1
|
Sethi S, Jana NC, Panda S, Maharana SK, Bagh B. Copper(i)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β-d-glucopyranosyltriazoles. RSC Adv 2023; 13:10424-10432. [PMID: 37020881 PMCID: PMC10069229 DOI: 10.1039/d3ra01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In the last two decades, click chemistry has progressed as a powerful tool in joining two different molecular units to generate fascinating structures with a widespread application in various branch of sciences. copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, also known as click chemistry, has been extensively utilized as a versatile strategy for the rapid and selective formation of 1,4-disubstituted 1,2,3-triazoles. The successful use of CuAAC reaction for the preparation of biologically active triazole-attached carbohydrate-containing molecular architectures is an emerging area of glycoscience. In this regard, a well-defined copper(i)-iodide complex (1) with a tridentate NNO ligand (L1) was synthesized and effectively utilized as an active catalyst. Instead of using potentially hazardous reaction media such as DCM or toluene, the use of deep eutectic solvent (DES), an emerging class of green solvent, is advantageous for the syntheses of triazole-glycohybrids. The present work shows, for the first time, the successful use of DES as a reaction medium to click various glycosides and terminal alkynes in the presence of sodium azide. Various 1,4-disubstituted 1,2,3-glucopyranosyltriazoles were synthesized and the pure products were isolated by using a very simple work-up process (filtration). The reaction media was recovered and recycled in five consecutive runs. The presented catalytic protocol generated very minimum waste as reflected by a low E-factor (2.21-3.12). Finally, the optimized reaction conditions were evaluated with the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| |
Collapse
|
2
|
Agrahari AK, Kumar S, Pandey MD, Rajkhowa S, Jaiswal MK, Tiwari VK. Click Chemistry ‐ Inspired Synthesis of Porphyrin Hybrid Glycodendrimers as Fluorescent Sensor for Cu(II) Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
- Department of Chemistry University of California-Davis Davis CA 95616 U.S.A
| | - Sunil Kumar
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Mrituanjay D. Pandey
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Sanchayita Rajkhowa
- Department of Chemistry The Assam Royal Global University Guwahati Assam 781035 INDIA
| | - Manoj K. Jaiswal
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Vinod K. Tiwari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| |
Collapse
|
3
|
Efficient Synthesis of Azido Sugars Using Fluorosulfuryl Azide Diazotransfer Reagent. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Pandey N, Jyoti, Singh M, Dwivedi P, Sahoo SC, Mishra BB. Click chemistry inspired synthesis of andrographolide triazolyl conjugates for effective fluorescent sensing of ferric ions. Nat Prod Res 2021; 36:5438-5448. [PMID: 34905436 DOI: 10.1080/14786419.2021.2013837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The naturally occurring compound andrographolide 1 was used as a substrate for the synthesis of a novel terminal alkyne 3 which on copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction with azides 4a-l, 7 and 9 furnished a series of regioselective andrographolide triazolyl conjugates 5a-l, 8 and 10, respectively. A free glycoconjugate 6 was also prepared by selective deprotection of compound 5i in good yield. All the compounds were characterized by absorbance, FT-IR, NMR, and HR-MS analyses. The triazolyl conjugate 8 was further investigated as a probe for selective detection of Fe3+ ion in matrix. The mode of attachment of Fe3+ ion to the compound 8 was established by absorbance, fluorescence, infrared (IR), and nuclear magnetic resonance (NMR) spectroscopy, and high resolution mass-spectrometry (HR-MS). The logic gate circuits were constructed for the probe 8 and ethylenediaminetetraacetic acid (EDTA). The environmental perspective of probe 8 was investigated in real water samples.
