeJA) could be a strategy to increase the content of selaginellins addressing their low availability problem, that also impairs pharmacological investigations. MATHERIALS AND METHODS In this study, we examined MeJA elicitation in Selaginella convoluta plants, a medicinal plant found in northeastern Brazil, by treating them with two different concentrations (MeJA: 50 and 100 µM), followed by chemical profiling after 12, 24 and 48 h after application. Samples were harvested and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RESULTS AND DISCUSSCION MeJA treatment significantly impacted the chemical phenotype. Regarding shoots differences in the time-dependent increased accumulation of all metabolites when plants were subjected to 100 µM MeJA were observed while in roots, most metabolites had their concentrations decreased in a time-dependent fashion at the same conditions. Results support organ, MeJA concentration and time post-treatment dependence of specialized metabolite accumulation, mainly the flavonoids and selaginellins. The amount of Selaginellin G in shoots of MeJA-treated specimens increased in 5.63-fold relative to control. The molecular networking approach allowed for the putative annotation of 64 metabolites, among them, the MeJA treatment followed by targeted metabolome analysis also allowed to annotate seven unprecedented selaginellins. Additionally, the in silico bioactive potential of the annotated selaginellins highlighted targets related to neurodegenerative disorders, antiproliferative, and antiparasitic issues. Taken together, data point out MeJA exposure as a strategy to induce potentially bioactive selaginellins accumulation in S. convoluta, this approach could enable a deep investigation about the metabolic function of these metabolites in the genus as well as regarding pharmacological exploration of the undervalued potential.
Collapse
Affiliation(s)
- Fernanda Priscila Santos Reginaldo
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Paula Carolina Pires Bueno
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), Alfenas, MG, Brazil
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Estela Mariana Guimarães Lourenço
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | | | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | | | - Arthur Germano Fett-Neto
- Laboratory of Plant Physiology, Center for Biotechnology and Department of Botany, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
10
|
Zhou WY, Hou JY, Li Q, Wang YJ, Wang JY, Jiang MH, Yao GD, Huang XX, Song SJ. Targeted isolation of diterpenoids and sesquiterpenoids from Daphne gemmata E. Pritz. ex Diels using molecular networking together with network annotation propagation and MS2LDA. PHYTOCHEMISTRY 2022; 204:113468. [PMID: 36191659 DOI: 10.1016/j.phytochem.2022.113468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the whole plant of Daphne gemmata E. Pritz. ex Diels (Thymelaeaceae) using molecular networking coupled to Network Annotation Propagation (NAP) and unsupervised substructure annotation (MS2LDA) led to the discovery of five tigliane diterpenoids, 14 guaiane sesquiterpenoids, one rhamnofolane diterpenoid and three carotene sesquiterpenoids. The structures of the eight undescribed compounds, daphnorbol A and daphnegemmatoids A-G, were characterized by detailed spectroscopic analyses, NMR and ECD calculations, application of Snatzke's method and single-crystal X-ray diffraction analysis. All isolated compounds were evaluated for their cytotoxic activities against HepG2, A549, and MCF-7 cells by MTT assay. Daphnorbol A exhibited significant cytotoxic activity against HepG2 and A549 cells with IC50 values of 4.06 μM and 6.35 μM, respectively. Prostratin showed potent cytotoxic activity against HepG2 and A549 cells with IC50 values of 6.06 μM and 5.45 μM, respectively. Further Hoechst 33,258 and AO-EB staining assays indicated that daphnorbol A and prostratin could induce apoptosis in HepG2 and A549 cells.
