1
|
Quaranta C, d'Anciães Almeida Silva I, Moos S, Bartalucci E, Hendrickx L, Fahl BMD, Pasqualini C, Puccetti F, Zobel M, Bolm C, Wiegand T. Molecular Recognition in Mechanochemistry: Insights from Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202410801. [PMID: 39007361 DOI: 10.1002/anie.202410801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Molecular-recognition events are highly relevant in biology and chemistry. In the present study, we investigated such processes in the solid state under mechanochemical conditions using the formation of racemic phases upon reacting enantiopure entities as example. As test systems, α-(trifluoromethyl)lactic acid (TFLA) and the amino acids serine and alanine were used. The effects of ball-milling and resonant acoustic mixing (RAM) on the formation of racemic phases were probed by using solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. In a mixer mill, a highly efficient and fast racemic phase formation occurred for both TFLA and the two amino acids. RAM led to the racemic phase for TFLA also, and this process was facilitated upon employing pre-milled enantiopure entities. In contrast, under comparable conditions RAM did not result in the formation of racemic phases for serine and alanine.
Collapse
Affiliation(s)
- Calogero Quaranta
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Sven Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Benjamin M D Fahl
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Claudia Pasqualini
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, I-53100, Siena, Italy
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
2
|
Mamedov VA, Zhukova NA, Syakaev VV, Gubaidullin AT, Samigullina AI, Beschastnova TN, Perevalova DS, Babaeva OB, Rizvanov IDK, Sinyashin OG. AcOH-Catalyzed Rearrangements of Benzo[ e][1,4]diazepin-2(and 3)-ones: Easy Access to 1,4-Dihydroquinazolines and Their Condensed Analogues. J Org Chem 2024; 89:14577-14585. [PMID: 39297490 DOI: 10.1021/acs.joc.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Presented herein is a novel synthesis of new 2-(quinolin-4-yl)-1,4-dihydroquinazoline systems 8, in which the acid-catalyzed rearrangement of spiro[benzo[e][1,4]diazepine-3,4'-quinolin]-2(1H)-ones generated in situ from 3-(2-aminophenyl)-5H-benzo[e][1,4]diazepin-2(1H)-ones 6 with acetone and alkylmethyl ketones has been realized as an important step. An attempt to synthesize isomeric 2-(2-aminophenyl)-5H-benzo[e][1,4]diazepin-3(4H)-one 6'a by hydrolysis of the corresponding N-{2-[5H-benzo[e][1,4]diazepin-3(4H)-on-2-yl]phenyl}acetamide 5'a led to a new heterocyclic system, 6-methyl-8,13-dihydro-13aH-quinazolino[4,3-b]quinazolin-5-ium 13a-carboxylate 14, as a result of an unexpected rearrangement. In addition, it is noteworthy that during the hydrolysis of N-{2-[5H-benzo[e][1,4]diazepin-2(1H)-on-3-yl]phenyl}acetamides 5, the not previously described 14-dihydro-5H-14,5a-(epimino[1,2]benzo)benzo[5,6][1,4]diazepin[2,1-b]quinazolin-6(7H)-ones 7 were unexpectedly obtained.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Nataliya A Zhukova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Victor V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Aida I Samigullina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Tat'yana N Beschastnova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Darya S Perevalova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Olga B Babaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Il Dar Kh Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation
| |
Collapse
|
3
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Yaragorla S, Sneha Latha D, Kumar R. Mechanochemical Regioselective [3+3] Annulation of 6-Amino Uracil with Propargyl Alcohols Catalyzed by a Brønsted Acid/Hexafluoroisopropanol. Chemistry 2024; 30:e202401480. [PMID: 38727792 DOI: 10.1002/chem.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 06/19/2024]
Abstract
A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Dandugula Sneha Latha
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Rituraj Kumar
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
5
|
