1
|
Rynjah S, Baro B, Sarkar B. Oxepin Derivatives Formation from Gas-Phase Catechol Ozonolysis. J Phys Chem A 2024; 128:251-260. [PMID: 38158557 DOI: 10.1021/acs.jpca.3c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Quantum chemical calculations are performed to explore all of the possible pathways for primary ozonide (POZ) formation from gas-phase ozonolysis of catechol. Canonical transition state theory has been used to calculate the rate coefficients of individual steps for the formation of POZ. The calculated rate coefficients for 1,3-cycloaddition of ozone at the (i) unsaturated C(OH)═C(OH) bond and (ii) CH═C(OH) of catechol, respectively, are in good agreement with the experimental rate constant. In general, subsequent decomposition of POZ leads to well-known Criegee Intermediates. This work reveals a parallel pathway by which the endo-addition of ozone at CH═C(OH) of catechol proceeds through oxepin derivatives along with the paths leading to Criegee Intermediates and peroxy acids. The 7-membered heterocyclic oxepin derivatives have lower energies than Criegee Intermediates but similar relative energies with peroxy acids.
Collapse
Affiliation(s)
- Shankupar Rynjah
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bhabesh Baro
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Biplab Sarkar
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
2
|
Obeid E, Otman A, Khaled Y, Hanna D, Atallah EZ. Investigating the gas-phase reaction mechanism of catechol with ozone: Product analysis and insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122743. [PMID: 39491160 DOI: 10.1016/j.envpol.2023.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Volatile aromatic compounds (VOCs) are ubiquitous in the environment, they can be emitted from biogenic and anthropogenic sources. They can contribute to the formation of many products leading to the formation of secondary organic aerosols (SOA). The products of the gas phase reaction of 1,2-benzenediol (catechol) with ozone were studied in a simulation chamber at atmospheric pressure and 294 ± 2 K in presence of different levels of relative humidity (0-60%). The gas phase products were monitored continuously by a PTR-ToF-MS for 2 h, whereas filters samples were collected directly from the reaction chamber and analyzed by thermo-desorption gas chromatography; TD-GC-MS. This study shows the different potential chemical pathways that catechol could follow to form a variety of products under dry, low and high humidity conditions. The molecular mass 98 was found to be distinctive and appears in the gas phase when humidity in the reaction chamber is between 20 and 60%. Other new masses (m/z) such as 176, 154, 116, 68, 72, 80, 96, 108, and 124 were also detected under different experimental conditions. Furthermore, the catechol concentration has been monitored continuously by a PTR-ToF-MS from low to high humidity conditions (RH = 7.5-78.8%). The purpose of the latter is to suggest that the formation of catechol-H2O clusters occurs in the gas phase of the reaction chamber causing a decrease in catechol reactivity towards other gases and subsequently a decrease in the rate constant.
Collapse
Affiliation(s)
- Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait.
| | - Abida Otman
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, 70000, Morocco
| | - Younes Khaled
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Dib Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - El Zein Atallah
- Radiation, Chemicals and Environmental Hazards, Toxicology Department, UK Health Security Agency, Didcot, OX11 0RQ, United Kingdom
| |
Collapse
|
3
|
Rana MS, Guzman MI. Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15437-15448. [PMID: 36318667 PMCID: PMC9670857 DOI: 10.1021/acs.est.2c05640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 05/19/2023]
Abstract
Abundant substituted catechols are emitted to, and created in, the atmosphere during wildfires and anthropogenic combustion and agro-industrial processes. While ozone (O3) and hydroxyl radicals (HO•) efficiently react in a 1 μs contact time with catechols at the air-water interface, the nighttime reactivity dominated by nitrate radicals (NO3) remains unexplored. Herein, online electrospray ionization mass spectrometry (OESI-MS) is used to explore the reaction of NO3(g) with a series of representative catechols (catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol) on the surface of aqueous microdroplets. The work detects the ultrafast generation of nitrocatechol (aromatic) compounds, which are major constituents of atmospheric brown carbon. Two mechanisms are proposed to produce nitrocatechols, one (equivalent to H atom abstraction) following fast electron transfer from the catechols (QH2) to NO3, forming NO3- and QH2•+ that quickly deprotonates into a semiquinone radical (QH•). The second mechanism proceeds via cyclohexadienyl radical intermediates from NO3 attack to the ring. Experiments in the pH range from 4 to 8 showed that the production of nitrocatechols was favored under the most acidic conditions. Mechanistically, the results explain the interfacial production of chromophoric nitrocatechols that modify the absorption properties of tropospheric particles, making them more susceptible to photooxidation, and alter the Earth's radiative forcing.