Collapse
Affiliation(s)
- Nishant Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India.,Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, India
| | - Jyoti
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India.,Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, India
| | - Mangat Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India.,Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, India
| | - Pratibha Dwivedi
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, India
| | - Bhuwan B Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India
| |
Collapse
|
5
|
Agrahari AK, Jaiswal MK, Yadav MS, Tiwari VK. CuAAC mediated synthesis of cyclen cored glycodendrimers of high sugar tethers at low generation. Carbohydr Res 2021; 508:108403. [PMID: 34329845 DOI: 10.1016/j.carres.2021.108403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Glycodendrimers are receiving considerable attention to mimic a number of imperative features of cell surface glycoconjugate and acquired excellent relevance to a wide domain of investigations including medicine, pharmaceutics, catalysis, nanotechnology, carbohydrate-protein interaction, and moreover in drug delivery systems. Toward this end, an expeditious, modular, and regioselective triazole-forming CuAAC click approach along with double stage convergent synthetic method was chosen to develop a variety of novel chlorine-containing cyclen cored glycodendrimers of high sugar tethers at low generation of promising therapeutic potential. We developed a novel chlorine-containing hypercore unit with 12 alkynyl functionality originated from cyclen scaffold which was confirmed by its single crystal X-ray data analysis. Further, the modular CuAAC technique was utilized to produce a variety of novel 12-sugar coated (G0) glycodendrimers 12-15 adorn with β-Glc-, β-Man-, β-Gal-, β-Lac, along with 36-galactose coated (G1) glycodendrimer 18 in good-to-high yield. The structures of the developed glycodendrimer architectures have been well elucidated by extensive spectral analysis including NMR (1H & 13CNMR), HRMS, MALDI-TOF MS, UV-Vis, IR, and SEC (Size Exclusion Chromatogram) data.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Tiwari VK. Development of Diverse Range of Biologically Relevant Carbohydrate-Containing Molecules: Twenty Years of Our Journey*. CHEM REC 2021; 21:3029-3048. [PMID: 34047444 DOI: 10.1002/tcr.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Indexed: 11/12/2022]
Abstract
There is an increasing demand for significant amount of carbohydrate-containing molecules owing to their complete chemical, biological, and pharmacological investigations to better understand their role in many important biological events. Clinical studies of a wide range of simple carbohydrates or their derivatives, glycohybrids, glycoconjugates, and neoglycoconjugates have been conducted worldwide for the successful treatment of various frontline diseases. Herein, a brief perspective of carbohydrate-based molecular scaffolding and my experience during the last 20 years in the area of synthetic carbohydrate chemistry, mainly for their impact in drug discovery & development, is presented.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P.-221005, India
| |
Collapse
|
8
|
Mali M, Jayaram V, Sharma GVM, Ghosh S, Berrée F, Dorcet V, Carboni B. Copper-Mediated Synthesis of ( E)-1-Azido and ( Z)-1,2-Diazido Alkenes from 1-Alkene-1,2-diboronic Esters: An Approach to Mono- and 1,2-Di-(1,2,3-Triazolyl)-Alkenes and Fused Bis-(1,2,3-Triazolo)-Pyrazines. J Org Chem 2020; 85:15104-15115. [PMID: 33151061 DOI: 10.1021/acs.joc.0c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereoselective and convenient route has been demonstrated to access (Z)-1,2-diazido alkenes from the corresponding 1,2-diboronic esters via a copper-mediated reaction with sodium azide. Alternately, mono-functionalization was regioselectively carried out with trimethylsilyl azide as an azidation reactant. The in situ conversion of bis-azides to the corresponding bis-triazoles can be readily achieved in the presence of copper sulfate and sodium ascorbate, while the modification of the catalytic system opened a new convenient route to bis-triazolo-pyrazines, a new class of fused heterocycles.