Amer MM, Backer L, Buschmann H, Handler N, Scherf-Clavel O, Holzgrabe U, Bolm C. Prediction of Degradation Profiles for Various Sartans under Solvent-Free Mechanochemical Conditions. Anal Chem 2024. [PMID: 39092810 DOI: 10.1021/acs.analchem.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Laura Backer
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Helmut Buschmann
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | - Norbert Handler
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | | | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Yaragorla S, Tiwari D, Lone MS. Mechanochemical Cascade Cyclization of Cyclopropyl Ketones with 1,2-Diamino Arenes for the Direct Synthesis of 1,2-Disubstituted Benzimidazoles†. J Org Chem 2024; 89:9427-9439. [PMID: 38905327 DOI: 10.1021/acs.joc.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A mechanochemical synthesis of 1,2-disubstituted benzimidazoles from donor-acceptor cyclopropyl ketones and 1,2-diaminoarenes under metal-free and solventless conditions is reported. The reaction does not require inert conditions and is promoted by a stoichiometric amount of 1,1,1,3,3,3-hexafluoroisopropanol. This cascade reaction involves ring-opening, cyclization, and retro-Mannich reaction of cyclopropyl ketones with aryl 1,2-diamines. Compared to its solution-phase counterpart, this mechanochemical approach shows fast reactivity (24 vs 1.5 h). Mechanistic investigations by electrospray ionization mass spectrometry helped us to propose the reaction mechanism.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Divyanshu Tiwari
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Mehak Saba Lone
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
7
|
Geib R, Colacino E, Gremaud L. Sustainable Beckmann Rearrangement using Bead-Milling Technology: The Route to Paracetamol. CHEMSUSCHEM 2024; 17:e202301921. [PMID: 38353034 DOI: 10.1002/cssc.202301921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
To address the growing demand for more sustainable and greener chemistry, mechanochemical methodologies are emerging as key players. However, to date there has been little data highlighting the benefits of these rising mechanochemical technologies with regard to process scale-up activities or implementation in commercial production scale. Herein, we report the first application of bead-mill technology (Dyno®-mill) for the sustainable mechanochemical synthesis of Acetaminophen, known under the brand name Paracetamol. Using the Beckmann rearrangement, the optimized solvent-free methodology delivered a final product on a scale of several tens of grams. In comparison to current production solvent-based process, the proposed process achieves a higher yield while also allowing the removal of solvents in the chemical reaction, hereby reducing one of the extensive drivers to waste generation. The mechanochemical approach was compared to solvent-based process using a combination of green metrics and EcoScale score. The mechanochemical synthesis of paracetamol scores the highest for all the metrics over currently used solution-based processes.
Collapse
Affiliation(s)
- Romain Geib
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| | | | - Ludovic Gremaud
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| |
Collapse
|
8
|
Zhang Z, Sun H, Zhang M, Song S, Peng M, Dai W, Wang Y, Yu F. Switchable Skeletal Rearrangement of Hexahydro-4 H-indol-4-ones: Divergent Synthesis of Dihydroxy-4 H-cyclopenta[ b]pyridin-4-ones and 8-Alkenyl Oxepane-2,6-diones. Org Lett 2024; 26:4205-4211. [PMID: 38743606 DOI: 10.1021/acs.orglett.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unprecedented base-controlled selective skeletal rearrangement reaction of hexahydro-4H-indol-4-ones has been developed. In this protocol, highly functionalized dihydroxy-4H-cyclopenta[b]pyridin-4-ones and 8-alkenyl oxepane-2,6-diones were prepared with a broad substrate scope and high chemoselectivity in moderate to excellent yields selectively by modulating LiOH and Et3N. In addition, the newly formed 8-alkenyl oxepane-2,6-dione scaffolds could be easily further derivatized to 5-(pyrrol-2-yl)dihydrofuran-2(3H)-ones through a rare intramolecular rearrangement reaction.