Collapse
Affiliation(s)
- Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiao-Yang Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia-Yi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming-Hao Jiang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
11
|
Guo R, Li Q, Mi SH, Jia SH, Yao GD, Lin B, Huang XX, Liu YY, Song SJ. Target isolation of cytotoxic diterpenoid esters and orthoesters from Daphne tangutica maxim based on molecular networking. PHYTOCHEMISTRY 2022; 203:113358. [PMID: 35977604 DOI: 10.1016/j.phytochem.2022.113358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Guiding by LC-MS/MS analysis and the GNPS Molecular Networking, five undescribed daphnane diterpenoids, tanguticanines A-E, and eleven known analogues were discovered from the whole plants of Daphne tangutica Maxim. Their structures and absolute configurations were determined via extensive NMR spectroscopic analysis, ECD calculations, and X-ray diffraction crystallography. Tanguticanine E (5) exhibited promising cytotoxicity against the HepG2 cell line with an IC50 value of 9.93 ± 0.10 μM. Further flow cytometry experiment was performed to detect cell apoptosis, and the results indicated that cytotoxic diterpenoids (tanguticanines B, D and E, altadaphnan C, gniditrin, hirsein A and simplexin) exert their effects through induction of apoptosis.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-He Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
12
|
Guo Z, Abulaizi A, Huang L, Xiong Z, Zhang S, Liu T, Wang R. Discovery of p-Terphenyl Metabolites as Potential Phosphodiesterase PDE4D Inhibitors from the Coral-Associated Fungus Aspergillus sp. ITBBc1. Mar Drugs 2022; 20:679. [PMID: 36355001 PMCID: PMC9696254 DOI: 10.3390/md20110679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/21/2023] Open
Abstract
Chemical investigation of the fermentation extract of the coral-associated fungus Aspergillus sp. ITBBc1 led to the discovery of five unreported p-terphenyl derivatives, sanshamycins A-E (1-5), together with five previously described analogues, terphenyllin (6), 3-hydroxyterphenyllin (7), candidusin A (8), 4,5-dimethoxycandidusin A (9), and candidusin C (10). Their structures were elucidated by HRESIMS data and NMR spectroscopic analysis. Compound 1 represents the first example of p-terphenyls with an aldehyde substitution on the benzene ring. Compounds 2-4 feature varying methoxyl and isopentenyl substitutions, while compound 5 features a five-membered lactone linked to a biphenyl. These findings expand the chemical diversity of the family of p-terphenyl natural products. Compounds 1-6 and 9 were evaluated for their inhibitory activity against type 4 phosphodiesterase (PDE4), which is a fascinating drug target for treatment of inflammatory, respiratory, and neurological diseases. Compound 3 was the most potent and exhibited PDE4D inhibitory activity with an IC50 value of 5.543 µM.
Collapse
Affiliation(s)
- Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Ailiman Abulaizi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570208, China
| | - Zijun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Shiqing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Tianmi Liu
- Hainan Testing Center for the Quality and Safety of Aquatic Products, Hainan Aquatic Technology Extension Station, Haikou 570206, China
| | - Rong Wang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| |
Collapse
|
13
|
ZHANG YJ, BAI M, LI JY, QIN SY, LIU YY, HUANG XX, ZHENG J, SONG SJ. Diverse sesquiterpenoids from Litsea lancilimba Merr. with potential neuroprotective effects against H2O2-induced SH-SY5Y cell injury. Chin J Nat Med 2022; 20:701-711. [DOI: 10.1016/s1875-5364(22)60199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/26/2022]
|
14
|
Kunák D, Mateus M, Rycek L. Synthesis and Structure Confirmation of Selagibenzophenone C. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dominik Kunák
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta Department of Organic Chemistry CZECH REPUBLIC
| | - Miguel Mateus
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta Department of Organic Chemistry CZECH REPUBLIC
| | - Lukas Rycek
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta Departmet of Organic Chemistry Hlavova 8 128 40 Prague CZECH REPUBLIC
| |
Collapse
|
15
|
Pankhade YA, Pandey R, Fatma S, Ahmad F, Anand RV. TfOH-Catalyzed Intramolecular Annulation of 2-(Aryl)-Phenyl-Substituted p-Quinone Methides under Continuous Flow: Total Syntheses of Selaginpulvilin I and Isoselagintamarlin A. J Org Chem 2022; 87:3363-3377. [PMID: 35107013 DOI: 10.1021/acs.joc.1c02980] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article, we describe a convenient method to access 9-aryl fluorene derivatives through a TfOH-catalyzed intramolecular 1,6-conjugate arylation of 2-(aryl)-phenyl-substituted p-quinone methides (QMs) under continuous flow using the microreaction technique. This method was found to be very effective for most of the p-QMs, and the corresponding 9-aryl fluorene derivatives were obtained in moderate to excellent yields. Moreover, this protocol was further elaborated to the first total syntheses of selaginpulvilin I and isoselagintamarlin A.
