1
|
Dim CA, Sorrells C, Hernandez-Castillo AO, Crabtree KN. K a-Band Rotational Spectroscopy of Succinimide and N-Chlorosuccinimide. J Phys Chem A 2024; 128:9754-9762. [PMID: 39482816 DOI: 10.1021/acs.jpca.4c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Succinimide and its derivatives are cyclic five-membered rings that appear in a variety of natural products and are widely used in organic synthesis. From a structural standpoint, succinimide contains an NH group in the ring which interacts with two adjacent carbonyl groups, pushing the ring structure toward planarity at the expense of increasing ring strain and eclipsing interactions among the out-of-plane hydrogen atoms in the two CH2 groups. Previous quantum chemical calculations at different levels of theory have predicted both a nonplanar C2 structure and a planar C2v structure, the latter of which is the most consistent with gas-phase electron diffraction measurements. Here, we report the pure rotational spectra of succinimide and N-chlorosuccinimide in the 26.5-40.0 GHz range using chirped-pulse Fourier transform microwave spectroscopy, supported by coupled cluster and density functional theory quantum chemical calculations. The spectra were fit to Watson's A-reduced effective Hamiltonian, including both 35Cl and 37Cl isotopologues of N-chlorosuccinimide as well as the N and Cl quadrupole hyperfine interactions. On the basis of the agreement with quantum chemical calculations and the measured inertial defects, we find that the rotational spectra are consistent with a planar ring structure, with a maximum out-of-plane angle of ≤5°.
Collapse
Affiliation(s)
- Chisom A Dim
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Caroline Sorrells
- Department of Chemistry, Harvey-Mudd College, Claremont, California 91711, United States
| | | | - Kyle N Crabtree
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Ray S, Gupta N, Singh MS. LiBr-Promoted Reaction of β-Ketodithioesters and Thioamides with Sulfoxonium Ylides to Synthesize Functionalized Thiophenes. Org Lett 2024; 26:9401-9406. [PMID: 39436378 DOI: 10.1021/acs.orglett.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An operationally simple and highly efficient synthesis of functionalized thiophenes has been developed by LiBr promoted heteroannulation of β-ketodithioesters and thioamides with bench-stable sulfoxonium ylides in open air for the first time. This one-pot strategy involves formal Csp3-H bond insertion/intramolecular cyclization cascade, featuring readily accessible starting materials, TM and additive-free condition, broad substrate scope, high functional group compatibility, and scalability. Moreover, the carbonyl, thiomethyl, and amino groups in the resulting thiophene provide a good handle on downstream transformations.
Collapse
Affiliation(s)
- Subhasish Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Gu F, Lin B, Peng Z, Liu S, Wu Y, Luo M, Ding N, Zhan Q, Cao P, Zhou Z, Cao T. Ring Transformation of Cyclopropenes to Benzo-Fused Five-Membered Oxa- and Aza-Heterocycles via a Formal [4+1] Cyclization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407931. [PMID: 39206752 PMCID: PMC11516165 DOI: 10.1002/advs.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.
Collapse
Affiliation(s)
- Fengyan Gu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Zhi‐Huan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Shijie Liu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Yuanqing Wu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Mei Luo
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Ning Ding
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Qichen Zhan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
- Jiangsu Provincial Medicinal Innovation CenterAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsu210028China
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouZhejiang324000China
- Gaoyou Hospital of Traditional Chinese MedicineYangzhouJiangsu225600China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Tao Cao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| |
Collapse
|
4
|
Halaczkiewicz M, Maraj A, Kelm H, Manolikakes G. Brønsted Acid-Catalyzed Diastereoselective Synthesis of Spiroisoindolinones from Enamides. Org Lett 2024; 26:2321-2325. [PMID: 38467018 DOI: 10.1021/acs.orglett.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A highly diastereoselective synthesis of spiroisoindolinones from enamides and 3-hydroxy-isoindolinones is reported. The reaction proceeds rapidly in the presence of p-toluenesulfonic acid as a Brønsted acid catalyst and affords a variety of densely substituted spiroisoindolinones with three contiguous stereogenic centers in high yields (≤98%) and diastereoselectivities (up to dr >98:<2:0:0).