Collapse
Affiliation(s)
- Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| |
Collapse
|
9
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Lupa-Myszkowska M, Oszajca M, Matoga D. From non-conductive MOF to proton-conducting metal-HOFs: a new class of reversible transformations induced by solvent-free mechanochemistry. Chem Sci 2023; 14:14176-14181. [PMID: 38098718 PMCID: PMC10718065 DOI: 10.1039/d3sc04401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Proton-conducting materials play an important role as solid electrolytes in electrochemical devices for energy storage and conversion, including proton exchange membrane fuel cells. Metal-organic frameworks (MOFs), covalent-organic frameworks (COFs) and more recently hydrogen-bonded organic frameworks (HOFs) have emerged as useful crystalline platforms for proton transport that provide high conductivity and enable insight into conduction pathways. Here, we present two new HOFs with high conductivity, reaching 2 × 10-2 S cm-1 at 60 °C and 75% relative humidity, obtained in reactions that represent a new class of reversible transformations of solids. The reactions are induced by solvent-free mechanochemistry and involve breaking of coordination linkages in a MOF and formation of extended hydrogen-bonded networks of metal-HOFs (MHOFs). This unprecedented class of MOF-to-MHOF transformations has been demonstrated using a non-conductive MOF (JUK-1) and formamidinium or methylammonium thiocyanates as solid reactants. Structural details of the solid-state reactions are revealed by powder X-ray diffraction and Rietveld refinements for the MHOF products. None of the attempts using conventional methods were successful in obtaining the MHOFs, emphasizing a unique role of mechanochemical stimuli in the reactivity of supramolecular polymer solids, including crystalline MOFs and HOFs. The reversible nature of non-covalent interactions in such materials may be utilized for the development of healable polymer systems.
Collapse
Affiliation(s)
- Magdalena Lupa-Myszkowska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University ul. prof. S. Łojasiewicza 11 30-348 Kraków Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
11
|
Pan S, Mulks FF, Wu P, Rissanen K, Bolm C. Mechanochemical Iron-Catalyzed Nitrene Transfer Reactions: Direct Synthesis of N-Acyl Sulfonimidamides from Sulfinamides and Dioxazolones. Angew Chem Int Ed Engl 2023:e202316702. [PMID: 38055189 DOI: 10.1002/anie.202316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A mechanochemical synthesis of sulfonimidamides by iron(II)-catalyzed exogenous ligand-free N-acyl nitrene transfer to sulfinamides is reported. The one-step method tolerates a wide range of sulfinamides with various substituents under solvent-free ambient conditions. Compared to its solution-phase counterpart, this mechanochemical approach shows better conversion and chemoselectivity. Mechanistic investigations by ESI-MS revealed the generation of crucial nitrene iron intermediates.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
12
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
13
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
14
|
Reynes JF, Isoni V, García F. Tinkering with Mechanochemical Tools for Scale Up. Angew Chem Int Ed Engl 2023; 62:e202300819. [PMID: 37114517 DOI: 10.1002/anie.202300819] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Mechanochemistry provides an environmentally benign platform to develop more sustainable chemical processes by limiting raw materials, energy use, and waste generation while using physically smaller equipment. A continuously growing research community has steadily showcased examples of beneficial mechanochemistry applications at both the laboratory and the preparative scale. In contrast to solution-based chemistry, mechanochemical processes have not yet been standardized, and thus scaling up is still a nascent discipline. The purpose of this Minireview is to highlight similarities, differences and challenges of the various approaches that have been successfully applied for a range of chemical applications at various scales. We hope to provide a discussion starting point for those interested in further developing mechanochemical processes for commercial use and/or industrialisation.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Valerio Isoni
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
15
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
16
|
Wada Y, Tsuchihashi K, Kanzaki M, Hamura T. Solid-State Generation of Diarylisonaphthofuran and Its Mechanochemical Diels-Alder Reaction with Epoxynaphthalene. Chemistry 2023:e202302660. [PMID: 37779416 DOI: 10.1002/chem.202302660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
A solid-state method was developed for generating diarylisonaphthofurans from 1,3-diaryl-1,3-dihydronaphthofuranols. The generated reactive molecules were stable in the solid state and could be stored without any extra precautions. X-ray diffraction analysis revealed a typical quinoidal structure. Furthermore, the mechanochemical Diels-Alder reaction of 1,3-diarylisonaphthofurans with epoxynaphthalenes afforded synthetically attractive diepoxypentacenes.
Collapse
Affiliation(s)
- Yoshifumi Wada
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Keidai Tsuchihashi
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Masayoshi Kanzaki
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Toshiyuki Hamura
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
17
|
Hu C, van Bonn P, Demco DE, Bolm C, Pich A. Mechanochemical Synthesis of Stimuli Responsive Microgels. Angew Chem Int Ed Engl 2023; 62:e202305783. [PMID: 37177824 DOI: 10.1002/anie.202305783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Mechanochemical approaches are widely used for the efficient, solvent-free synthesis of organic molecules, however their applicability to the synthesis of functional polymers has remained underexplored. Herein, we demonstrate for the first time that mechanochemically triggered free-radical polymerization allows solvent- and initiator-free syntheses of structurally and morphologically well-defined complex functional macromolecular architectures, namely stimuliresponsive microgels. The developed mechanochemical polymerization approach is applicable to a variety of monomers and allows synthesizing microgels with tunable chemical structure, variable size, controlled number of crosslinks and reactive functional end-groups.