Collapse
Affiliation(s)
- Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| |
Collapse
|
16
|
Jarmusch SA, van der Hooft JJJ, Dorrestein PC, Jarmusch AK. Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat Prod Rep 2021; 38:2066-2082. [PMID: 34612288 PMCID: PMC8667781 DOI: 10.1039/d1np00040c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2016 up to 2021Mass spectrometry (MS) is an essential technology in natural products research with MS fragmentation (MS/MS) approaches becoming a key tool. Recent advancements in MS yield dense metabolomics datasets which have been, conventionally, used by individual labs for individual projects; however, a shift is brewing. The movement towards open MS data (and other structural characterization data) and accessible data mining tools is emerging in natural products research. Over the past 5 years, this movement has rapidly expanded and evolved with no slowdown in sight; the capabilities of today vastly exceed those of 5 years ago. Herein, we address the analysis of individual datasets, a situation we are calling the '2021 status quo', and the emergent framework to systematically capture sample information (metadata) and perform repository-scale analyses. We evaluate public data deposition, discuss the challenges of working in the repository scale, highlight the challenges of metadata capture and provide illustrative examples of the power of utilizing repository data and the tools that enable it. We conclude that the advancements in MS data collection must be met with advancements in how we utilize data; therefore, we argue that open data and data mining is the next evolution in obtaining the maximum potential in natural products research.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark.
| | | | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Bailly C. The traditional and modern uses of Selaginella tamariscina (P.Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114444. [PMID: 34302944 DOI: 10.1016/j.jep.2021.114444] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the plant Selaginella tamariscina (P.Beauv.) Spring (spike moss) are used for a long time in Asia, for the treatment of multiple diseases and conditions. Aqueous and alcoholic leave extracts are used by local communities. In China, the plant (Juan bai) is listed on the Pharmacopoeia. In South Korea, the use of this plant (Kwon Baek) is mentioned in the book Dongui-Bogam (Heo Jun 1613), at the origin of the Hyungsang medicine. S. tamariscina is traditionally used in Vietnam (mong lung rong), Thailand (dok hin), Philippines (pakong-tulog) and other Asian countries. AIM OF THE STUDY To provide an analysis of the multiple traditional and current uses of S. tamariscina extracts (STE) in the field of medicine and cosmetic. The review is also intended at identifying the main natural products at the origin of the many pharmacological properties reported with these extracts (anti-inflammatory, antioxidant, antidiabetic, antibacterial, antiallergic, anticancer effects). METHODS Extensive database retrieval, such as SciFinder and PubMed, was performed by using keywords like " Selaginella tamariscina", "spike moss", "Selaginellaceae ". Relevant textbooks, patents, reviews, and digital documents were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Different solvents and methods are used to prepare STE. The process can largely modify the natural product content and properties of the extracts. STE display a range of pharmacological effects, useful to treat metabolic disorders, several inflammatory diseases and various cancers. A specific carbonized extract (S. tamariscina carbonisatus) has shown hemostatic effects, whereas standard STE can promote blood circulation. Many patented STE-containing cosmetic preparations are reviewed here. Several biflavonoids (chiefly amentoflavone) and phenolic compounds (selaginellin derivatives) are primarily responsible for the observed pharmacological properties. Potent inhibitors of protein tyrosine phosphatase 1 B (PTP1B), phosphodiesterase-4 (PDE4), and repressor of pro-inflammatory cytokines expression have been identified from STE. CONCLUSION The traditional use of STE supports the research performed with this plant. There are robust experimental data, based on in vitro and in vivo models, documenting the use of STE to treat type 2 diabetes, several inflammatory diseases, and some cancers (in combination with standard chemotherapy). Selaginella tamariscina (P.Beauv.) is a prime reservoir for amentoflavone, and many other bioactive natural products. The interest of the plant in medicine and cosmetic is amply justified.
Collapse
|
18
|
Liu X, Dong Y, Alizade V, Khutsishvili M, Atha D, Borris RP, Clark BR. Molecular networking-driven isolation of 8'-Glycosylated biscoumarins from Cruciata articulata. PHYTOCHEMISTRY 2021; 190:112856. [PMID: 34233243 DOI: 10.1016/j.phytochem.2021.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
A molecular networking-guided phytochemical investigation of Cruciata articulata led to the isolation of five unreported biscoumarins, four of which were characterized by a shared 6-methoxy-7,8'-dihydroxy-3,7'-biscoumarin aglycone. These were isolated alongside two known coumarin glycosides, daphnetin-8-O-β-D-glucoside and 6'-acetoxy-daphnetin-8-O-β-D-glucoside. Their structures were elucidated by extensive 1D and 2D NMR experiments, in combination with chemical transformation and MS/MS fragmentation analysis. Four of the biscoumarins were glycosylated at the 8' position: these are the first examples of this substitution pattern to be described in nature. All compounds were tested for cytotoxic, antimicrobial, anti-inflammatory, and α-glucosidase inhibitory properties, but did not display significant activity.