Collapse
Affiliation(s)
- Miro Halaczkiewicz
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Arianit Maraj
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Arzine A, Abchir O, Chalkha M, Chebbac K, Rhazi Y, Barghady N, Yamari I, El Moussaoui A, Nakkabi A, Akhazzane M, Bakhouch M, Chtita S, El Yazidi M. Design, synthesis, In-vitro, In-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput Biol Chem 2024; 108:107993. [PMID: 38071761 DOI: 10.1016/j.compbiolchem.2023.107993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/22/2024]
Abstract
A series of new isoxazolederivatives incorporating the sulfonate ester function has been synthesized from 2-benzylidenebenzofuran-3(2 H)-one, known as aurone. The synthesis of the target compounds was carried out following an efficient methodology that allows access to the desired products in a reproducible way and with good yield. The structures of the synthesized compounds were established using NMR (1H and 13C) spectroscopy and mass spectrometry. A theoretical study was performed to optimize the geometrical structures and to calculate the structural and electronic parameters of the synthesized compounds. The calculations were also carried out to understand the influence and the effect of substitutions on the chemical reactivity of the studied compounds. The synthesized isoxazoles were screened for their antioxidant and antibacterial activities. The findings demonstrate that the studied compounds exhibit good to moderate antibacterial activity against the tested bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli). Moreover, a number of the tested isoxazole derivatives exhibit high effectiveness against DPPH free radicals. Besides that, molecular docking studies were carried out to predict binding affinity and identify the most likely binding interactions between the active molecules and the target microorganisms' proteins. A 100 ns molecular dynamics study was then conducted to examine the dynamic behavior and stability of the highly potent isoxazole 4e in complex with the target bacterial proteins. Finally, the ADMET analyses suggest that all the synthesized isoxazoles have good pharmacokinetic profiles and non-toxicity and non-carcinogenicity in biological systems.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Najoua Barghady
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Mohamed Akhazzane
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, Fez 30000, Morocco
| | - Mohamed Bakhouch
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| |
Collapse
|
6
|
Qiang C, Zhang T, Feng Z, Liu P, Sun P. Direct Amino-α-C-H Heteroarylation of Amides under Electrochemical Conditions. Org Lett 2024. [PMID: 38191300 DOI: 10.1021/acs.orglett.3c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
An electrochemical hydrogen atom transfer (HAT) strategy for the direct amino-α-C-H heteroarylation of amides is described. The cheap TMSN3 acts as a hydrogen atom transfer reagent. A series of heteroarenes including quinoxalin-2(1H)-ones, 4-methylquinoline, isoquinoline, 2-methylquinoxaline, benzothiazole, etc., and various readily available amides/lactams were suitable. The reaction has the characteristics of a wide range of substrates, good regioselectivity, chemical oxidant-free conditions, etc.
Collapse
Affiliation(s)
- Congcong Qiang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Tan Zhang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoyue Feng
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Wang Z, Luo W, Li ZW, Yin K, Wei M, Li L. Synthesis of Bench-stable Polycyclic Organophosphorus Heterocycles via Staudinger-type Annulations of ortho-Azidophenols. Chemistry 2023:e202302834. [PMID: 38141178 DOI: 10.1002/chem.202302834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The formation of a five- or six-membered ring is known to stabilize unstable molecular structures such as hemiacetals. This idea can also be extended to stabilize other high-coordinated p-block element species. Herein, we synthesized two novel polycyclic organophosphorus heterocycles via Staudinger-type annulations. Reactions of either ortho-phosphinoarenesulfonyl fluorides 1 or ortho-phosphinobenzoic acid methyl esters 4 with ortho-azidophenols 2 gave rise to penta-coordinated P(V) heterocycles, benzo-benzo-1,2,3-thiazaphospholo-1,3,2-oxazaphosphole (B-B-TAP-OAP) 3 and benzo-benzo-1,2-azaphospholo-1,3,2-oxazaphosphol-12-one (B-B-AP-OAP) 5 in satisfactory yields. It is remarkable that heterocycles 3 and 5 are both bench-stable and exhibit considerable stability in a 10 % aqueous tetrahydrofuran solution. Preliminary computational studies disclosed that the formation of nitrogen gas is the key driving force for the annulations. In addition, the formation of a strong Si-F bond is another contributor to the annulation of 1 and 2.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Wei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Keshu Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
8
|
Sharma V, Das R, Sharma D, Mujwar S, Mehta DK. Green chemistry approach towards Piperazine: anticancer agents. J Mol Struct 2023; 1292:136089. [DOI: 10.1016/j.molstruc.2023.136089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Al-Ghorbani M, Alharbi O, Al-Odayni AB, Abduh NAY. Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes. Pharmaceuticals (Basel) 2023; 16:1222. [PMID: 37765030 PMCID: PMC10535292 DOI: 10.3390/ph16091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff's bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a-c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a-d and 8a-d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC50 = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC50: 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (-10.9 kcal/mol) and α-amylase (-9.0 kcal/mol) compared to acarbose (-8.6 kcal/mol for α-glycosidase and -6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns).