Collapse
Affiliation(s)
- Chaolei Hu
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dan E Demco
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
18
|
Deák A, Szabó PT, Bednaříková V, Cihlář J, Demeter A, Remešová M, Colacino E, Čelko L. The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au 10-12(SG) 10-12 nanoclusters for application in cancer radiotheraphy. Front Chem 2023; 11:1178225. [PMID: 37342159 PMCID: PMC10277803 DOI: 10.3389/fchem.2023.1178225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023] Open
Abstract
There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
Collapse
Affiliation(s)
- Andrea Deák
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pál T. Szabó
- Centre for Structure Study, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vendula Bednaříková
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jaroslav Cihlář
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Attila Demeter
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Michaela Remešová
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Čelko
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
19
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
20
|
Priestley I, Battilocchio C, Iosub AV, Barreteau F, Bluck GW, Ling KB, Ingram K, Ciaccia M, Leitch JA, Browne DL. Safety Considerations and Proposed Workflow for Laboratory-Scale Chemical Synthesis by Ball Milling. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ian Priestley
- Huddersfield Manufacturing Centre, Syngenta Ltd, Huddersfield HD2 1FF, United Kingdom
| | | | - Andrei V. Iosub
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Gavin W. Bluck
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Kenneth B. Ling
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Katharine Ingram
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Maria Ciaccia
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, United Kingdom
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, United Kingdom
| |
Collapse
|
21
|
Baier DM, Rensch T, Bergheim K, Pietryga V, Grätz S, Borchardt L. The Mechanochemical Fries Rearrangement: Manipulating Isomer Ratios in the Synthesis of p-Hydroxyacetophenone at Different Scales. Chemistry 2023; 29:e202203931. [PMID: 36683470 DOI: 10.1002/chem.202203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Herein, the first mechanochemical Fries rearrangement for the industrially important synthesis of para-hydroxyacetophenone, inside a ball mill and a twin-screw extruder, is presented. Our approach leads to a yield of 62 % in as little as 90 minutes while liquid-assisted grinding can shift the isomer ratio resulting in an excess of the desired para-product. The multigram scale-up by extrusion leads to 61 % yield in only three minutes while completely avoiding solvents. The extrusion temperature can even further be reduced by combining extrusion with a subsequent ageing step.
Collapse
Affiliation(s)
- Daniel M Baier
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Tilo Rensch
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Konrad Bergheim
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Viktoria Pietryga
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
22
|
Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023; 28:molecules28020807. [PMID: 36677865 PMCID: PMC9860570 DOI: 10.3390/molecules28020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.
Collapse
|
23
|
Amer MM, Hommelsheim R, Schumacher C, Kong D, Bolm C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss 2023; 241:79-90. [PMID: 36128995 DOI: 10.1039/d2fd00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electro-mechanochemical protocol for the synthesis of vinylic sulfoximines has been developed. Utilising mechanochemically strained BaTiO3 nanoparticles, the catalytic active system is generated in situ by the reduction of copper(II) chloride. Various combinations of electron-donating and -withdrawing groups are tolerated, and the approach leads to products with difunctionalised double bonds in good to excellent yields. Attempts to add a sulfoximidoyl chloride to an alkyne proved difficult. Additions of a sulfonyl iodide to allenes and alkynes proceeded smoothly in the presence of silica gel without the need for activation by a piezoelectric material.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany. .,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
24
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
25
|
Sharma N, Sharma H, Kumar M, Grishina M, Pandit U, Poonam, Rathi B. Solvent-free mechanochemical grinding facilitates clean synthesis of N-substituted amines. Org Biomol Chem 2022; 20:6673-6679. [PMID: 35947022 DOI: 10.1039/d2ob01148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have optimized a highly efficient and neat mechanochemical grinding procedure for the facile synthesis of N-substituted amines using easily available substituted halides and amines. The developed protocol is applicable for gram scale synthesis as well. Advantageous features of this strategy include mild and neat reaction conditions, a short reaction time at room temperature and isolation of products without column chromatography in excellent yields.