Collapse
Affiliation(s)
- Xueling Liu
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Yuyu Dong
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Valida Alizade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, AZ1102, Azerbaijan
| | - Manana Khutsishvili
- National Herbarium of Georgia, Ilia State University, Tbilisi, 100995, Georgia
| | | | - Robert P Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
19
|
Scalarane-Type Sesterterpenoids from the Marine Sponge Lendenfeldia sp. Alleviate Inflammation in Human Neutrophils. Mar Drugs 2021; 19:md19100561. [PMID: 34677460 PMCID: PMC8541400 DOI: 10.3390/md19100561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Sponge-derived scalaranes are remarkable sesterterpenoids previously found to exhibit profound inhibitory effects against neutrophilic inflammation. In our current work, we constructed the metabolomic profile of marine sponge Lendenfeldia sp. for the first time using a tandem mass spectrometry (MS/MS) molecular networking approach. The results highlighted the rich chemical diversity of these scalaranes, motivating us to conduct further research to discover novel scalaranes targeting neutrophilic inflammation. MS- and NMR-assisted isolation and elucidation led to the discovery of seven new homoscalaranes, lendenfeldaranes K–Q (1–7), characterized by methylation at C-24, together with five known derivatives, lendenfeldarane B (8), 25-nor-24-methyl-12,24-dioxoscalar-16-en-22-oic acid (9), 24-methyl-12,24,25-trioxoscalar-16-en-22-oic acid (10), felixin B (11), and 23-hydroxy-20-methyldeoxoscalarin (12). Scalaranes 1–4 and 6–12 were assayed against superoxide anion generation and elastase release, which represented the neutrophilic inflammatory responses of respiratory burst and degranulation, respectively. The results indicated that 1–3 and 6–12 exhibited potential anti-inflammatory activities (IC50 for superoxide anion scavenging: 0.87~6.57 μM; IC50 for elastase release: 1.12~6.97 μM).
Collapse
|
20
|
Peng YJ, Zhang D, Chen WL, Wang SY, Zhang Y, Zou H, Xiang HL, Xiao GL. A new triarylindanone and a new isobenzofuranone derivative from Selaginella tamariscina. Nat Prod Res 2021; 36:5387-5392. [PMID: 34180326 DOI: 10.1080/14786419.2021.1938042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new triarylindanone, namely selagindanone A (1), and a new isobenzofuranone (2), 3,4-bis(4-hydroxyphenyl)isobenzofuran-1(3H)-one, were isolated from Selaginella tamariscina. Their structures were elucidated by comprehensive spectroscopic and mass spectrometric analyses, including 1 D-, 2 D-NMR and HR-ESI-MS. Compound 1 possesses a unique structural feature of triaryl-substituted in the skeleton of 1-indanone. In addition, compound 2 showed weak cytotoxicity against human hepatocellular carcinoma SMMC-7721 and HepG2 cell lines.
Collapse
Affiliation(s)
- Yu-Jie Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Dan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Wan-Ling Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Si-Yi Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Yao Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China.,Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong-Ling Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China
| | - Ge-Lei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
21
|
Rycek L, Mateus M, Beytlerová N, Kotora M. Catalytic Cyclotrimerization Pathway for Synthesis of Selaginpulvilins C and D: Scope and Limitations. Org Lett 2021; 23:4511-4515. [PMID: 33724044 DOI: 10.1021/acs.orglett.1c00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and unified approach to the main selaginpulvilin's framework was achieved by catalytic [2 + 2 + 2]-cyclotrimerization of a triyne with monosubtituted alkynes. The reaction proceeded with high "ortho" selectivity by using Wilkinson's catalyst (RhCl(PPh3)3) under ambient conditions with reasonable yields. The scope of the reaction with respect to the alkyne as well as the catalytic system was evaluated. The formal total modular syntheses of selaginpulvilin C and D were accomplished by transformation of the cyclotrimerization's products.