Collapse
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madinah 41477, Saudi Arabia;
| | - Osama Alharbi
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madinah 41477, Saudi Arabia;
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia;
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Masaeli SE, Teimouri M, Adhikari B, Attarroshan M, Akin JW, Raju S, Stokes SL, Emerson JP. Sodium Trifluoroacetate mediated Copper-Catalyzed aza-Michael addition of α,β-unsaturated olefins with aromatic amines. Tetrahedron Lett 2023; 122:154520. [PMID: 37694227 PMCID: PMC10486139 DOI: 10.1016/j.tetlet.2023.154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present a sodium trifluoroacetate (CF3CO2Na) mediated copper-catalyzed aza-Michael addition of aromatic amines with activated olefins under mild, aqueous reaction conditions. This simplistic protocol employs a copper catalyst (10 mol%) and water as solvent. This transformation occurs precisely with aromatic substituted amines containing both electron-donating (EDG) and electron-withdrawing (EWG) groups. A broad range of substrates were tested under the optimized conditions, which are producing good to moderate yields.
Collapse
Affiliation(s)
- S. Erfan Masaeli
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Mohsen Teimouri
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | | | | | - James W. Akin
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, MS 39762, USA
| |
Collapse
|
11
|
Masdeu C, de Los Santos JM, Palacios F, Alonso C. The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles. Top Curr Chem (Cham) 2023; 381:20. [PMID: 37249641 DOI: 10.1007/s41061-023-00428-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Nitrogen heterocycles are part of the structure of natural products and agents with important biological activity, such as antiviral, antibiotic, and antitumor drugs. For this reason, heterocyclic compounds are one of today's most desirable synthetic targets and the Povarov reaction is a powerful synthetic tool for the construction of highly functionalized heterocyclic systems. This process involves an aromatic amine, a carbonyl compound, and an olefin or acetylene to give rise to the formation of a nitrogen-containing heterocycle. This review illustrates advances in the synthetic aspects of the intramolecular Povarov reaction for the construction of intricate nitrogen-containing polyheterocyclic compounds. This original review presents research done in this field, with references to important works by internationally relevant research groups on this current topic, covering the literature from 1992 to 2022. The intramolecular Povarov reactions are described here according to the key processes involved, using different combinations of aromatic or heteroaromatic amines, and aliphatic, aromatic, or heteroaromatic aldehydes. Some catalytic reactions promoted by transition metals are detailed, as well as the oxidative Povarov reaction and some asymmetric intramolecular Povarov processes.
Collapse
Affiliation(s)
- Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Ogunnupebi TA, Ajani OO, Oduselu GO, Elebiju OF, Adebiyi E. Chemistry and Pharmacological diversity of Benzothiazepine - Excellent pathway to drug discovery. J Mol Struct 2023; 1280:135071. [PMID: 36843650 PMCID: PMC9957176 DOI: 10.1016/j.molstruc.2023.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this era of sporadic advancement in science and technology, a substantial amount of intervention is being set in motion to reduce health-related diseases. Discoveries from researchers have pinpointed the usefulness of heterocyclic compounds, amongst which benzothiazepine (BTZ) derivatives have been synthesized for their various pharmacological activities. This also contributes to their undeniable application in therapeutic medicine for the development of efficacious drugs. BTZs are compounds with a benzene ring fused with a thiazepine ring. This work contains several methods that have been used to synthesize 1,3-, 1,4-, 1,5-, and 4-1-benzothiazepine derivatives. In addition, up-to-date information about the crucial pharmacological activities of BTZ derivatives has been reviewed in this present study to appreciate their druggable potential in therapeutic medicine for drug development. Drug design and development have further been simplified with the implementation of computer aided approaches to predict biological interactions which can help in the design of several derivatives. Hence, the structural activity relationship (SAR), ADMET and the molecular docking studies of BTZ derivatives were discussed to further establish their interactions and safety in biological systems. This present work aims to expound on the reported chemistry and pharmacological propensity of BTZ moiety in relation to other relevant moieties to validate their potential as excellent pharmacophores in drug design and development.
