1
|
Zhang Y, Zhang X, Yan Q. Synthesis, Structure, and Properties of Monodispersed and Highly Luminescent Organoborane Oligomers. J Org Chem 2023. [PMID: 37467361 DOI: 10.1021/acs.joc.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Organoborane oligomers with well-defined molecular structures and high luminescence are scarce, among which those with boron not used as bridging atoms are even more so. Here, a series of well-defined ethynyl-linked or butadiynyl-linked conjugated organoborane oligomers with high fluorescence quantum yield and extinction coefficient (i.e., high brightness) were prepared by coupling different building blocks featuring dithienooxadiborepine moieties. Single crystal structures of hexyl modified dithienooxadiborepine (1a-hex) and hexyl-modified butadiynyl-linked conjugated dimer (D2-hex) not only verified the identity of the molecular structures but also revealed that the introduction of the hexyl chains distorted the molecular structures due to steric hindrance. Optical measurements showed that the absorption and emission maxima of the six oligomeric molecules bathochromic shifted with increasing numbers of repeating units. Molecules without hexyl chains emit efficient fluorescence upon photoexcitation, and the fluorescence quantum efficiency of the ethynyl-linked conjugated dimer (D1) is close to unity. Theoretical calculation results using density functional theory methods are consistent with the single crystal data, allowing a better understanding of the spectral properties. Such results indicate that the method is efficient for expanding small organoborane molecules into π-conjugated oligomers, which can be used to modulate to emit different colors with high efficiency.
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinnan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qifan Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
3
|
Guo Y, Zhang L, Li C, Jin M, Zhang Y, Ye J, Chen Y, Wu X, Liu X. BN/BO-Ullazines and Bis-BO-Ullazines: Effect of BO Doping on Aromaticity and Optoelectronic Properties. J Org Chem 2021; 86:12507-12516. [PMID: 34337940 DOI: 10.1021/acs.joc.1c00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have achieved substitutional doping of ullazine with either two BO units or with one BO unit and one BN unit. The synthesis of these B-doped ullazines is straightforward, using demethylation and borylative cyclization as the key steps. Ullazine cores of both BN/BO-ullazines (2) and bis-BO-ullazines (3) are very close to being planar. Their electronic and photophysical properties were investigated by ultraviolet-visible, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Jincheng Ye
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene‐Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
5
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021; 60:9290-9295. [PMID: 33522053 PMCID: PMC8252115 DOI: 10.1002/anie.202100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.
Collapse
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
6
|
Rauch F, Krebs J, Günther J, Friedrich A, Hähnel M, Krummenacher I, Braunschweig H, Finze M, Marder TB. Electronically Driven Regioselective Iridium-Catalyzed C-H Borylation of Donor-π-Acceptor Chromophores Containing Triarylboron Acceptors. Chemistry 2020; 26:10626-10633. [PMID: 32510684 PMCID: PMC7497074 DOI: 10.1002/chem.202002348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Indexed: 12/11/2022]
Abstract
We observed a surprisingly high electronically driven regioselectivity for the iridium-catalyzed C-H borylation of donor-π-acceptor (D-π-A) systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(F Xyl)2 ) as the acceptor, and 1,4-phenylene as the π-bridge. Under our conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor group. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations) the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2 ) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.
Collapse
Affiliation(s)
- Florian Rauch
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Günther
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Hähnel
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
7
|
Narsaria AK, Rauch F, Krebs J, Endres P, Friedrich A, Krummenacher I, Braunschweig H, Finze M, Nitsch J, Bickelhaupt FM, Marder TB. Computationally Guided Molecular Design to Minimize the LE/CT Gap in D-π-A Fluorinated Triarylboranes for Efficient TADF via D and π-Bridge Tuning. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002064. [PMID: 32774198 PMCID: PMC7405949 DOI: 10.1002/adfm.202002064] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 05/16/2023]
Abstract
In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(FXyl)2 compounds 1-5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure-property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π-bridge, which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters.