Collapse
Affiliation(s)
- Lukas Rycek
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Miguel Mateus
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Nela Beytlerová
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Martin Kotora
- Department of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| |
Collapse
|
22
|
Cross-Coupling as a Key Step in the Synthesis and Structure Revision of the Natural Products Selagibenzophenones A and B. Catalysts 2021. [DOI: 10.3390/catal11060708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Selagibenzophenone A (1) and its isomer selagibenzophenone B (2) were recently described as natural products from Selaginella genus plants with PDE4 inhibitory activity. Herein, we report the first total syntheses of both compounds. By comparing spectroscopic data of the synthetic compounds with reported data for the isolated material, we demonstrate that the structure of one of the two natural products was incorrectly assigned, and that in fact isolated selagibenzophenone A and selagibenzophenone B are identical compounds. The synthetic strategy for both 1 and 2 is based on a cross-coupling reaction and on the addition of organometallic species to assemble the framework of the molecules. Identifying a suitable starting material with the correct substitution pattern is crucial because its pattern is reflected in that of the targeted compounds. These syntheses are finalized via global deprotection. Protecting the phenols as methoxy groups provides the possibility for partial control over the selectivity in the demethylation thanks to differences in the reactivity of the various methoxy groups. Our findings may help in future syntheses of derivatives of the biologically active natural product and in understanding the structure–activity relationship.
Collapse
|
23
|
Woo S, Chae HS, Kim J, Chin YW. Selaginellin Derivatives from Selaginella tamariscina and Their Upregulating Effects on Low-Density Lipoprotein Receptor Expression. JOURNAL OF NATURAL PRODUCTS 2021; 84:857-864. [PMID: 33703897 DOI: 10.1021/acs.jnatprod.0c01123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new dimeric selaginellins, diselaginellins C and D (1 and 2), a new unusual derivative, selapiginellin A (4), a new selaginpulvilin U (5), and a known derivative, diselaginellin A (3), were isolated from Selaginella tamariscina (P. Beauv.) Spring. Among these compounds, selapiginellin A (4) is the first naturally occurring compound comprising an ether-linked dimer of a selaginellin and a selaginpulvilin. The absolute configurations of 1, 2, and 4 were elucidated by spectroscopic data analyses. Compound 5 was found to regulate mRNA expression of the low-density lipoprotein receptor (LDLR) gene and LDLR-related genes.
Collapse
Affiliation(s)
- Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Ahn J, Chae HS, Pel P, Kim YM, Choi YH, Kim J, Chin YW. Dilignans with a Chromanol Motif Discovered by Molecular Networking from the Stem Barks of Magnolia obovata and Their Proprotein Convertase Subtilisin/Kexin Type 9 Expression Inhibitory Activity. Biomolecules 2021; 11:biom11030463. [PMID: 33808894 PMCID: PMC8003705 DOI: 10.3390/biom11030463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Natural products have been fundamental materials in drug discovery. Traditional strategies for observing natural products with novel structure and/or biological activity are challenging due to large cost and time consumption. Implementation of the MS/MS-based molecular networking strategy with the in silico annotation tool is expected to expedite the dereplication of secondary metabolites. In this study, using this tool, two new dilignans with a 2-phenyl-3-chromanol motif, obovatolins A (1) and B (2), were discovered from the stem barks of Magnolia obovata Thunb. along with six known compounds (3–8), expanding chemical diversity of lignan skeletons in this natural source. Their structures and configurations were elucidated using spectroscopic data. All isolates were evaluated for their PCSK9 mRNA expression inhibitory activity. Obovatolins A (1) and B (2), and magnolol (3) showed potent lipid controlling activities. To identify transcriptionally controlled genes by 1 along with downregulation of PCSK9, using small set of genes (42 genes) related to lipid metabolism selected from the database, focused bioinformatic analysis was carried out. As a result, it showed the correlations between gene expression under presence of 1, which led to detailed insight of the lipid metabolism caused by 1.
Collapse
Affiliation(s)
- Jongmin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
| | - Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.A.); (H.-S.C.); (P.P.); (Y.-M.K.); (J.K.)