Collapse
Affiliation(s)
- Temitope A. Ogunnupebi
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Oluwadunni F. Elebiju
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Computer and Information Science, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Kumar R, Sharma T, Sharma U. Rh(III)-Catalyzed Alkylation of 8-Methylquinolines with Oxabenzonorbornadienes. Org Lett 2023; 25:2627-2631. [PMID: 37023212 DOI: 10.1021/acs.orglett.3c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Herein, a concise Rh(III)-catalyzed C(sp3)-H alkylation of 8-methylquinolines with oxabenzonorbornadiene scaffolds and other strained olefins has been disclosed. The retention of the oxabenzonorbornadiene skeleton, broad substrate scope, and wide-ranging functional group tolerance are the key features of the developed catalytic methodology. Mechanistic studies revealed that the reaction does not involve a radical pathway, and the five-membered rhodacycle is the key intermediate. This is the first report on the C(sp3)-H alkylation of 8-methylquinolines with strained oxabenzonorbornadiene scaffolds (with ring retention).
Collapse
Affiliation(s)
- Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Uppalabat T, Hassa N, Sawektreeratana N, Leowanawat P, Janthakit P, Nalaoh P, Promarak V, Soorukram D, Reutrakul V, Kuhakarn C. Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. J Org Chem 2023; 88:5403-5419. [PMID: 37019432 DOI: 10.1021/acs.joc.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Thikhamporn Uppalabat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Hamadi NB, Guesmi A, Algathami FK, Khezami L, Nouira W, El-Fattah WA. Synthesis and Molecular Docking of New 1,2,3-triazole Carbohydrates with COVID-19 Proteins. Curr Org Synth 2023; 20:238-245. [PMID: 35430994 DOI: 10.2174/1570179419666220414095602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
AIMS We have established this paper to recommend a novel way for the preparation of carbohydrates encompassing a 1,2,3-triazole motif that was prepared using an efficient click chemistry synthesis. BACKGROUND The SARS-CoV-2 coronavirus epidemic continues to spread at a fast rate worldwide. The main protease (Mpro) is useful target for anti-COVID-19 agents. Triazoles are frequently found in many bioactive products, such as coronavirus inhibitors. OBJECTIVE Click reactions are facilitated via the activation of copper nanoparticles, different substrates have been tested using this adopted procedure given in all cases, in high yields and purity. Other interesting comparative docking analyses will be the focus of this article. Calculations of quantitative structure-activity relationships will be studied. METHODS Copper nanoparticles were produced by the reaction of cupric acetate monohydrate with oleylamine and oleic acid. To a solution, 5-(azidomethyl)-2,2,7,7-tetramethyltetrahydro-5Hbis([ 1,3]dioxolo)[4,5-b:4',5'-d]pyran 2 (200 mg, 0.72 mmol, 1 eq.) in toluene (15 mL) was added into a mixture of N-(prop-2-yn-1-yl)benzamide derivatives 1a-d (1.5 eq.) and copper nanoparticles (0.57 mg, 0.036 mmol, 0.05 eq.). RESULTS A novel series of 1,2,3-triazole carbohydrate skeletons were modeled and efficiently synthesized. Based on the observations, virtual screening using molecular docking was performed to identify novel compounds that can bind with the protein structures of COVID-19 (PDB ID: 6LU7 and 6W41). We believed that the 1,2,3-triazole carbohydrate derivatives could aid in COVID-19 drug discovery. CONCLUSION The formations of targeted triazoles were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analyses). The docking scores of the newly synthesized triazole are attributed to the presence of hydrogen bonds together with many interactions between the ligands and the active amino acid residue of the receptor. The comparison of the interactions of the drugs, remdesivir and triazole, in the largest pocket of 6W41 and 6LU7 is also presented.
Collapse
Affiliation(s)
- Naoufel Ben Hamadi
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, Natural Products and Reactivity (LR11ES39), University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, Natural Products and Reactivity (LR11ES39), University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Textile Engineering Laboratory, Higher Institute of Technological Studies of Ksar Hellal, UM (University of Monastir), Ksar Hellal, Tunisia
| | - Faisal K Algathami
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Lotfi Khezami
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wided Nouira
- Preparatory Institute for Engineering Studies of Kairouan, Nabeul, Tunisia
| | - Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
16
|
Kushwaha N, Sahu A, Mishra J, Soni A, Dorwal D. An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents. Curr Org Synth 2023; 20:838-869. [PMID: 36927421 DOI: 10.2174/1570179420666230316094435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 03/18/2023]
Abstract
Multiple potential drugs have been developed based on the heterocyclic molecules for the treatment of different symptoms. Among the existing heterocyclic molecules, quinazoline and quinazolinone derivatives have been found to exhibit extensive pharmacological and biological characteristics. One significant property of these molecules is their potency as anti-tubercular agents. Thus, both quinazoline and quinazolinone derivatives are modified using different functional groups as substituents for investigating their anti-tubercular activities. We present a summary of the reported anti-tubercular drugs, designed using quinazoline and quinazolinone derivatives, in this review.