Collapse
Affiliation(s)
- Maruti Mali
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Vankudoth Jayaram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Gangavaram V M Sharma
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
9
|
Mishra KB, Rajkhowa S, Tiwari VK. An expeditious one-pot synthesis of thiourea derivatives of carbohydrates from sugar azides. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1822997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kunj B. Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology, Jorhat, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Mishra N, Agrahari AK, Bose P, Singh SK, Singh AS, Tiwari VK. Click Inspired Synthesis of Novel Cinchonidine Glycoconjugates as Promising Plasmepsin Inhibitors. Sci Rep 2020; 10:3586. [PMID: 32108142 PMCID: PMC7046651 DOI: 10.1038/s41598-020-59477-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
Among all the malaria parasites, P. falciparum is the most predominant species which has developed drug resistance against most of the commercial anti-malarial drugs. Thus, finding a new molecule for the inhibition of enzymes of P. falciparum is the pharmacological challenge in present era. Herein, ten novel molecules have been designed with an amalgamation of cinchonidine, carbohydrate moiety and triazole ring by utilizing copper-catalyzed click reaction of cinchonidine-derived azide and clickable glycosyl alkynes. The molecular docking of developed molecules showed promising results for plasmepsin inhibition in the form of effective binding with target proteins.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Agrahari AK, Singh AK, Singh AS, Singh M, Maji P, Yadav S, Rajkhowa S, Prakash P, Tiwari VK. Click inspired synthesis of p-tert-butyl calix[4]arene tethered benzotriazolyl dendrimers and their evaluation as anti-bacterial and anti-biofilm agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj02591g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CuAAC inspired calix-[4]arene tethered benzotriazolyl dendrimers were developed and investigated for their therapeutic potential, where 7 displayed potent anti-bacterial and anti-biofilm activities against drug-resistant & slime producing organisms.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Ashish K. Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Mala Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Pathik Maji
- Department of Chemistry
- Guru Ghasidas University
- Bilaspur-495009
- India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Sanchayita Rajkhowa
- Department of Chemistry
- Jorhat Institute of Science and Technology
- Jorhat-785010
- India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|
12
|
Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. Synthesis of Benz-Fused Azoles via C-Heteroatom Coupling Reactions Catalyzed by Cu(I) in the Presence of Glycosyltriazole Ligands. ACS COMBINATORIAL SCIENCE 2019; 21:389-399. [PMID: 30943366 DOI: 10.1021/acscombsci.9b00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyl triazoles are conveniently accessible and contain multiple metal-binding units that may assist in metal-mediated catalysis. Azide derivatives of d-glucose have been converted to their respective aryltriazoles and screened as ligands for the synthesis of 2-substituted benz-fused azoles and benzimidazoquinazolinones by Cu-catalyzed intramolecular Ullmann type C-heteroatom coupling. Good to excellent yields for a variety of benz-fused heterocyles were obtained for this readily accessible catalytic system.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anoop S. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anand K. Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sumit K. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
13
|
Mishra KB, Tiwari N, Bose P, Singh R, Rawat AK, Singh SK, Mishra RC, Singh RK, Tiwari VK. Design, Synthesis and Pharmacological Evaluation of Noscapine Glycoconjugates. ChemistrySelect 2019. [DOI: 10.1002/slct.201803588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kunj B Mishra
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Neeraj Tiwari
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Priyanka Bose
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Rajan Singh
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Arun K Rawat
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Sumit K. Singh
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Ram C. Mishra
- College of PharmacyUniversity of Georgia, Athens GA 30602 USA
| | - Rakesh K Singh
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Vinod K. Tiwari
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| |
Collapse
|
14
|
Chiminazzo A, Borsato G, Favero A, Fabbro C, McKenna CE, Dalle Carbonare LG, Valenti MT, Fabris F, Scarso A. Diketopyrrolopyrrole Bis‐Phosphonate Conjugate: A New Fluorescent Probe for In Vitro Bone Imaging. Chemistry 2019; 25:3617-3626. [PMID: 30600841 DOI: 10.1002/chem.201805436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Giuseppe Borsato
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Alessia Favero
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità AmbientaleUniversità di Parma Italy
| | - Chiara Fabbro
- Department of ChemistryImperial College London Wood Lane London W12 0BZ UK
| | - Charles E. McKenna
- Department of ChemistryUniversity of Southern California Los Angeles California 90089 USA
| | | | | | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari di Venezia via Torino 155 30172 Mestre (VE) Italy
| |
Collapse
|
15
|
Singh M, Singh AS, Mishra N, Agrahari AK, Tiwari VK. Benzotriazole as an Efficient Ligand in Cu-Catalyzed Glaser Reaction. ACS OMEGA 2019; 4:2418-2424. [PMID: 31459480 PMCID: PMC6648008 DOI: 10.1021/acsomega.8b03410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole has been established as an efficient ligand in Cu-catalyzed cross-coupling of terminal alkynes to form 1,3-dialkynes using CuI as the catalyst and K2CO3 as the base at room temperature in an open round-bottom flask. The established protocol has the following notable advantages: simple to handle, easy work-up, mild reaction condition, high substrate scope, requirement of less quantity of ligand and also Cu-catalyst, less expensive, and high reaction yield.