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| | - Marcelo I. Guzman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| |
Collapse
|
4
|
Guzman MI, Pillar-Little EA, Eugene AJ. Interfacial Oxidative Oligomerization of Catechol. ACS OMEGA 2022; 7:36009-36016. [PMID: 36249361 PMCID: PMC9558612 DOI: 10.1021/acsomega.2c05290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The heterogeneous reaction between thin films of catechol exposed to O3(g) creates hydroxyl radicals (HO•) in situ, which in turn generate semiquinone radical intermediates in the path to form heavier polyhydroxylated biphenyl, terphenyl, and triphenylene products. Herein, the alteration of catechol aromatic surfaces and their chemical composition are studied during the heterogeneous oxidation of catechol films by O3(g) molar ratios ≥ 230 ppbv at variable relative humidity levels (0% ≤ RH ≤ 90%). Fourier transform infrared micro-spectroscopy, atomic force microscopy, electrospray ionization mass spectrometry, and reverse-phase liquid chromatography with UV-visible and mass spectrometry detection provide new physical insights into understanding the surface reaction. A Langmuir-Hinshelwood mechanism is accounted to report reaction rates, half-lives, and reactive uptake coefficients for the system under variable relative humidity levels. The reactions reported explain how the oligomerization of polyphenols proceeds at interfaces to contribute to the formation of brown organic carbon in atmospheric aerosols.
Collapse
|
5
|
Li P, Pang H, Wang Y, Deng H, Liu J, Loisel G, Jin B, Li X, Vione D, Gligorovski S. Inorganic Ions Enhance the Number of Product Compounds through Heterogeneous Processing of Gaseous NO 2 on an Aqueous Layer of Acetosyringone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5398-5408. [PMID: 35420794 DOI: 10.1021/acs.est.1c08283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols represent important pollutants that can participate in the formation of secondary organic aerosols (SOAs) through chemical reactions with atmospheric oxidants. In this study, we determine the influence of ionic strength, pH, and temperature on the heterogeneous reaction of NO2 with an aqueous film consisting of acetosyringone (ACS), as a proxy for methoxyphenols. The uptake coefficient of NO2 (50 ppb) on ACS (1 × 10-5 mol L-1) is γ = (9.3 ± 0.09) × 10-8 at pH 5, and increases by one order of magnitude to γ = (8.6 ± 0.5) × 10-7 at pH 11. The lifetime of ACS due to its reaction with NO2 is largely affected by the presence of nitrate ions and sulfate ions encountered in aqueous aerosols. The analysis performed by membrane inlet single-photon ionization-time-of-flight mass spectrometry (MI-SPI-TOFMS) reveals an increase in the number of product compounds and a change of their chemical composition upon addition of nitrate ions and sulfate ions to the aqueous thin layer consisting of ACS. These outcomes indicate that inorganic ions can play an important role during the heterogeneous oxidation processes in aqueous aerosol particles.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
6
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
7
|
Garofalo LA, He Y, Jathar SH, Pierce JR, Fredrickson CD, Palm BB, Thornton JA, Mahrt F, Crescenzo GV, Bertram AK, Draper DC, Fry JL, Orlando J, Zhang X, Farmer DK. Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15637-15645. [PMID: 34813317 DOI: 10.1021/acs.est.1c02984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Secondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework. When catechol is sequentially oxidized by O3 and NO3 in the presence of (NH4)2SO4 seed particles with a single size mode, we observe a bimodal organic aerosol mass size distribution with two size modes of distinct chemical composition with nitrocatechol from NO3 oxidation preferentially condensing onto the large end of the pre-existing size distribution (∼750 nm). A size-resolved chemistry and microphysics model reproduces the evolution of the two distinct organic aerosol size modes─heterogeneous nucleation to an independent, nitrocatechol-rich aerosol phase.