Collapse
Affiliation(s)
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Jyotika Mishra
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Ankit Soni
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| | - Dhawal Dorwal
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| |
Collapse
|
17
|
Stocka J, Platakyte R, Hickman D, Carrigan-Broda T, Ceponkus J, Sablinskas V, Rodziewicz P, Guirgis G. Experimental (Raman and IR) and computational (DFT, MP2) studies of the conformational diversity of 1-chloromethyl-1-fluorosilacyclopentane molecule. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
He T, Liang C, Huang S. Cobalt-electrocatalytic C-H hydroxyalkylation of N-heteroarenes with trifluoromethyl ketones. Chem Sci 2022; 14:143-148. [PMID: 36605737 PMCID: PMC9769098 DOI: 10.1039/d2sc05198b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Trifluoromethyl carbinols and N-heteroarenes are both prevalent in bioactive molecules. However, access to high-value pharmacophores combining these two functional groups still remains a challenge. Herein, we report an electro-chemical redox-neutral coupling for the synthesis of N-heteroaryl trifluoromethyl carbinols from readily available N-heteroarenes and trifluoromethyl ketones. The reaction starts with reversing the polarity of ketones to nucleophilic ketyl radicals through an electrocatalytic proton-coupled electron transfer (PCET), followed by radical addition to heteroarenes and rearomatization to afford tertiary alcohol products. Importantly, the merging of paired electrolysis and cobalt catalysis is crucial to this regioselective C-H hydroxyalkylation of heteroarenes, and thus avoids several known competing pathways including the spin-center shift (SCS) process. Collectively, this protocol provides straightforward access to heteroaryl trifluoromethyl carbinols, featuring ideal atom economy, excellent regioselectivity, and paired redox-neutral electrolysis.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| |
Collapse
|
19
|
A decennary update on diverse heterocycles and their intermediates as privileged scaffolds for cathepsin B inhibition. Int J Biol Macromol 2022; 222:2270-2308. [DOI: 10.1016/j.ijbiomac.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
20
|
Synthesis of biheteroaryls via 2-methyl quinoline C(sp3)-H functionalization under metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Li L, Liu T, Ren W, Wang Y. Catalyst-free and atom-economical [4+3] cycloaddition of azadienes with cyclic azomethine imines for facile synthesis of 1,2,4-triazepines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Romero-Fernández MP, Cintas P, Rojas-Buzo S. Switchable Cycloadditions of Mesoionic Dipoles: Refreshing up a Regioselective Approach to Two Distinctive Heterocycles. J Org Chem 2022; 87:12854-12866. [PMID: 36103345 PMCID: PMC9552231 DOI: 10.1021/acs.joc.2c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Mesoionic rings are
among the most versatile 1,3-dipoles, as witnessed
recently by their incorporation into bio-orthogonal strategies, and
capable of affording unconventional heterocycles beyond the expected
scope of Huisgen cycloadditions. Herein, we revisit in detail the
reactivity of thiazol-3-ium-4-olates with alkynes, leading to thiophene
and/or pyrid-2-one derivatives. A structural variation at the parent
mesoionic dipole alters sufficiently the steric outcome, thereby favoring
the regioselective formation of a single transient cycloadduct, which
undergoes chemoselective fragmentation to either five- or six-membered
heterocycles. The synthetic protocol benefits largely from microwave
(MW) activation, which enhances reaction rates. The mechanism has
been interrogated with the aid of density functional theory (DFT)
calculations, which sheds light into the origin of the regioselectivity
and points to a predictive formulation of reactivity involving competing
pathways of mesoionic cycloadditions.