Collapse
Affiliation(s)
- Ayush K. Narsaria
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
| | - Florian Rauch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Johannes Krebs
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Peter Endres
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Alexandra Friedrich
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Jörn Nitsch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 135NijmegenNL‐6525 AJThe Netherlands
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| |
Collapse
|
8
|
Tian D, Li Q, Zhao Y, Wang Z, Li W, Xia S, Xing S, Zhu B, Zhang J, Cui C. Synthesis of bis-BN-Naphthalene-Fused Oxepins and Their Photoluminescence Including White-Light Emission. J Org Chem 2020; 85:526-536. [PMID: 31859499 DOI: 10.1021/acs.joc.9b02594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of novel bis-BN-naphthalene-fused oxepin derivatives were synthesized via a Pd-catalyzed tandem reaction from brominated 2,1-borazaronaphthalenes and cis-bis(boryl)alkenes. X-ray crystallographic analysis revealed that bis-BN-naphthalene-fused oxepins feature a planar framework. The electronic and photophysical properties of the novel BN-naphthalene-fused oxepins were investigated by UV-vis and fluorescence spectroscopies and density functional theory (DFT) calculations, which disclosed the distinct electronic and photophysical properties of the analogous hydrocarbon system. Interestingly, dual-fluorescent emissions were observed upon dissolving N-substituted derivatives 10-14 in dimethyl sulfoxide. Tunable emission colors especially for white-light emissions can be achieved by controlling the ratio of solvents, concentration, or temperature using only a single-molecule compound.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Qian Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Yifan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Zijia Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Wenbin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Shuling Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| |
Collapse
|
9
|
Belaidi H, Rauch F, Zhang Z, Latouche C, Boucekkine A, Marder TB, Halet J. Insights into the Optical Properties of Triarylboranes with Strongly Electron‐Accepting Bis(fluoromesityl)boryl Groups: when Theory Meets Experiment. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Houmam Belaidi
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zuolun Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Camille Latouche
- Institut des Matériaux Jean RouxelUniversité de Nantes, CNRS 2 rue de la Houssinière, BP 32229 44322 Nantes cedex 3 France
| | - Abdou Boucekkine
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jean‐François Halet
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| |
Collapse
|
10
|
Radtke J, Schickedanz K, Bamberg M, Menduti L, Schollmeyer D, Bolte M, Lerner HW, Wagner M. Selective access to either a doubly boron-doped tetrabenzopentacene or an oxadiborepin from the same precursor. Chem Sci 2019; 10:9017-9027. [PMID: 32874487 PMCID: PMC7442282 DOI: 10.1039/c9sc03115d] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
Depending on the solvent, a brominated arylborane gave the multiple helicene B2-TBPA (pyridine) or the oxadiborepin ODBE (THF) after intramolecular Yamamoto coupling.
The well-known red emitter tetrabenzo[de,hi,op,st]pentacene (TBPA) has been transformed into a bright blue emitter (B2-TBPA; λem = 472 nm; c-hexane) via substitutional doping with two boron atoms. In contrast to the electron-rich TBPA, which forms endo-peroxides with O2 under daylight, the benchtop-stable B2-TBPA is a good electron acceptor and undergoes reversible reduction at a moderate half-wave potential of E1/2 = –1.73 V (vs. FcH/FcH+; THF). Although the size of B2-TBPA falls within the nanoscale, the helically twisted compound readily dissolves in c-hexane and does not require solubilizing substituents. The synthesis of B2-TBPA is based on the nickel-mediated Yamamoto-type dehalogenation of tetrabrominated 9,10-di(naphth-1-yl)-9,10-dihydro-9,10-diboraanthracene. This intramolecular C–C heterocoupling reaction shows a remarkable solvent dependence: B2-TBPA forms only in pyridine (79% yield), whereas an oxadiborepin is obtained from THF solutions (ODBE, 81%; the reaction mixture is quenched with air in both cases). Insight into the corresponding reaction mechanism was gained from the isolation of intermediates and an investigation of their chemical properties. ODBE is an interesting blue emitter in its own right. Furthermore, it can be ring-opened with excess BBr3 at the B–O–B moiety to afford a dimeric borabenzo[de]anthracene.
Collapse
Affiliation(s)
- Julian Radtke
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Kai Schickedanz
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Marcel Bamberg
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Luigi Menduti
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Dieter Schollmeyer
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Michael Bolte
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| | - Matthias Wagner
- Institut für Anorganische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Strasse 7 , D-60438 Frankfurt (Main) , Germany .
| |
Collapse
|