- Correspondence: ; Tel.: +82-2-880-7859
| |
Collapse
|
25
|
Reginaldo FPS, Bueno PCP, de ICC, de AR, Fett-Neto AG, Cavalheiro AJ, Giordani RB. Molecular Networking Discloses the Chemical Diversity of Flavonoids and Selaginellins in Selaginella convoluta. PLANTA MEDICA 2021; 87:113-123. [PMID: 33296938 DOI: 10.1055/a-1315-0666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selaginella convoluta is a desiccation tolerant plant native to the Brazilian semiarid region (Caatinga), endowed with an effective drought resistance mechanism. As part of our research efforts to understand the chemical diversity of S. convoluta, dehydrated (harvested in their natural habitat in the dry season) and hydrated (plant acclimated in a laboratory after rehydration) specimens were analyzed by HR-LC-ESI-MS/MS followed by a structural annotation on the Global Natural Products Social Molecular Networking Web platform. The molecular networking approach allowed for putative annotation of 39 metabolites, mainly selaginellins and flavonoids. Based on MS/MS data, three unprecedented selaginellins were annotated: 29-hydroxy selaginellin O, 29-hydroxy selaginellin A, and 4-{[2-(4-hydrophenyl)-6-[2-(4-hydroxyphenyl)ethynyl]phenyl](4-oxocyclohexa-2,5-dien-1-ylidene)methyl}benzaldehyde. Th results pointed out that valuable scientific knowledge can be obtained from studies conducted with plants in their natural habitat by allowing a more realistic profile of chemical diversity. The present study adds new information on specialized metabolites of S. convoluta, mainly flavonoids and selaginellins, and highlights the species as an untapped source of chemobiodiversity from Caatinga.
Collapse
Affiliation(s)
| | - Paula Carolina Pires Bueno
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto/SP, Brazil
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - AlanAraújo Roque de
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal/RN, Brazil
| | - Arthur Germano Fett-Neto
- Laboratory of Plant Physiology, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre/RS, Brazil
| | | | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| |
Collapse
|
26
|
Li W, Tang GH, Yin S. Selaginellins from the genus Selaginella: isolation, structure, biological activity, and synthesis. Nat Prod Rep 2021; 38:822-842. [PMID: 33141135 DOI: 10.1039/d0np00065e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2007 to 2020 Selaginellins are a small group of pigments exclusively found in the ancient genus Selaginella. Since the first report of selaginellin from S. sinensis in 2007, more than 110 selaginellins with diverse polyphenolic skeletons have been reported. This review provides extensive coverage of the selaginellins discovered from 2007 to 2020, including 61 natural ones and 52 synthetic analogues. The isolation, chemical structures, plausible biosynthetic pathways, bioactivity, and total synthesis of these selaginellins have been summarized for the first time, and this highlights the fact that the vast uninvestigated Selaginella species may serve as a potential treasure trove of chemically diverse selaginellins waiting to be discovered.
Collapse
Affiliation(s)
- Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China.
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China.
| |
Collapse
|
27
|
Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals (Basel) 2020; 14:ph14010016. [PMID: 33375355 PMCID: PMC7823444 DOI: 10.3390/ph14010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Selaginella P. Beauv. is a group of vascular plants in the family Selaginellaceae Willk., found worldwide and numbering more than 700 species, with some used as foods and medicines. The aim of this paper was to compare methanolic (MeOH) and dichloromethane (DCM) extracts of eight Selaginella species on the basis of their composition and biological activities. Six of these Selaginella species are underinvestigated. Using ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis, we identified a total of 193 compounds among the tested Selaginella species, with flavonoids predominating. MeOH extracts recovered more constituents that were detected, including selaginellins, the occurrence of which is only typical for this plant genus. Of all the tested species, Selaginella
apoda contained the highest number of identified selaginellins. The majority of the compounds were identified in S. apoda, the fewest compounds in Selaginella
cupressina. All the tested species demonstrated antioxidant activity using oxygen radical absorption capacity (ORAC) assay, which showed that MeOH extracts had higher antioxidant capacity, with the half maximal effective concentration (EC50) ranging from 12 ± 1 (Selaginella
myosuroides) to 124 ± 2 (Selaginella
cupressina) mg/L. The antioxidant capacity was presumed to be correlated with the content of flavonoids, (neo)lignans, and selaginellins. Inhibition of acetylcholinesterase (AChE) was mostly discerned in DCM extracts and was only exhibited in S. myosuroides, S. cupressina, Selaginella
biformis, and S. apoda extracts with the half maximal inhibitory concentration (IC50) in the range of 19 ± 3 to 62 ± 1 mg/L. Substantial cytotoxicity against cancer cell lines was demonstrated by the MeOH extract of S. apoda, where the ratio of the IC50 HEK (human embryonic kidney) to IC50 HepG2 (hepatocellular carcinoma) was 7.9 ± 0.2. MeOH extracts inhibited the production of nitrate oxide and cytokines in a dose-dependent manner. Notably, S. biformis halved the production of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 at the following concentrations: 105 ± 9, 11 ± 1, and 10 ± 1 mg/L, respectively. Our data confirmed that extracts from Selaginella species exhibited cytotoxicity against cancer cell lines and AChE inhibition. The activity observed in S. apoda was the most promising and is worth further exploration.