Collapse
Affiliation(s)
- Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Himanshi Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Manoj Kumar
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Maria Grishina
- South Ural State University, Laboratory of Computational Modelling of Drugs, Pr. Lenina, 76 454080, Russia
| | - Unnat Pandit
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi-110007, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
26
|
Zhao Y, Chen M, Zhang Q, Yuan W, Wu Y. Ion exchange to immobilize Cd(II) at neutral pH into silicate matrix prepared by co-grinding kaolinite with calcium compounds. CHEMOSPHERE 2022; 301:134677. [PMID: 35472614 DOI: 10.1016/j.chemosphere.2022.134677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A novel silicate-based composite material was simply prepared by co-milling kaolinite and calcium compounds to endow the well studied clay minerals with active calcium for efficient removal of heavy metals. Batch experiments were carried out to investigate the main affecting factors such as raw material ratio, ball milling time, contact time, etc.. Even at a neutral solution pH, the silicate adsorbent exhibited excellent performance for the adsorption of Cd(II), reaching equilibrium in 30 min with a removal efficiency over 95%, and allowed a direct discharge of the treated solution without the need of acidic neutralization as usually used in the alkaline precipitation. A set of analytical methods including SEM/EDS and 29Si MAS NMR etc. were used to analyze the adsorption mechanism of Cd(II), revealing that the adsorption process was mainly dominated by ion exchange to accommodate Cd ions inside silicate matrix, accompanied with partial hydroxide precipitation, rather than normally reported surface adsorption on pristine minerals. Furthermore, the as-prepared adsorption material exhibited similar excellent immobilization capacity for multiple heavy metals including Cu(II), Zn(II), Ni(II), Cd(II) and Mn(II). These findings provide a novel concept for the activation of the widely available cheap silicate minerals by the same widely available cheap calcium compounds and high contribution may be expected on its potentials to the environmental purification of heavy metal pollution in water and soil.
Collapse
Affiliation(s)
- Yue Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Yan Wu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Research Center on Levee Safety and Disaster Prevention of Ministry of Water Resources, Yellow River Conservancy Commission, Zhengzhou, 450003, China.
| |
Collapse
|
27
|
Chemoselective Chan-Lam coupling by directly using copper powders via mechanochemical metal activation for catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
29
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
30
|
Terhorst S, Jansen T, Langletz T, Bolm C. Sulfonimidamides by Sequential Mechanochemical Chlorinations and Aminations of Sulfinamides. Org Lett 2022; 24:4109-4113. [PMID: 35658444 DOI: 10.1021/acs.orglett.2c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report the first mechanochemical synthesis of sulfonimidamides. The one-pot, two-step method requires neither a solvent nor inert conditions. In a mixer mill, sulfinamides are rapidly converted to sulfonimidoyl chlorides by oxidative chlorination with N-chlorosuccinimide (NCS). Subsequent substitutions with amines provides a wide range of diversely substituted sulfonimidamides.
Collapse
Affiliation(s)
- Steven Terhorst
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Jansen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Langletz
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
31
|
Liu Y, Liu FZ, Yan K. Mechanochemical Access to a Short-Lived Cyclic Dimer Pd 2 L 2 : An Elusive Kinetic Species En Route to Molecular Triangle Pd 3 L 3 and Molecular Square Pd 4 L 4. Angew Chem Int Ed Engl 2022; 61:e202116980. [PMID: 35191567 DOI: 10.1002/anie.202116980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Pd-based molecular square Pd4 L4 and triangle Pd3 L3 represent the molecular ancestors of metal-coordination polyhedra that have been an integral part of the field for the last 30 years. Conventional solution-based reactions between cis-protected Pd ions and 2,2'-bipyridine exclusively give Pd4 L4 and/or Pd3 L3 as the sole products. We herein show that, under solvent-free mechanochemical conditions, the self-assembly energy landscape can be thermodynamically manipulated to form an elusive cyclic dimer Pd2 L2 for the first time. In the absence of solvent, Pd2 L2 is indefinitely stable in the solid-state, but converts rapidly to its thermodynamic products Pd3 L3 and Pd4 L4 in solution, confirming Pd2 L2 as a short-lived kinetic species in the solution-based self-assembly process. Our results highlight how mechanochemistry grants access to a vastly different chemical space than available under conventional solution conditions. This provides a unique opportunity to isolate elusive species in self-assembly processes that are too reactive to both "see" and "capture".
