1
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024; 53:18207-18216. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
2
|
Rajput S, Sahoo RK, M T N, Nembenna S. Zinc catalyzed chemoselective hydrofunctionalization of cyanamides. Chem Commun (Camb) 2024; 60:11148-11151. [PMID: 39291297 DOI: 10.1039/d4cc03972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The zinc-catalyzed hydrosilylation and hydroboration of cyanamides have been described. Chemoselective reduction of cyanamides with Ph2SiH2 and partial or complete hydroboration of cyanamides with pinacolborane (HBpin) have been successfully carried out. The active catalyst/intermediate in the catalytic reactions, i.e., the bis-guanidinate zinc amidinate compound, has been isolated and structurally characterized.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Nithya M T
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
3
|
Rajput S, Sahoo RK, Sarkar N, Nembenna S. Gallium Hydride-Catalyzed Selective Hydroboration of Unsaturated Organic Substrates. Chempluschem 2024; 89:e202300737. [PMID: 38437065 DOI: 10.1002/cplu.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The first examples of tetrasubstituted conjugated bis-guanidinate (CBG) supported monomeric and thermally stable gallium dihalides [LGaX2], (X=Cl (Ga-Cl), I (Ga-I)) and dihydride (Ga-H) [LGaH2] (where L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr)}; Ar=2,6-Et2-C6H3) compounds are reported. The reaction of in situ generated LLi with 1.0 equiv. GaX3 (X=Cl, I) afforded compounds Ga-Cl and Ga-I. The reaction between Ga-Cl and Li[HBEt3] in benzene yielded the dihydride compound Ga-H. All reported compounds (Ga-Cl, Ga-I, and Ga-H) were characterized by NMR, HRMS, and single-crystal X-ray diffraction studies. Ga-H was probed for the hydroboration of carbodiimides (CDI), isocyanates, and isothiocyanates with HBpin. Compound Ga-H was also found effective for the catalytic hydroboration of imines, nitriles, alkynes, esters, and formates, affording the corresponding products in quantitative yields. Stoichiometric reactions with a CDI were performed to establish the catalytic cycle.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
4
|
Karmakar H, Kumar GS, Pal K, Chandrasekhar V, Panda TK. Tri-coordinated zinc alkyl complexes with N^ S/ Se coordination of imino-phosphanamidinate chalcogenide ligands as precursors for efficient hydroboration of nitriles and esters. Dalton Trans 2024; 53:10592-10602. [PMID: 38855964 DOI: 10.1039/d4dt00840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A series of tri-coordinated zinc alkyl complexes with the general molecular formula [κ2NE-{NHIRP(Ph)(E)N-Dipp}ZnEt] [R = Dipp (2,6-diisopropylphenyl), E = S (3a), Se (3b) and R = tBu (tert-butyl), E = S (4a), Se (4b)] bearing imino-phosphanamidinate chalcogenide ligands were prepared in good yields from the reaction between the protic imino-phosphanamidinate chalcogenide ligand [NHIRP(Ph)(E)NH-Dipp] [R = Dipp, E = S (1a), Se (1b) and R = tBu, E = S (2a), Se (2b)] and diethylzinc at room temperature. The molecular structures of all the zinc complexes were established by single-crystal X-ray diffraction analysis. In the solid state, all complexes exhibited a distorted trigonal planar geometry around the zinc ion. Metal-chalcogenide (Zn-S/Se) interactions were observed in the coordination sphere. These zinc alkyl complexes were employed as pre-catalysts in the hydroboration reaction of nitriles and esters to obtain the corresponding N,N-diborylamines and boronate esters, respectively, under ambient conditions. A wide substrate scope of nitriles and esters is presented.
Collapse
Affiliation(s)
- Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Gobbilla Sai Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500107, Hyderabad, India.
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
5
|
Yan B, Ma X, Pang Z, Yang Z. Chemoselective Luche-type reduction of α,β-unsaturated ketones by aluminium hydride catalysis. Dalton Trans 2024; 53:4127-4131. [PMID: 38315772 DOI: 10.1039/d3dt03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel, simple, eco-friendly, non-toxic aluminium catalyst was synthesised for the chemoselective reduction of α,β-unsaturated ketones. A wide range of ketones were achieved with excellent yields, mild conditions, and low catalyst loading. Furthermore, this unprecedented method allowed for the stereoselective reduction of natural ketones.
Collapse
Affiliation(s)
- Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ziyuan Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| |
Collapse
|
6
|
Komuro T, Hayasaka K, Takahashi K, Ishiwata N, Yamauchi K, Tobita H, Hashimoto H. Iron complexes supported by silyl-NHC chelate ligands: synthesis and use for double hydroboration of nitriles. Dalton Trans 2024; 53:4041-4047. [PMID: 38333906 DOI: 10.1039/d3dt03605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Iron complexes bearing new silyl-NHC bidentate ligands were synthesised by treating Fe3(CO)12 with a mixture of N-(hydrosilyl)methyl imidazolium salts and a base. These complexes showed high performance in the catalytic double hydroboration of nitrile with pinacolborane (HBpin) to produce N,N-bis(boryl)amine by a combination of UV irradiation and mild heating (60 °C). The product yields for the hydroboration of aromatic and aliphatic nitriles reached 85%-95% (NMR) using an iron complex (5 mol%). Reducing the loading amount of the iron complex to 0.5 mol% still afforded the products in high yields. An analogous ruthenium complex, which was similarly synthesised using Ru3(CO)12, showed lower activity. Stoichiometric reactions of the iron complex with nitriles afforded Fe(0)-N-silylimine complexes, which may be dormant states in nitrile hydroboration. A catalytic mechanism including Fe(0) N-silylimine species is proposed.