Collapse
Affiliation(s)
- Mala Singh
- Department of Chemistry, Institute
of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anoop S. Singh
- Department of Chemistry, Institute
of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Nidhi Mishra
- Department of Chemistry, Institute
of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anand K. Agrahari
- Department of Chemistry, Institute
of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute
of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
16
|
Kumari K, Singh AS, Manar KK, Yadav CL, Tiwari VK, Drew MGB, Singh N. Catalytic activity of new heteroleptic [Cu(PPh3)2(β-oxodithioester)] complexes: click derived triazolyl glycoconjugates. NEW J CHEM 2019. [DOI: 10.1039/c8nj05075a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly efficient and reusable precatalysts of Cu(i) β-oxodithioester PPh3 complexes for the synthesis of triazolyl glycoconjugates under “click” conditions.
Collapse
Affiliation(s)
- Kavita Kumari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Krishna K. Manar
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Chote Lal Yadav
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Michael G. B. Drew
- Department of Chemistry
- University of Reading
- Whiteknights
- Reading RG6 6AD
- UK
| | - Nanhai Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
17
|
Agrahari AK, Singh AS, Singh AK, Mishra N, Singh M, Prakash P, Tiwari VK. Click inspired synthesis of hexa and octadecavalent peripheral galactosylated glycodendrimers and their possible therapeutic applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj02564b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click inspired glycodendrimers comprising a rigid hexapropargyloxy benzene core with peripheral β-d-galactopyranosidic units were developed and evaluated for their therapeutic potential.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ashish Kumar Singh
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Nidhi Mishra
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Mala Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Pradyot Prakash
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
18
|
A Straightforward Sequential Approach for the Enantioselective Synthesis of Optically Active α-Arylmethanol-1,2,3-Triazoles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Mishra A, Tiwari VK. Synthesis of Novel Bis-Triazolyl Glycoconjugates via Dual Click Reaction for the Selective Recognition of Cu(II) Ions. ChemistrySelect 2017. [DOI: 10.1002/slct.201702033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Amrita Mishra
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| |
Collapse
|
20
|
Mishra KB, Agrahari AK, Tiwari VK. One-pot synthesis of oxazolidine-2-thione and thiozolidine-2-thione from sugar azido-alcohols. Carbohydr Res 2017; 450:1-9. [DOI: 10.1016/j.carres.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022]
|
21
|
Kushwaha D, Tiwari VK. Click Inspired Synthesis of 1,2,3-Triazole-linked 1,3,4-Oxadiazole Glycoconjugates. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Divya Kushwaha
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
22
|
Yang C, He X, Zhang L, Han G, Zuo Y, Shang Y. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C–H Activation and Esterification. J Org Chem 2017; 82:2081-2088. [DOI: 10.1021/acs.joc.6b02906] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cheng Yang
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Xinwei He
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Lanlan Zhang
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Guang Han
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Youpeng Zuo
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based
Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
23
|
Chennaiah A, Bhowmick S, Vankar YD. Conversion of glycals into vicinal-1,2-diazides and 1,2-(or 2,1)-azidoacetates using hypervalent iodine reagents and Me3SiN3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv 2017. [DOI: 10.1039/c7ra08637g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycals react with PIFA (or PIDA)–TMSN3in presence of TMSOTf to form sugar derived 1,2-diazides and vicinal azidoacetates. Synthesis of 2-azido-N-glycopeptides, pseudotrisaccharides, and a piperidine triol derivative is reported.