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
32
|
Liu Y, Liu F, Yan K. Mechanochemical Access to a Short‐Lived Cyclic Dimer Pd
2
L
2
: An Elusive Kinetic Species En Route to Molecular Triangle Pd
3
L
3
and Molecular Square Pd
4
L
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| |
Collapse
|
33
|
Puccetti F, Lukin S, Užarević K, Colacino E, Halasz I, Bolm C, Hernández JG. Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine. Chemistry 2022; 28:e202104409. [PMID: 35041251 PMCID: PMC9304275 DOI: 10.1002/chem.202104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/20/2023]
Abstract
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.
Collapse
Affiliation(s)
- Francesco Puccetti
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Stipe Lukin
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Krunoslav Užarević
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | | | - Ivan Halasz
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - José G. Hernández
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| |
Collapse
|
34
|
Hwang S, Grätz S, Borchardt L. A guide to direct mechanocatalysis. Chem Commun (Camb) 2022; 58:1661-1671. [PMID: 35023515 PMCID: PMC8812528 DOI: 10.1039/d1cc05697b] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Direct mechanocatalysis (DM) describes solvent-free catalytic reactions that are initiated by mechanical forces in mechanochemical reactors such as ball mills. The distinctive feature of DM is that the milling materials, e.g. the milling balls themselves are the catalyst of the reaction. In this article we follow the historical evolution of this novel concept and give a guide to this emerging, powerful synthesis tool. Within this perspective we seek to highlight the impact of the relevant milling parameters, the nature of the catalyst and potential additives, the scope of reactions that are currently accessible by this method, and the thus far raised hypotheses on the underlying mechanisms of direct mechanochemical transformations.
Collapse
Affiliation(s)
- Suhmi Hwang
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Sven Grätz
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Lars Borchardt
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
35
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
36
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
37
|
Thomas Passia M, Schöbel JH, Julian Lentelink N, Truong KN, Rissanen K, Bolm C. Synthesis of trifluoromethyl-substituted 1,2,6-thiadiazine 1-oxides from sulfonimidamides under mechanochemical conditions. Org Biomol Chem 2021; 19:9470-9475. [PMID: 34708226 DOI: 10.1039/d1ob01912k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TBS-protected or NH-sulfonimidamides react with β-alkoxyvinyl trifluoromethylketones under solvent-free mechanochemical conditions to give 3-trifluoromethyl-substituted three-dimensional 1,2,6-thiadiazine 1-oxides. C4-Functionalized products can be obtained by starting from cyclic enones and brominations of the initially formed heterocycles. The stability of the products was investigated by varying the pH value and storage under aerobic conditions.
Collapse
Affiliation(s)
- Marco Thomas Passia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Jan-Hendrik Schöbel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Niklas Julian Lentelink
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
38
|
Tsuzuki T. Mechanochemical synthesis of metal oxide nanoparticles. Commun Chem 2021; 4:143. [PMID: 36697599 PMCID: PMC9814100 DOI: 10.1038/s42004-021-00582-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
In the last decades, mechanochemical processing has emerged as a sustainable method for the large-scale production of a variety of nanomaterials. In particular, mechanochemical synthesis can afford well-dispersed metal-oxide nanoparticles, which are used in wide-ranging applications including energy storage and conversion, environmental monitoring, or biomedical uses. This article reviews recent progress in the mechanochemical synthesis of metal-oxide nanoparticles, explores reaction mechanisms, and contrasts the influence of chosen process parameters on the properties of end products. The role of choice of reaction pathway, as well as advantages and limitations compared to other synthesis methods are discussed. A prospect for future development of this synthetic method is proposed.
Collapse
Affiliation(s)
- Takuya Tsuzuki
- grid.1001.00000 0001 2180 7477School of Engineering, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|