Collapse
Affiliation(s)
- Takashi Komuro
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kohei Hayasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kasumi Takahashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Nozomu Ishiwata
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kota Yamauchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Patro AG, Sahoo RK, Nembenna S. Zinc hydride catalyzed hydroboration of esters. Dalton Trans 2024; 53:3621-3628. [PMID: 38289250 DOI: 10.1039/d3dt04084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The conjugated bis-guanidinate (CBG)-supported zinc hydride {LZnH}2; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3} (I) is utilized as a catalyst for the hydroboration of esters with pinacolborane (HBpin) under mild reaction conditions. Various aryl and alkyl substrates containing electron-donating, withdrawing, and cyclic groups of esters are effectively converted into alkoxy boronate esters as products upon hydroboration. Furthermore, stoichiometric experiments have been performed to understand the plausible reaction mechanism for the hydroboration of esters. Additionally, complex (I) was used for the hydroboration of carbonate, carboxylic acid, and anhydride substrates to showcase the broad substrate scope.
Collapse
Affiliation(s)
- A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| |
Collapse
|
8
|
Takahashi S, Kamiyama S, Ishii A, Nakata N. Syntheses of Iminophosphomamido Chlorogermylenes and Their Complexation with a Rhodium(I) Complex. Chem Asian J 2024; 19:e202300968. [PMID: 38050920 DOI: 10.1002/asia.202300968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Three-coordinated chlorogermylenes of the type [Ph2 P(RN)2 ]GeCl (3: R=t Bu; 4: R=Dip=2,6-i Pr2 C6 H3 ), which bear an N,N-substituted iminophosphonamide ligand, were synthesized. The coordination behavior of 3 and 4 toward rhodium(I) complex was investigated. When 3 was treated with 1/2 of an equivalent of [RhCl(cod)]2 (cod=1,5-cyclooctadiene), the corresponding chlorogermylene-Rh(I) complex 5 was obtained as orange crystals. In contrast, the reaction of 4 with a half equivalent of [RhCl(cod)]2 under a CO atmosphere resulted in the formation of a five-membered germarhodacycle 7. Compounds 3, 4, 5, and 7 were characterized using NMR spectroscopies and single-crystal X-ray diffraction. Complex 5 can be employed as a catalyst for the hydrosilylation and hydroboration reactions of diphenylacetylene, thus demonstrating the utility of germylene ligands comparable to those of NHCs in the major transition metal catalytic processes.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 225, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shota Kamiyama
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 225, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 225, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 225, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
9
|
Janda BA, Tran JA, Chang DK, Nerhood GC, Maduka Ogba O, Liberman-Martin AL. Carbodiimide and Isocyanate Hydroboration by a Cyclic Carbodiphosphorane Catalyst. Chemistry 2024; 30:e202303095. [PMID: 37847813 DOI: 10.1002/chem.202303095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
We report hydroboration of carbodiimide and isocyanate substrates catalyzed by a cyclic carbodiphosphorane catalyst. The cyclic carbodiphosphorane outperformed the other Lewis basic carbon species tested, including other zerovalent carbon compounds, phosphorus ylides, an N-heterocyclic carbene, and an N-heterocyclic olefin. Hydroborations of seven carbodiimides and nine isocyanates were performed at room temperature to form N-boryl formamidine and N-boryl formamide products. Intermolecular competition experiments demonstrated the selective hydroboration of alkyl isocyanates over carbodiimide and ketone substrates. DFT calculations support a proposed mechanism involving activation of pinacolborane by the carbodiphosphorane catalyst, followed by hydride transfer and B-N bond formation.
Collapse
Affiliation(s)
- Ben A Janda
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Julie A Tran
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Daniel K Chang
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Gabriela C Nerhood
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - O Maduka Ogba
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Allegra L Liberman-Martin
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| |
Collapse
|
10
|
Kumar R, Meher RK, Sharma J, Sau A, Panda TK. Amidophosphine Boranes as Hydroboration Reagents for Nitriles, Alkynes, and Carboxylic Acids. Org Lett 2023; 25:7923-7927. [PMID: 37883234 DOI: 10.1021/acs.orglett.3c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We report here the hydroboration of nitriles, alkynes, and carboxylic acids using amidophosphine boranes {(BH3)(PPh2)-NC(CH3)3}, {(BH3)2(PPh)2N(CH2)C6H5}, and {(BH3)2(PPh2)2N-(BH3)CH2C6H4N} as reducing agents. These compounds were synthesized to replace more commonly used borane reagents. Solid amidophosphine boranes, which were synthesized with ease, demonstrated excellent reactivity and functional group tolerance toward a wide variety of nitriles, alkynes, and carboxylic acids, affording the corresponding ammonium salts, alkenes, and alcohols in good yield.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Rohan Kumar Meher
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| |
Collapse
|
11
|
van IJzendoorn B, Whittingham JBM, Whitehead GFS, Kaltsoyannis N, Mehta M. A robust Zintl cluster for the catalytic reduction of pyridines, imines and nitriles. Dalton Trans 2023; 52:13787-13796. [PMID: 37721024 DOI: 10.1039/d3dt02896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.