Collapse
Affiliation(s)
- M. Pilar Romero-Fernández
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Sergio Rojas-Buzo
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
23
|
Huo J, Geng X, Li W, Zhang P, Wang L. Photoinduced Three‐Component Cyclization of Arylamines, Enaminones and Difluorobromoacetates to 2,3‐Difunctionalized Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Lei Wang
- Huaibei Coal Teachers College CHINA
| |
Collapse
|
24
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
25
|
Shirokova VV, Smirnov AY, Zaitseva ER, Baleeva NS, Mikhaylov AА, Baranov MS. Synthesis of julolidine derivatives via SnCl4-promoted spirocyclization of (1-alkyltetrahydroquinolin-8-yl)methylidene-1H-imidazol-5(4H)-ones. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
27
|
Liu YC, Chen P, Li XJ, Xiong BQ, Liu Y, Tang KW, Huang PF. Visible-Light-Induced Dual Acylation of Alkenes for the Construction of 3-Substituted Chroman-4-ones. J Org Chem 2022; 87:4263-4272. [PMID: 35234478 DOI: 10.1021/acs.joc.1c03100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterocyclic compounds, especially oxygen-containing heterocyclic compounds, are crucial moieties in bioactive compounds and drug leads. Substituted chroman-4-ones are a kind of the most significant structural skeletons. Herein, we report a visible-light-induced dual acylation of alkenes for constructing 3-substituted chroman-4-ones, which undergoes a radical tandem cyclization reaction through carbon-carbon bond cleavage of oxime esters by a nitrogen-centered radical strategy. A series of 3-substituted chroman-4-ones were prepared with up to 86% yield.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xue-Jiao Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
28
|
Devi M, Singh R, Sindhu J, Kumar A, Lal S, Kumar R, Hussain K, Sachdeva M, Singh D, Kumar P. Sonochemical Protocols for Heterocyclic Synthesis: A Representative Review. Top Curr Chem (Cham) 2022; 380:14. [PMID: 35149908 DOI: 10.1007/s41061-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS & H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Guru Jambheshwar University of Science and Technology, Department of Pharmaceutical Sciences, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, 122107, India
| | - Megha Sachdeva
- Department of Chemistry, Center of Advanced Study in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
29
|
Lu W, Jayaraman A, Fantuzzi F, Dewhurst RD, Härterich M, Dietz M, Hagspiel S, Krummenacher I, Hammond K, Cui J, Braunschweig H. An Unsymmetrical, Cyclic Diborene Based on a Chelating CAAC Ligand and its Small-Molecule Activation and Rearrangement Chemistry. Angew Chem Int Ed Engl 2022; 61:e202113947. [PMID: 34750945 PMCID: PMC9299934 DOI: 10.1002/anie.202113947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/15/2023]
Abstract
A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B2 Br4 (SMe2 )2 . Theoretical studies revealed that this diborene has a considerably smaller HOMO-LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy3 )] afforded two diborene-AuI π complexes, while reaction with DurBH2 , P4 and a terminal acetylene led to the cleavage of B-H, P-P, and C-C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to AgI via its B=C double bond.
Collapse
Affiliation(s)
- Wei Lu
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistrySichuan University29 Wangjiang RoadChengdu610064P. R. China
| | - Arumugam Jayaraman
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- School of Physical SciencesIngram BuildingUniversity of KentPark Wood RoadCanterburyCT2 7NHUnited Kingdom
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marcel Härterich
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Dietz
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephan Hagspiel
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kai Hammond
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jingjing Cui
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
30
|
Lu W, Jayaraman A, Fantuzzi F, Dewhurst RD, Härterich M, Dietz M, Hagspiel S, Krummenacher I, Hammond K, Cui J, Braunschweig H. Ein unsymmetrisches, cyclisches Diboren basierend auf einem chelatisierenden CAAC‐Liganden sowie dessen Aktivierung kleiner Moleküle und Umlagerungsreaktionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Lu
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Arumugam Jayaraman
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- School of Physical Sciences Ingram Building University of Kent Park Wood Road Canterbury CT2 7NH United Kingdom
| | - Rian D. Dewhurst
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Marcel Härterich
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Maximilian Dietz
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Stephan Hagspiel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Kai Hammond
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Jingjing Cui
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
31
|
Roudini P, Hazeri N, Faroughi Niya H, Fatahpour M. Fe3O4@THAM-SO3H: An Eco-Friendly Solid Acid Nanocatalyst for Synthesis of 2-Amino-3-Cyanopyridines and 2,4,6-Triarylpyridines under Mild Reaction Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Parvin Roudini
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Nourallah Hazeri
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homayoun Faroughi Niya
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Maryam Fatahpour
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
32
|
Huang W, Chen Z, Li‐Xia L, Zhou Y, Bo W, Jiang G. A Facile Synthesis of Pyrrolo[2,3‐
j
]phenanthridines
via
the Cascade Reaction of Indoleanilines and Aldehydes. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jun Huang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Zhi‐Peng Chen
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Liu Li‐Xia
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Wu Bo
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Guo‐Fang Jiang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
33
|
Bhakhar KA, Sureja DK, Dhameliya TM. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Wang L, Xie L, Fang Z, Zhang Q, Li D. Tandem trifluoromethylthiolation and cyclization of N-aryl-3-butenamides with AgSCF 3: divergent access to CF 3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. Org Chem Front 2022. [DOI: 10.1039/d2qo00207h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A AgSCF3-mediated tandem trifluoromethylthiolaton and cyclization of N-aryl-3-butenamides was developed. It showed divergent reactivities and enabled the selective syntheses of CF3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. The selectivity was achieved through different...