Collapse
Affiliation(s)
- Lauren A Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Carley D Fredrickson
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Brett B Palm
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Fabian Mahrt
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Giuseppe V Crescenzo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Danielle C Draper
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Juliane L Fry
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - John Orlando
- National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Xuan Zhang
- National Center for Atmospheric Research, Boulder, Colorado 80307, United States
- Department of Life and Environmental Sciences, University of California, Merced, California 95343, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Rahbar A, Zahedi E, Aghaie H, Giahi M, Zare K. DFT Insight into the Kinetics and Mechanism of the OH
.
‐Initiated Atmospheric Oxidation of Catechol: OH
.
Addition and Hydrogen Abstraction Pathways. ChemistrySelect 2021. [DOI: 10.1002/slct.202100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Rahbar
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ehsan Zahedi
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch Islamic Azad University, Shahrood Iran
| | - Hossein Aghaie
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Masoud Giahi
- Department of Chemistry, South-Tehran Branch Islamic Azad University Tehran Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
9
|
Wang Y, Mekic M, Li P, Deng H, Liu S, Jiang B, Jin B, Vione D, Gligorovski S. Ionic Strength Effect Triggers Brown Carbon Formation through Heterogeneous Ozone Processing of Ortho-Vanillin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4553-4564. [PMID: 33784089 DOI: 10.1021/acs.est.1c00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methoxyphenols are an important class of compounds emerging from biomass combustion, and their reactions with ozone can generate secondary organic aerosols in the atmosphere. Here, we use a vertical wetted wall flow tube reactor to evaluate the effect of ionic strength on the heterogeneous reaction of gas-phase ozone (O3) with a liquid film of o-vanillin (o-VL) (2-hydroxy-3-methoxybenzaldehyde), as a proxy for methoxyphenols. Typical for moderately acidic aerosols, at fixed pH = 5.6, the uptake coefficients (γ) of O3 on o-VL ([o-VL] = 1 × 10-5 mol L-1) increase from γ = (1.9 ± 0.1) × 10-7 in the absence of Na2SO4 to γ = (6.8 ± 0.3) × 10-7 at I = 0.2 mol L-1, and then, it decreases again. The addition of NO3- ions only slightly decreases the uptakes of O3. Ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that the formation of multicore aromatic compounds is favored upon heterogeneous O3 reaction with o-VL, in the presence of SO42- and NO3- ions. The addition of NO3- ions favors the formation of nitrooxy (-ONO2) or oxygenated nitrooxy group of organonitrates, which are components of brown carbon that can affect both climate and air quality.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
10
|
Ren Y, McGillen MR, Daële V, Casas J, Mellouki A. The fate of methyl salicylate in the environment and its role as signal in multitrophic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141406. [PMID: 32818857 DOI: 10.1016/j.scitotenv.2020.141406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/15/2023]
Abstract
Phytohormones emitted into the atmosphere perform many functions relating to the defence, pollination and competitiveness of plants. To be effective, their atmospheric lifetimes must be sufficient that these signals can be delivered to their numerous recipients. We investigate the atmospheric loss processes for methyl salicylate (MeSA), a widely emitted plant volatile. Simulation chambers were used to determine gas-phase reaction rates with OH, NO3, Cl and O3; photolysis rates; and deposition rates of gas-phase MeSA onto organic aerosols. Room temperature rate coefficients are determined (in units of cm3 molecule-1 s-1) to be (3.20 ± 0.46) × 10-12, (4.19 ± 0.92) × 10-15, (1.65 ± 0.44) × 10-12 and (3.33 ± 2.01) × 10-19 for the reactions with OH, NO3, Cl and O3 respectively. Photolysis is negligible in the actinic range, despite having a large reported near-UV chromophore. Conversely, aerosol uptake can be competitive with oxidation under humid conditions, suggesting that this compound has a high affinity for hydrated surfaces. A total lifetime of gas-phase MeSA of 1-4 days was estimated based on all these loss processes. The competing sinks of MeSA demonstrate the need to assess lifetimes of semiochemicals holistically, and we gain understanding of how atmospheric sinks influence natural communication channels within complex multitrophic interactions. This approach can be extended to other compounds that play vital roles in ecosystems, such as insect pheromones, which may be similarly affected during atmospheric transport.