Collapse
Affiliation(s)
- Bono van IJzendoorn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
12
|
Kumar GS, Kumar R, Sau A, Chandrasekhar V, Panda TK. Zinc Catalyzed Hydroboration of Esters and Nitriles with Pinacolborane. J Org Chem 2023; 88:12613-12622. [PMID: 37615400 DOI: 10.1021/acs.joc.3c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We developed a bench-stable iminopyridine-ligated zinc complex for the effective catalytic hydroboration of esters and nitriles under solvent-free conditions. Various esters and nitriles bearing different functionalities were selectively reduced to form corresponding alcohols and amines in good yields. Detailed Hammett plots are provided to explain the electronic effects on the phenyl ring.
Collapse
Affiliation(s)
- Gobbilla Sai Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500107, India
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| |
Collapse
|
13
|
Willcox DR, Thomas SP. Group 13 exchange and transborylation in catalysis. Beilstein J Org Chem 2023; 19:325-348. [PMID: 36998308 PMCID: PMC10043741 DOI: 10.3762/bjoc.19.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023] Open
Abstract
Catalysis is dominated by the use of rare and potentially toxic transition metals. The main group offers a potentially sustainable alternative for catalysis, due to the generally higher abundance and lower toxicity of these elements. Group 13 elements have a rich catalogue of stoichiometric addition reactions to unsaturated bonds but cannot undergo the redox chemistry which underpins transition-metal catalysis. Group 13 exchange reactions transfer one or more groups from one group 13 element to another, through σ-bond metathesis; where boron is both of the group 13 elements, this is termed transborylation. These redox-neutral processes are increasingly being used to render traditionally stoichiometric group 13-mediated processes catalytic and develop new catalytic processes, examples of which are the focus of this review.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
14
|
Sahoo RK, Patro AG, Sarkar N, Nembenna S. Zinc Catalyzed Hydroelementation (HE; E = B, C, N, and O) of Carbodiimides: Intermediates Isolation and Mechanistic Insights. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Arukela Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| |
Collapse
|
15
|
Karmakar H, Kumar R, Sharma J, Bag J, Pal K, Panda TK, Chandrasekhar V. N^N vs. N^E (E = S or Se) coordination behavior of imino-phosphanamidinate chalcogenide ligands towards aluminum alkyls: efficient hydroboration catalysis of nitriles, alkynes, and alkenes. Dalton Trans 2023; 52:4481-4493. [PMID: 36919767 DOI: 10.1039/d3dt00038a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The synthesis, characterization, and catalytic application of six aluminum alkyl complexes supported by various imino-phosphanamidinate chalcogenide ligands are described. Six different unsymmetrical imino-phosphanamidinate chalcogenide ligands [NHIRP(Ph)(E)NH-Dipp] [R = 2,6-diisopropylphenyl (Dipp), E = S (2a-H), Se (2b-H); R = mesityl (Mes), E = S (3a-H), Se (3b-H); R = tert-butyl (tBu), E = S (4a-H), Se (4b-H)] were prepared by the oxidation of respective imino-phosphanamide ligands (1a, 1b and 1c) with elemental chalcogen atoms (S and Se). The aluminum complexes with imino-phosphanamidinate chalcogenide ligands with the general formulae [κ2NN-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = Dipp, E = S (5a), Se (5b); R = Mes, E = S (6a), Se (6b)] or [κ2NE-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = tBu, E = S (7a), Se (7b)] were synthesized in good yields from the reaction of the suitable protic ligands (2a,b-H-4a,b-H) and trimethylaluminum in a 1 : 1 molar ratio in toluene at room temperature. All the protic ligands and aluminum complexes were well characterized by multi-nuclear NMR spectroscopy, and the solid-state structures of 2a,b-H-4a,b-H, 5a,b-6a,b and 7b are established by single crystal X-ray diffraction analysis. The aluminum complexes 5a,b-7a,b were tested as catalysts for the hydroboration of nitriles, alkynes, and alkenes under mild conditions. The catalytic hydroboration reactions of nitriles, alkynes, and alkenes were accomplished with complex 5b at a mild temperature under solvent-free conditions to afford a high yield of the corresponding N,N-diborylamines, vinylboranes and alkyl boronate esters, respectively.