Collapse
|
35
|
New tetrazoles compounds incorporating galactose moiety: Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, molecular docking studies, DFT calculations and anti-corrosion property anticipation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Guo S, Wang X, Zhao D, Zhang Z, Zhang G, Tang S, Sun K. Convenient Access to Ester‐Containing Quinolinones Through Sequential Radical Alkoxycarbonylation/Cyclization/Hydrolysis Process. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sa Guo
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Xin Wang
- Yantai University School of Chemistry CHINA
| | | | - Zhiguo Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Guisheng Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Shi Tang
- Jishou University School of Chemistry CHINA
| | - Kai Sun
- Yantai University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
37
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
38
|
Orang NS, Soltani H, Ghiamirad M, Sabegh MA. Para toluenesulfonic acid-catalyzed one-pot, three-component synthesis of benzo[5,6]chromeno[3,2-c]quinoline compounds in aqueous medium. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A new series of benzo[5,6]chromeno[3,2-c]quinoline derivatives were successfully synthesized using various arylglyoxal monohydrates, quinoline-2,4-dione, and β-naphthol in H2O:EtOH (2:1) as a green solvent in the presence of catalytic amounts p-toluenesulfonic acid as a mild catalyst under reflux conditions with high yields (83–92%). The reaction conditions were optimized in different solvents at variable thermal conditions, and the optimized reaction condition for this synthesis has been reported. The structures of all new products were defined by 1H-NMR, 13C-NMR, FT-IR, mass spectral data, and HRMS.
Collapse
Affiliation(s)
- Naser Sadeghpour Orang
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University , P.O. Box: 5451116714 , Ahar , Iran
| | - Hadi Soltani
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University , P.O. Box: 5451116714 , Ahar , Iran
| | - Mehdi Ghiamirad
- Department of Microbiology, Ahar Branch, Islamic Azad University , Ahar , Iran
| | | |
Collapse
|
39
|
Li YL, Zhang PC, Wu HH, Zhang J. Palladium-Catalyzed Asymmetric Tandem Denitrogenative Heck/Tsuji-Trost of Benzotriazoles with 1,3-Dienes. J Am Chem Soc 2021; 143:13010-13015. [PMID: 34402615 DOI: 10.1021/jacs.1c07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric denitrogenative cycloaddition has emerged as a powerful tool to build chiral aza-heterocyles. However, only one example of asymmetric denitrogenative cycloaddition of benzotriazole with unsaturated hydrocarbons has been explored so far, because the ring-opening of benzotriazole to generate α-imino metal carbenoid species is a thermodynamically unfavorable process. We herein report an efficient asymmetric denitrogenative cycloaddition of benzotriazoles with cyclic and acyclic 1,3-dienes enabled by Pd and chiral sulfonamide phosphine ligand. A variety of substituted hexahydrocarbazoles and indolines were delivered in good yields with high ee values. Interestingly, a pair of enantiomers could be obtained with the use of Xu1 and PC2 with the same absolute configuration. The synthetic utilities of the optically active hexahydrocarbazoles were also showcased.
Collapse
Affiliation(s)
- Yin-Lin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Chao Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
40
|
Yadav V, Balaraman E, Mhaske SB. Phosphine‐Free Manganese(II)‐Catalyst Enables Acceptorless Dehydrogenative Coupling of Alcohols with Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vinita Yadav
- Division of Organic Chemistry CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ekambaram Balaraman
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Santosh B. Mhaske
- Division of Organic Chemistry CSIR-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
41
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
42
|
Enudi OC, Louis H, Edim MM, Agwupuye JA, Ekpen FO, Bisong EA, Utsu PM. Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon 2021; 7:e07531. [PMID: 34296019 PMCID: PMC8282981 DOI: 10.1016/j.heliyon.2021.e07531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inter-fragment interactions at various binding sites and the overall cluster stability of quinolone (QNOL), cinnoline (CNOL), quinazoline (QNAZ), and quinoxaline (QNOX) complexes with H2O were studied using the density functional theory (DFT) approach. The adsorption and H-bond binding energies, and the energy decomposition mechanism was considered to determine the relative stabilization status of the studied clusters. Scanning tunneling microscopy (STM), natural bonding orbitals (NBO) and charge decomposition were studied to expose the electronic distribution and interaction between fragments. The feasibility of formations of the various complexes were also studied by considering their thermodynamic properties. Results from adsorption studies confirmed the actual adsorption of H2O molecules on the various binding sites studied, with QNOX clusters exhibiting the best adsorptions. Charge decomposition analysis (CDA) revealed significant charge transfer from substrate to H2O fragment in most complexes, except in QNOL, CNOL and QNAZ clusters with H2O at binding position 4, where much charges are back-donated to substrate. The O---H inter-fragment bonds was discovered to be stronger than counterpart N---H bonds in the complexes, whilst polarity indices confirmed N---H as more polar covalent than O---H bonds. Thermodynamic considerations revealed that the formation process of all studied complexes are endothermic (+ve ΔH f ) and non-spontaneous (+ve ΔG f ).