Collapse
|
28
|
Wang Y, Cui Z, Chi J, Tang P, Zhang M, Li J, Li Y, Zhang H, Luo J, Kong L. Sarcaglarols A—D, Lindenane−Monoterpene Heterodimers from
Sarcandra glabra
Based on Molecular Networks. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongyue Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Jun Chi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Pengfei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Meihui Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Jixin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Yongyi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing Jiangsu 210009 China
| |
Collapse
|
29
|
Kim HW, Park EJ, Cho HM, An JP, Chin YW, Kim J, Sung SH, Oh WK. Glucose Uptake-Stimulating Galloyl Ester Triterpenoids from Castanopsis sieboldii. JOURNAL OF NATURAL PRODUCTS 2020; 83:3093-3101. [PMID: 32965112 DOI: 10.1021/acs.jnatprod.0c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using molecular networking-guided isolation, three new galloyl ester triterpenoids (1-3), two new hexahydroxydiphenic acid-conjugated triterpenoids (6 and 7), and four known compounds (4, 5, 8, and 9) were isolated from the fruits and leaves of Castanopsis sieboldii. The chemical structures of 1-3, 6, and 7 were elucidated on the basis of interpreting their NMR, HRESIMS, and ECD spectra. All compounds (1-9) were evaluated for their glucose uptake-stimulating activities in differentiated adipocytes using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose as a fluorescent-tagged glucose probe. Compounds 2 and 9 resulted in a 1.5-fold increase in glucose uptake. Among them, compound 2 from the fruits showed an upregulation of p-AMPK/AMPK ratio in differentiated C2C12 myoblasts to support the mechanism proposed of glucose uptake stimulation.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Jin Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Won Chin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoong Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hyun Sung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Azizah M, Pripdeevech P, Thongkongkaew T, Mahidol C, Ruchirawat S, Kittakoop P. UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of Ventilago denticulata. Antibiotics (Basel) 2020; 9:antibiotics9090606. [PMID: 32942771 PMCID: PMC7558283 DOI: 10.3390/antibiotics9090606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022] Open
Abstract
Ventilago denticulata is an herbal medicine for the treatment of wound infection; therefore this plant may rich in antibacterial agents. UHPLC-ESI-QTOF-MS/MS-Based molecular networking guided isolation and dereplication led to the identification of antibacterial and antifungal agents in V. denticulata. Nine antimicrobial agents in V. denticulata were isolated and characterized; they are divided into four groups including (I) flavonoid glycosides, rhamnazin 3-rhamninoside (7), catharticin or rhamnocitrin 3-rhamninoside (8), xanthorhamnin B or rhamnetin 3-rhamninoside (9), kaempferol 3-rhamninoside (10) and flavovilloside or quercetin 3-rhamninoside (11), (II) benzisochromanquinone, ventilatones B (12) and A (15), (III) a naphthopyrone ventilatone C (16) and (IV) a triterpene lupeol (13). Among the isolated compounds, ventilatone C (16) was a new compound. Moreover, kaempferol, chrysoeriol, isopimpinellin, rhamnetin, luteolin, emodin, rhamnocitrin, ventilagodenin A, rhamnazin and mukurozidiol, were tentatively identified as antimicrobial compounds in extracts of V. denticulata by a dereplication method. MS fragmentation of rhamnose-containing compounds gave an oxonium ion, C6H9O3+ at m/z 129, while that of galactose-containing glycosides provided the fragment ion at m/z 163 of C6H11O5+. These fragment ions may be used to confirm the presence of rhamnose or galactose in mass spectrometry-based analysis of natural glycosides or oligosaccharide attached to biomolecules, that is, glycoproteins.