Collapse
Affiliation(s)
- Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Jayanta Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500107, Hyderabad, India. .,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
16
|
Ma Y, Hussein AA. Partner effect in accelerating pincer-co catalyzed nitrile hydroboration reactions. Phys Chem Chem Phys 2023; 25:3110-3120. [PMID: 36621824 DOI: 10.1039/d2cp03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pincer-Co catalyzed nitrile hydroboration of nitrile has been presented as an elegant strategy to afford amine synthesis; however, ligand engineering is required. We show here a strategy to tune the catalytic behavior of the organometallic catalyst, as an alternative approach to ligand engineering, by means of computational investigations to understand the effect of partners such as (18-crown-6)K+, W(CO)3 and W(PMe3)3 on the reactivity of the pincer-Co catalyzed nitrile hydroboration reaction through π-coordination to the ligand aromatic ring. The extra additives bind the central phenyl ring of the ligand by either dispersion or chemical bonding. The electron-richness of the cobalt center is tuned by the partner, and follows the order (18-crown-6)K+ > W(PMe3)3 > no partner > W(CO)3. While the influence of the covalent W-containing partners parallels the electron-richness of the W, the non-covalent partner, (18-crown-6)K+, surprisingly increases the donor ability of the pincer ligand through the polarization effect. All the elementary steps involved in the nitrile hydroboration reaction are influenced by the partner, and the overall barrier is lowered by a surprisingly large amount of 4.9 kcal mol-1 in the presence of (18-crown-6)K+, suggesting a notable partner effect to be explored by experimentalists so that the reactivity of a catalyst can be tuned without ligand modification.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing, 100084, People's Republic of China.,Hangzhou Yanqu Information Technology Co., Ltd. Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China.
| | - Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, 46001 Sulaymaniyah, Kurdistan Region, Iraq.
| |
Collapse
|
17
|
Prey SE, Herok C, Fantuzzi F, Bolte M, Lerner HW, Engels B, Wagner M. Multifaceted behavior of a doubly reduced arylborane in B-H-bond activation and hydroboration catalysis. Chem Sci 2023; 14:849-860. [PMID: 36755708 PMCID: PMC9890859 DOI: 10.1039/d2sc05518j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Alkali-metal salts of 9,10-dimethyl-9,10-dihydro-9,10-diboraanthrancene (M2[DBA-Me2]; M+ = Li+, Na+, K+) activate the H-B bond of pinacolborane (HBpin) in THF already at room temperature. For M+ = Na+, K+, the addition products M2[4] are formed, which contain one new H-B and one new B-Bpin bond; for M+ = Li+, the H- ion is instantaneously transferred from the DBA-Me2 unit to another equivalent of HBpin to afford Li[5]. Although Li[5] might commonly be considered a [Bpin]- adduct of neutral DBA-Me2, it donates a [Bpin]+ cation to Li[SiPh3], generating the silyl borane Ph3Si-Bpin; Li2[DBA-Me2] with an aromatic central B2C4 ring acts as the leaving group. Furthermore, Li2[DBA-Me2] catalyzes the hydroboration of various unsaturated substrates with HBpin in THF. Quantum-chemical calculations complemented by in situ NMR spectroscopy revealed two different mechanistic scenarios that are governed by the steric demand of the substrate used: in the case of the bulky Ph(H)C[double bond, length as m-dash]NtBu, the reaction requires elevated temperatures of 100 °C, starts with H-Bpin activation which subsequently generates Li[BH4], so that the mechanism eventually turns into "hidden borohydride catalysis". Ph(H)C[double bond, length as m-dash]NPh, Ph2C[double bond, length as m-dash]O, Ph2C[double bond, length as m-dash]CH2, and iPrN[double bond, length as m-dash]C[double bond, length as m-dash]NiPr undergo hydroboration already at room temperature. Here, the active hydroboration catalyst is the [4 + 2] cycloadduct between the respective substrate and Li2[DBA-Me2]: in the key step, attack of HBpin on the bridging unit opens the bicyclo[2.2.2]octadiene scaffold and gives the activated HBpin adduct of the Lewis-basic moiety that was previously coordinated to the DBA-B atom.
Collapse
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität FrankfurtFrankfurt am Main D-60438Germany
| | - Christoph Herok
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Felipe Fantuzzi
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany .,School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| |
Collapse
|
18
|
Sahoo R, Patro AG, Sarkar N, Nembenna S. Comparison of Two Zinc Hydride Precatalysts for Selective Dehydrogenative Borylation of Terminal Alkynes: A Detailed Mechanistic Study. ACS OMEGA 2023; 8:3452-3460. [PMID: 36713704 PMCID: PMC9878541 DOI: 10.1021/acsomega.2c07381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The conjugated bis-guanidinate-stabilized zinc hydride complex (I)-precatalyzed chemoselective dehydroborylation of a wide array of terminal alkynes with excellent yields is reported. Further, precatalyst I is compared with a newly synthesized DiethylNacNac zinc hydride precatalyst (III) for selective dehydroborylation of terminal alkynes, and it is discovered that precatalyst I is more active than III. We have studied intra- and intermolecular chemoselective dehydroborylation of terminal alkynes over other reducible functionalities such as alkene, ester, isocyanide, nitro, and heterocycles. The highly efficient precatalyst I shows a turnover number of 48.5 and turnover frequency of up to 60.5 h-1 in the dehydroborylation of 1-ethynyl-4-fluorobenzene (1i). A plausible mechanism for selective dehydrogenative borylation of alkynes has been proposed based on active catalyst isolation and a series of stoichiometric reactions.