Collapse
Affiliation(s)
- Obieze C. Enudi
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Moses M. Edim
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis O. Ekpen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Emmanuel A. Bisong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Patrick M. Utsu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|
43
|
Wang K, Wang B, Liu X, Fan H, Liu Y, Li C. Palladium-catalyzed enantioselective linear allylic alkylation of vinyl benzoxazinanones: An inner-sphere mechanism. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Nyaki HY, Mahmoodi NO. Synthesis and characterization of derivatives including thiazolidine-2,4-dione/1-H- imidazole and evaluation of antimicrobial, antioxidant, and cytotoxic properties of new synthetic heterocyclic compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04525-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Laurent M, Bostyn S, Marchivie M, Robin Y, Routier S, Buron F. Aminations and arylations by direct C-O activation for the design of 7,8-dihydro-6 H-5,8-ethanopyrido[3,2- d]pyrimidines. RSC Adv 2021; 11:19363-19377. [PMID: 35479218 PMCID: PMC9033610 DOI: 10.1039/d1ra03092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
The design of some novel disubstituted 7,8-dihydro-6H-5,8-ethanopyrido[3,2-d]pyrimidine derivatives is reported. The series was developed from quinuclidinone, which afforded versatile platforms bearing one lactam function in position C-2 that were then used to create C-N or C-C bonds for S N Ar or palladium-catalyzed cross-coupling reactions by in situ C-O activation. The reaction conditions were optimized under microwave irradiation, and a wide range of amines or boronic acids were used to determine the scope and limitations of each method. To complete this study, the X-ray crystallographic data of 7,8-dihydro-6H-5,8-ethanopyrido[3,2-d]pyrimidine derivative 49 were used to formally establish the structures of the products.
Collapse
Affiliation(s)
- Mazarine Laurent
- Institut de Chimie Organique et Analytique, ICOA, UMR CNRS 7311, Université d'Orléans Orléans France
| | - Stéphane Bostyn
- Institut de Combustion, Aérothermique, Réactivité, et Environnement (ICARE), 1c, Avenue de la Recherche Scientifique 45071 CEDEX 2 Orléans France
| | | | - Yves Robin
- ISOCHEM 4 Rue Marc Sangnier, 45300 Pithiviers BP 16729 France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, ICOA, UMR CNRS 7311, Université d'Orléans Orléans France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique, ICOA, UMR CNRS 7311, Université d'Orléans Orléans France
| |
Collapse
|
46
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
47
|
Liu C, Ji C, Zhou T, Hong X, Szostak M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C‐O/C‐H Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Chong‐Lei Ji
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
48
|
Liu C, Ji CL, Zhou T, Hong X, Szostak M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C-O/C-H Coupling. Angew Chem Int Ed Engl 2021; 60:10690-10699. [PMID: 33596335 DOI: 10.1002/anie.202100949] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/10/2022]
Abstract
Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C-O/C-H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late-stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper-aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
49
|
Ganesan MS, Raja KK, Murugesan S, Karankumar B, Faheem F, Thirunavukkarasu S, Shetye G, Ma R, Franzblau SG, Wan B, Rajagopal G. Quinoline‐Proline, Triazole Hybrids: Design, Synthesis, Antituberculosis, Molecular Docking, and ADMET Studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | - Banoth Karankumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | - Faheem Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | | | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Gurusamy Rajagopal
- PG & Research Department of Chemistry Chikkanna Government Arts College Tiruppur India
| |
Collapse
|
50
|
Konwar D, Bora U. Recent Developments in Transition‐Metal‐Catalyzed Regioselective Functionalization of Imidazo[1, 2‐
a
]pyridine. ChemistrySelect 2021. [DOI: 10.1002/slct.202100144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dipika Konwar
- Department of Chemical Sciences Tezpur University, Napaam, Tezpur PIN 784028 Assam India
| | - Utpal Bora
- Department of Chemical Sciences Tezpur University, Napaam, Tezpur PIN 784028 Assam India
| |
Collapse
|