Collapse
Affiliation(s)
- Muhaiminatul Azizah
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.); (T.T.); (C.M.); (S.R.)
| | - Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Tawatchai Thongkongkaew
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.); (T.T.); (C.M.); (S.R.)
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.); (T.T.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.); (T.T.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.); (T.T.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
- Correspondence: ; Tel.: +66-869755777
| |
Collapse
|
31
|
Han YK, Kim H, Shin H, Song J, Lee MK, Park B, Lee KY. Characterization of Anti-Inflammatory and Antioxidant Constituents from Scutellaria baicalensis Using LC-MS Coupled with a Bioassay Method. Molecules 2020; 25:molecules25163617. [PMID: 32784835 PMCID: PMC7464942 DOI: 10.3390/molecules25163617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
An effective and previously demonstrated screening method for active constituents in natural products using LC-MS coupled with a bioassay was reported in our earlier studies. With this, the current investigation attempted to identify bioactive constituents of Scutellaria baicalensis through LC-MS coupled with a bioassay. Peaks at broadly 17-20 and 24-25 min on the MS chromatogram displayed an inhibitory effect on NO production in lipopolysaccharide-induced BV2 microglia cells. Similarly, peaks at roughly 17-19 and 22 min showed antioxidant activity with an 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)/2,2-diphenyl-1- picrylhydrazyl (DPPH) assay. For confirmation of LC-MS coupled with a bioassay, nine compounds (1-9) were isolated from an MeOH extract of S. baicalensis. As we predicted, compounds 1, 8, and 9 significantly reduced lipopolysaccharide (LPS)-induced NO production in BV2 cells. Likewise, compounds 5, 6, and 8 exhibited free radical-scavenging activities with the ABTS/DPPH assay. In addition, the structural similarity of the main components was confirmed by analyzing the total extract and EtOAc fractions through molecular networking. Overall, the results suggest that the method comprised of LC-MS coupled with a bioassay can effectively predict active compounds without an isolation process, and the results of molecular networking predicted that other components around the active compound node may also be active.
Collapse
Affiliation(s)
- Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong 30019, Korea; (Y.K.H.); (H.S.); (J.S.)
| | - Hyunwoo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA;
| | - Hyeji Shin
- College of Pharmacy, Korea University, Sejong 30019, Korea; (Y.K.H.); (H.S.); (J.S.)
| | - Jiyeon Song
- College of Pharmacy, Korea University, Sejong 30019, Korea; (Y.K.H.); (H.S.); (J.S.)
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Correspondence: (B.P.); (K.Y.L.); Tel.: +82-53-580-6653 (B.P.); +82-44-860-1623 (K.Y.L.)
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea; (Y.K.H.); (H.S.); (J.S.)
- Correspondence: (B.P.); (K.Y.L.); Tel.: +82-53-580-6653 (B.P.); +82-44-860-1623 (K.Y.L.)
| |
Collapse
|
32
|
Combined MS/MS-NMR Annotation Guided Discovery of Iris lactea var. chinensis Seed as a Source of Viral Neuraminidase Inhibitory Polyphenols. Molecules 2020; 25:molecules25153383. [PMID: 32722555 PMCID: PMC7435927 DOI: 10.3390/molecules25153383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the chemical diversity of polyphenols in Iris lactea var. chinensis seeds was identified by combined MS/MS-NMR analysis. Based on the annotated chemical profile, the isolation of stilbene oligomers was conducted, and consequently, stilbene oligomers (1-10) were characterized. Of these, compounds 1 and 2 are previously undescribed stilbene dimer glycoside (1) and tetramer glycoside (2), respectively. Besides, to evaluate this plant seed as a rich source of stilbene oligomers, we quantified three stilbene oligomers of I. lactea var. chinensis seeds. The contents of three major stilbene oligomers—trans-ε-viniferin (3), vitisin A (6), and vitisin B (9)—in I. lactea var. chinensis seeds were quantified as 2.32 (3), 4.95 (6), and 1.64 (9) mg/g dry weight (DW). All the isolated compounds were tested for their inhibitory activities against influenza neuraminidase. Compound 10 was found to be active with the half maximal inhibitory concentration (IC50) values at 4.76 μM. Taken together, it is concluded that I. lactea var. chinensis seed is a valuable source of stilbene oligomers with a human health benefit.
Collapse
|