Collapse
|
19
|
Sarkar N, Kumar Sahoo R, Nembenna S. Aluminium-Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: C-O Bond Activation. Chemistry 2023; 29:e202203023. [PMID: 36226774 DOI: 10.1002/chem.202203023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this work, the molecular aluminium dihydride complex bearing an N, N'-chelated conjugated bis-guanidinate (CBG) ligand is used as a catalyst for reducing a wide range of aryl and alkyl esters with good tolerance of alkene (C=C), alkyne (C≡C), halides (Cl, Br, I and F), nitrile (C≡N), and nitro (NO2 ) functionalities. Further, we investigated the catalytic application of aluminium dihydride in the C-O bond cleavage of alkyl and aryl epoxides into corresponding branched Markovnikov ring-opening products. In addition, the chemoselective intermolecular reduction of esters over other reducible functional groups, such as amides and alkenes, has been established. Intermediates are isolated and characterized by NMR and HRMS studies, which confirm the probable catalytic cycles for the hydroboration of esters and epoxides.
Collapse
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
20
|
Nougué R, Takahashi S, Dajnak A, Maerten E, Baceiredo A, Saffon‐Merceron N, Branchadell V, Kato T. Labile Base-Stabilized Silyliumylidene Ions. Non-Metallic Species Capable of Activating Multiple Small Molecules. Chemistry 2022; 28:e202202037. [PMID: 36074891 PMCID: PMC10092131 DOI: 10.1002/chem.202202037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Several base-stabilized silyliumylidene ions (2 and 3) with different ligands were synthesized. Their behaviour appeared strongly dependent on the nature of ligand. Indeed, in contrast to the poorly reactive silyliumylidene ions 3 c,d stabilized by strongly donating ligands (DMAP, NHC), the silylene- and sulfide-supported one (2-H and 3 a) exhibits higher reactivity toward various small molecules. Furthermore, their capability to successively activate multiple small molecules was clearly demonstrated by processes involving successive reactions with silane/formamide, CO2 and H2 . Moreover, HBPin adduct of 3 a (8-C) catalyzes the hydroboration of pyridine. Of particular interest, silylene-supported silyliumylidene complex 2-H is one of the rare species able to activate two H2 molecules.
Collapse
Affiliation(s)
- Raphaël Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Shintaro Takahashi
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Aymeric Dajnak
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Eddy Maerten
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599) UPS, and CNRS, ICT UAR2599118 route de NarbonneF-31062ToulouseFrance
| | - Vicenç Branchadell
- Departament de QuímicaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| |
Collapse
|
21
|
Ataie S, Baker RT. Comparing B-H Bond Activation in Ni IIX(NNN)-Catalyzed Nitrile Dihydroboration (X = Anionic N-, C-, O-, S-, or P-donor). Inorg Chem 2022; 61:19998-20007. [PMID: 36455067 DOI: 10.1021/acs.inorgchem.2c03273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
One of the key steps in many metal complex-catalyzed hydroboration reactions is B-H bond activation, which results in metal hydride formation. Anionic ligands that include multiple lone pairs of electrons, in cooperation with a metal center, have notable potential in redox-neutral B-H bond activation through metal-ligand cooperation. Herein, using an easily prepared NpyridineNimineNpyrrolide ligand (L2)-, a series of divalent NiIIX(NNN) complexes were synthesized, with X = bromide (2), phenoxide (3), thiophenoxide (4), 2,5-dimethylpyrrolide (5), diphenylphosphide (6), and phenyl (7). The complexes were characterized using 1H and 13C NMR spectroscopy, mass spectrometry, and X-ray crystallography and employed as precatalysts for nitrile dihydroboration. Superior activity of the phenoxy derivative (3) [vs thiophenoxy (4) or phenyl (7)] suggests that B-H bond activation occurs at the Ni-X (vs ligand Ni-Npyrrolide) bond. Furthermore, stoichiometric treatment of 2-7 with a nitrile showed no reaction, whereas stoichiometric reactions of 2-7 with pinacolborane (HBpin) gave the same Ni-H complex for 2, 3, and 5. Considering that only 2, 3, and 5 successfully catalyzed nitrile dihydroboration, we suggest that the catalytic cycle involves a conventional inner sphere pathway initiated by substrate insertion into Ni-H.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Ding M, Chang J, Mao JX, Zhang J, Chen X. Noncatalyzed Reduction of Nitriles to Primary Amines with Ammonia Borane. J Org Chem 2022; 87:16230-16235. [DOI: 10.1021/acs.joc.2c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Man Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Xue Mao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
23
|
Qiu H, Lv K, Qu H, Zhang X, Yuan T, Yao W, Xue F, Ma M. Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Meger F, Kwok ACW, Gilch F, Willcox DR, Hendy AJ, Nicholson K, Bage AD, Langer T, Hunt TA, Thomas SP. B–N/ B–H Transborylation: borane-catalysed nitrile hydroboration. Beilstein J Org Chem 2022; 18:1332-1337. [PMID: 36247978 PMCID: PMC9531558 DOI: 10.3762/bjoc.18.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
The reduction of nitriles to primary amines is a useful transformation in organic synthesis, however, it often relies upon stoichiometric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is reported. Good yields (48–95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic studies support the proposal of a double B–N/B–H transborylation mechanism.