Collapse
Affiliation(s)
- Ande Chennaiah
- Department of Chemistry
- Indian Institute of Technology
- Kanpur – 208016
- India
| | - Srijita Bhowmick
- Department of Chemistry
- Indian Institute of Technology
- Kanpur – 208016
- India
| | - Yashwant D. Vankar
- Department of Chemistry
- Indian Institute of Technology
- Kanpur – 208016
- India
| |
Collapse
|
24
|
Sareen N, Singh AS, Tiwari VK, Kant R, Bhattacharya S. A dinuclear copper(i) thiodiacetate complex as an efficient and reusable ‘click’ catalyst for the synthesis of glycoconjugates. Dalton Trans 2017; 46:12705-12710. [DOI: 10.1039/c7dt02346d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu(i) complex as an efficient and reusable homogeneous “click” catalyst.
Collapse
Affiliation(s)
- Neha Sareen
- Department of Chemistry
- Institute of Science
- Banaras Hindu University-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University-221005
- India
| | - Rajni Kant
- Department of Physics
- University of Jammu
- Jammu Tawi-180006
- India
| | | |
Collapse
|
25
|
He X, Zhou Y, Shang Y, Yang C, Zuo Y. Synthesis of 2-Arylimino-6,7-dihydrobenzo[ d][1,3]oxathiol-4(5 H)-ones via Rh 2(OAc) 4-Catalyzed Reactions of Cyclic 2-Diazo-1,3-diketones with Aryl Isothiocyanates. ACS OMEGA 2016; 1:1277-1283. [PMID: 31457195 PMCID: PMC6640800 DOI: 10.1021/acsomega.6b00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 06/10/2023]
Abstract
A convenient and efficient synthesis of 2-arylimino-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-ones was developed via a Rh2(OAc)4-catalyzed reaction of cyclic 2-diazo-1,3-diketones and aryl isothiocyanates in acetone at 60 °C. This reaction uses readily available stable cyclic 2-diazo-1,3-diketones as a starting material and generates the desired products in good to excellent yields (78-93%). The reaction proceeds under mild reaction conditions, produces only N2 as the byproduct, and features a broad substrate scope. A plausible mechanism for this reaction is also discussed.
Collapse
|
26
|
Mishra KB, Tiwari VK. One-Pot Facile Synthesis of 1,5-Disubstituted Triazolyl Glycoconjugates from Nitrostyrenes. ChemistrySelect 2016. [DOI: 10.1002/slct.201600994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kunj B. Mishra
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi- 221005 India
| |
Collapse
|
27
|
|
28
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
29
|
Singh AS, Kumar D, Mishra N, Tiwari VK. An efficient one-pot synthesis of N,N′-disubstituted ureas and carbamates from N-acylbenzotriazoles. RSC Adv 2016. [DOI: 10.1039/c6ra14131e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile one-pot synthesis of carbamates and N,Nʹ-disubstituted symmetrical ureas from N-acylbenzotriazoles has been devised. It is believed that, the intermediate acyl-azide undergo Curtius rearrangement.
Collapse
Affiliation(s)
- Anoop S. Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | | | - Nidhi Mishra
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|
30
|
Mishra KB, Mishra RC, Tiwari VK. First noscapine glycoconjugates inspired by click chemistry. RSC Adv 2015. [DOI: 10.1039/c5ra07321a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first click chemistry-inspired noscapine glycoconjugates have been developed in good to excellent yields to increase the therapeutic efficacy of noscapine.
Collapse
Affiliation(s)
- Kunj B. Mishra
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
| | | | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|