Collapse
Affiliation(s)
- Filip Meger
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Alexander C W Kwok
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Franziska Gilch
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Alex J Hendy
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Kieran Nicholson
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew D Bage
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Thomas A Hunt
- Medicinal Chemistry, Early Oncology, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
25
|
Pradhan S, Sankar RV, Gunanathan C. A Boron-Nitrogen Double Transborylation Strategy for Borane-Catalyzed Hydroboration of Nitriles. J Org Chem 2022; 87:12386-12396. [PMID: 36045008 DOI: 10.1021/acs.joc.2c01655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Organoborane-catalyzed hydroboration of nitriles provides N,N-diborylamines, which act as efficient synthons for the synthesis of primary amines and secondary amides. Known nitrile hydroboration methods are dominated by metal catalysis. Simple and metal-free hydroboration of nitriles using diborane [H-B-9-BBN]2 as a catalyst and pinacolborane as a turnover reagent is reported. The reaction of monomeric H-B-9-BBN with nitriles leads to the hydrido-bridged diborylimine intermediate; a subsequent sequential double hydroboration-transborylation pathway involving B-N/B-H σ bond metathesis is proposed.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
26
|
Sieland B, Hoppe A, Stepen A, Paradies J. Frustrated Lewis pair‐catalyzed hydroboration of nitriles: FLP versus borenium catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Axel Hoppe
- Paderborn University Faculty of Science GERMANY
| | - Arne Stepen
- Paderborn University Faculty of Science GERMANY
| | | |
Collapse
|
27
|
Nayak DK, Sarkar N, Sampath CM, Sahoo RK, Nembenna S. Organoaluminum Catalyzed Guanylation and Hydroboration Reactions of Carbodiimides. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepak Kumar Nayak
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Chabathula Manoj Sampath
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| |
Collapse
|
28
|
Khuntia AP, Sarkar N, Patro AG, Sahoo RK, Nembenna S. Germanium Hydride Catalyzed Selective Hydroboration and Cyanosilylation of Ketones. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwesh Prasad Khuntia
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - A Ganesh Patro
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
29
|
Rezaei Bazkiaei A, Findlater M, Gorden AEV. Applications of catalysis in hydroboration of imines, nitriles, and carbodiimides. Org Biomol Chem 2022; 20:3675-3702. [PMID: 35451449 DOI: 10.1039/d2ob00162d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic hydroboration of imines, nitriles, and carbodiimides is a powerful method of preparing amines which are key synthetic intermediates in the synthesis of many value-added products. Imine hydroboration has perennially featured in notable reports while nitrile and carbodiimide hydroboration have gained attention recently. Initial developments in catalytic hydroboration of imines and nitriles employed precious metals and typically required harsh reaction conditions. More recent advances have shifted toward the use of base metal and main group element catalysis and milder reaction conditions. In this survey, we review metal and nonmetal catalyzed hydroboration of these unsaturated organic molecules and group them into three distinct categories: precious metals, base metals, and main group catalysts. The TON and TOF of imine hydroboration catalysts are reported and summarized with a brief overview of recent advances in the field. Mechanistic and kinetic studies of some of these protocols are also presented.
Collapse
Affiliation(s)
- Adineh Rezaei Bazkiaei
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA.
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
30
|
Pandey VK, Sahoo S, Rit A. Simple silver(I)-salt catalyzed selective hydroboration of isocyanates, pyridines, and quinolines. Chem Commun (Camb) 2022; 58:5514-5517. [PMID: 35420096 DOI: 10.1039/d2cc00491g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AgSbF6 has been established as an effective catalyst for the hydroboration of structurally and electronically diverse isocyanates under ligand- and solvent-free conditions which selectively yielded either N-boryl formamides or N-boryl methylamines under different conditions. Further, various N-heterocycles can be selectively hydroborated using this simple catalytic system; pyridine derivatives undergo preferential 1,4 hydroboration whereas the formation of tetrahydroquinoline (after hydrolysis) via complete heterocycle hydrogenation was observed for quinolines.
Collapse
Affiliation(s)
- Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sangita Sahoo
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
31
|
Sarkar N, Kumar Sahoo R, Ganesh Patro A, Nembenna S. Aluminum-Catalyzed Selective Hydroboration of Carbonyls and Dehydrocoupling of Alcohols, Phenols, Amines, Thiol, Selenol, Silanols with HBpin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Sai Kumar G, Bhattacharjee J, Kumari K, Moorthy S, Bandyopadhyay A, Kumar Singh S, Panda TK. Hydroboration of Nitriles, Esters, and Amides Catalyzed by Simple Neosilyllithium. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Das A, Rej S, Panda TK. Aluminium complexes: next-generation catalysts for selective hydroboration. Dalton Trans 2022; 51:3027-3040. [PMID: 35107095 DOI: 10.1039/d1dt03703j] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organoboranes obtained from hydroboration reactions are one of the important classes of compounds that could be used to provide valuable synthons for follow-up transformations such as various functional group incorporation or C-C bond forming reactions. For decades, various transition metals were utilised as catalysts in such transformations. Recently Earth-abundant and less toxic main group metals have revived their importance in hydroboration chemistry, among which the suitable candidates are aluminium complexes as catalysts. In this regard, the development of aluminium complexes to achieve more robust catalytic systems with greater efficiency is appreciable.
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Supriya Rej
- Institut für Chemie, Technische Universität Berlin, Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
35
|
Liu J, Wu C, Hu T, Yang W, Xie Y, Shi Y, Liu Q, Shao Y, Zhang F. Hexamethyldisilazane Lithium (LiHMDS)-Promoted Hydroboration of Alkynes and Alkenes with Pinacolborane. J Org Chem 2022; 87:3442-3452. [PMID: 35143184 DOI: 10.1021/acs.joc.1c03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lithium-promoted hydroboration of alkynes and alkenes using commercially available hexamethyldisilazane lithium as a precatalyst and HBpin as a hydride source has been developed. This method will be appealing for organic synthesis because of its remarkable substrate tolerance and good yields. Mechanistic studies revealed that the hydroboration proceeds through the in situ-formed BH3 species, which acts to drive the turnover of the hydroboration of alkynes and alkenes.
Collapse
Affiliation(s)
- Jichao Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tinghui Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
36
|
Song Q, Tong H, Zhou M. Five-coordination aluminum complexes: Synthesis, crystal structures and utilization for the construction of substituted guanidines. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Sarkar N, Sahoo RK, Mukhopadhyay S, Nembenna S. Organoaluminum Cation Catalyzed Selective Hydrosilylation of Carbonyls, Alkenes, and Alkyne. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sayantan Mukhopadhyay
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
38
|
Ding H, Gao W, Yu T, Wang Z, Gou F, Ding S. Hydroboration and Diboration of Internal Alkynes under Iridium Catalysis. J Org Chem 2022; 87:1526-1536. [PMID: 34995462 DOI: 10.1021/acs.joc.1c02315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here we demonstrate the feasibility and efficiency of simple iridium-based catalytic systems in the synthesis of multisubstituted alkenyl boronates from internal alkynes with high selectivities. A variety of alkynes were smoothly decorated with HBpin under a mild [Ir(cod)Cl]2/dppm/acetone condition to afford trisubstituted alkenyl boronic esters with up to >99:1 regioselectivity. The diboration reaction could effectively occur in the presence of [Ir(cod)Cl]2/DCM. Plausible mechanisms were provided to illustrate these two catalytic processes, in which the intrinsic functional group of the alkyne was supposed to be important in facilitating these reactions as well as the regioselectivity.
Collapse
Affiliation(s)
- Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuqi Gou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Affiliation(s)
- Congjian Ni
- Beijing Institute of Technology School of chemistry CHINA
| | - Xiaoli Ma
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhi Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Herbert W. Roesky
- Georg-August-Universitat Gottingen Department of Chemistry Tammannstrasse 4 37077 Göttingen GERMANY
| |
Collapse
|
40
|
Stefanowska K, Sokolnicki T, Walkowiak J, Czapik A, Franczyk A. Directed cis-hydrosilylation of borylalkynes to borylsilylalkenes. Chem Commun (Camb) 2022; 58:12046-12049. [DOI: 10.1039/d2cc04318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed by the choice of catalyst cis-hydrosilylation of borylalkynes leads to novel borylsilylalkenes which are crucial synthons for the introduction of the carbon–carbon double bonds in organic synthesis.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Tomasz Sokolnicki
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| |
Collapse
|
41
|
Peng J, Song Y, Wang Y, Liu Z, Chen X. Catalyst-Free Reductions of Nitriles to Amino-Boranes Using Sodium Amidoborane and Lithium Borohydride. Org Chem Front 2022. [DOI: 10.1039/d1qo01904j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and facile method to reduce nitriles to amine-boranes was developed. Aromatic and aliphatic nitriles were readily reduced in the presense of both sodium amidoborane (NaAB) and LiBH4 at...
Collapse
|
42
|
Liu L, Lo S, Smith C, Goicoechea JM. Pincer-Supported Gallium Complexes for the Catalytic Hydroboration of Aldehydes, Ketones and Carbon Dioxide. Chemistry 2021; 27:17379-17385. [PMID: 34623001 PMCID: PMC9297891 DOI: 10.1002/chem.202103009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Gallium hydrides stabilised by primary and secondary amines are scarce due to their propensity to eliminate dihydrogen. Consequently, their reactivity has received limited attention. The synthesis of two novel gallium hydride complexes HGa(THF)[ON(H)O] and H2 Ga[μ2 -ON(H)O]Ga[ON(H)O] ([ON(H)O]2- =N,N-bis(3,5-di-tert-butyl-2-phenoxy)amine) is described and their reactivity towards aldehydes and ketones is explored. These reactions afford alkoxide-bridged dimers through 1,2-hydrogallation reactions. The gallium hydrides can be regenerated through Ga-O/B-H metathesis from the reaction of such dimers with pinacol borane (HBpin) or 9-borabicyclo[3.3.1]nonane (9-BBN). These observations allowed us to target the catalytic reduction of carbonyl substrates (aldehydes, ketones and carbon dioxide) with low catalyst loadings at room temperature.
Collapse
Affiliation(s)
- Lingyu Liu
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Siu‐Kwan Lo
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Cory Smith
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| |
Collapse
|
43
|
Sau S, Pramanik M, Bal A, Mal P. Reported Catalytic Hydrofunctionalizations that Proceed in the Absence of Catalysts: The Importance of Control Experiments. CHEM REC 2021; 22:e202100208. [PMID: 34618401 DOI: 10.1002/tcr.202100208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
The enlarged landscape of catalysis lies in the heart of chemistry. As the journey has set a milestone in organic synthesis, its darker side has not entered into the limelight. Studies disclose that the reported reactions by using catalysts were also attainable in the absence of catalysts in many cases. This article presents a literature collection that includes the significance of control experiments in hydrofunctionalization reactions. Systematic analysis reveals that the catalysts are ambiguous and might be unessential in chemical reactions enlisted here.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Ankita Bal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
44
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|
45
|
Willcox DR, De Rosa DM, Howley J, Levy A, Steven A, Nichol GS, Morrison CA, Cowley MJ, Thomas SP. Aluminium‐Catalyzed C(sp)−H Borylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dominic R. Willcox
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Daniel M. De Rosa
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Jack Howley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Abigail Levy
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Alan Steven
- AstraZeneca Pharmaceutical Technology and Development Macclesfield Campus Cheshire SK10 2NA UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Carole A. Morrison
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Michael J. Cowley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
46
|
Willcox DR, De Rosa DM, Howley J, Levy A, Steven A, Nichol GS, Morrison CA, Cowley MJ, Thomas SP. Aluminium-Catalyzed C(sp)-H Borylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:20672-20677. [PMID: 34107161 PMCID: PMC8518654 DOI: 10.1002/anie.202106216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/31/2022]
Abstract
Historically used in stoichiometric hydroalumination chemistry, recent advances have transformed aluminium hydrides into versatile catalysts for the hydroboration of unsaturated multiple bonds. This catalytic ability is founded on the defining reactivity of aluminium hydrides with alkynes and alkenes: 1,2‐hydroalumination of the unsaturated π‐system. This manuscript reports the aluminium hydride catalyzed dehydroborylation of terminal alkynes. A tethered intramolecular amine ligand controls reactivity at the aluminium hydride centre, switching off hydroalumination and instead enabling selective reactions at the alkyne C−H σ‐bond. Chemoselective C−H borylation was observed across a series of aryl‐ and alkyl‐substituted alkynes (21 examples). On the basis of kinetic and density functional theory studies, a mechanism in which C−H borylation proceeds by σ‐bond metathesis between pinacolborane (HBpin) and alkynyl aluminium intermediates is proposed.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Daniel M De Rosa
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jack Howley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Abigail Levy
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alan Steven
- AstraZeneca Pharmaceutical Technology and Development, Macclesfield Campus, Cheshire, SK10 2NA, UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Michael J Cowley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
47
|
Bisai MK, Gour K, Das T, Vanka K, Sen SS. Readily available lithium compounds as catalysts for the hydroboration of carbodiimides and esters. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Moskalev MV, Sokolov VG, Koptseva TS, Skatova AA, Bazanov AA, Baranov EV, Fedushkin IL. Reactivity of aluminum hydrides supported with sterically hindered acenaphthene-1,2-diimines towards CO2. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Isomerization energies and surface electrostatic potential analyses on nitriles and isocyanides. J Mol Model 2021; 27:257. [PMID: 34414524 DOI: 10.1007/s00894-021-04870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Isocyanide-nitrile rearrangement has long been a continuing and interesting topic. A series of nitriles and isocyanides with the substituents of R = -AlH2, -BeH, -BH2, -C≡CH, -CF3, -CH3, -Cl, -C≡N, -COOH, -F, -H, Li, -MgH, -Na, -NH2, -NO2, -OH, -PH2, -SH, -SiH3, and -CH = CH2 were investigated systematically based on full optimization at B3LYP-D3(BJ)/def2-QZVP level, and the isomerization energies from R-C≡N to:C = N-R were estimated. The substituent effect and bonding characters were analyzed by surface ESP colored van der Waals surfaces in conjunction with the global and local electrostatic extrema.
Collapse
|
50
|
Hobson K, Carmalt CJ, Bakewell C. Aluminum Amidinates: Insights into Alkyne Hydroboration. Inorg Chem 2021; 60:10958-10969. [PMID: 34270214 PMCID: PMC8388121 DOI: 10.1021/acs.inorgchem.1c00619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/30/2022]
Abstract
The mechanism of the aluminum-mediated hydroboration of terminal alkynes was investigated using a series of novel aluminum amidinate hydride and alkyl complexes bearing symmetric and asymmetric ligands. The new aluminum complexes were fully characterized and found to facilitate the formation of the (E)-vinylboronate hydroboration product, with rates and orders of reaction linked to complex size and stability. Kinetic analysis and stoichiometric reactions were used to elucidate the mechanism, which we propose to proceed via the initial formation of an Al-borane adduct. Additionally, the most unstable complex was found to promote decomposition of the pinacolborane substrate to borane (BH3), which can then proceed to catalyze the reaction. This mechanism is in contrast to previously reported aluminum hydride-catalyzed hydroboration reactions, which are proposed to proceed via the initial formation of an aluminum acetylide, or by hydroalumination to form a vinylboronate ester as the first step in the catalytic cycle.
Collapse
Affiliation(s)
- Katie Hobson
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Clare Bakewell
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|