Collapse
Affiliation(s)
- Yangang Ren
- Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), CS 50060, 45071 Orléans cedex02, France
| | - Max R McGillen
- Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), CS 50060, 45071 Orléans cedex02, France; Le Studium Loire Valley Institute for Advanced Studies, Orléans 45071, France
| | - Véronique Daële
- Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), CS 50060, 45071 Orléans cedex02, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, Université de Tours, 37200 Tours, France
| | - Abdelwahid Mellouki
- Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), CS 50060, 45071 Orléans cedex02, France.
| |
Collapse
|
11
|
Mekic M, Wang Y, Loisel G, Vione D, Gligorovski S. Ionic Strength Effect Alters the Heterogeneous Ozone Oxidation of Methoxyphenols in Going from Cloud Droplets to Aerosol Deliquescent Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12898-12907. [PMID: 32946234 DOI: 10.1021/acs.est.0c03648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methoxyphenols are one of the most abundant classes of biomarker tracers for atmospheric wood smoke pollution. The reactions of atmospheric oxidants (ozone, OH) with methoxyphenols can contribute to the formation of secondary organic aerosols (SOA). Here, for the first time, we use the well-established vertical wetted wall flow tube (VWWFT) reactor to assess the effect of ionic strength (I), pH, temperature, and ozone concentration on the reaction kinetics of ozone with acetosyringone (ACS), as a representative methoxyphenol compound. At fixed pH 3, typical for acidic atmospheric deliquescent particles, and at I = 0.9 M adjusted by Na2SO4, the uptake coefficient (γ) of O3 increases by 2 orders of magnitude from γ = (5.0 ± 0.8) × 10-8 on neat salt solution (Na2SO4) to γ = (6.0 ± 0.01) × 10-6 on a mixture of ACS and Na2SO4. The comparison of the uptake coefficients of O3 at different pH values indicates that the reaction kinetics strongly depends on the acidity of the phenolic group of ACS. The observed different reactivity of gas-phase ozone with ACS has implications for ozone uptake by the dilute aqueous phase of cloud droplets and by aerosol deliquescent particles loaded with inorganic salts, and it can affect the formation of SOA in the atmosphere.
Collapse
Affiliation(s)
- Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| |
Collapse
|
12
|
An Z, Sun J, Han D, Mei Q, Wei B, Wang X, Xie J, Zhan J, He M. Effect of pH on ·OH-induced degradation progress of syringol/syringaldehyde and health effect. CHEMOSPHERE 2020; 255:126893. [PMID: 32402872 DOI: 10.1016/j.chemosphere.2020.126893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Syringol and syringaldehyde are widely present pollutants in atmosphere and wastewater due to lignin pyrolysis and draining of pulp mill effluents. The hydroxylation degradation mechanisms and kinetics and health effect assessment of them under high and low-NOx regimes in atmosphere and wastewater have been studied theoretically. The effect of pH on reaction mechanisms and rate constants in their ·OH-initiated degradation processes has been fully investigated. Results have suggested that aqueous solution played a positive role in the ·OH-initiated degradation reactions by decreasing the energy barriers of most reactions and changing the reactivity order of initial reactions. For Sy- and Sya- (anionic species of syringol and syringaldehyde), most initial reaction routes were more likely to occur than that of HSy and Hsya (neutral species of syringol and syringaldehyde). As the pH increased from 1 to 14, the overall rate constants (at 298 K) of syringol and syringaldehyde with ·OH in wastewater increased from 5.43 × 1010 to 9.87 × 1010 M-1 s-1 and from 3.70 × 1010 to 1.14 × 1011 M-1 s-1, respectively. In the NOx-rich environment, 4-nitrosyringol was the most favorable product, while ring-opening oxygenated chemicals were the most favorable products in the NOx-poor environment. On the whole, the NOx-poor environment could decrease the toxicities during the hydroxylation processes of syringol and syringaldehyde, which was the opposite in a NOx-rich environment. ·OH played an important role in the methoxyphenols degradation and its conversion into harmless compounds in the NOx-poor environment.
Collapse
Affiliation(s)
- Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, PR China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xueyu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
13
|
Liu C, He Y, Chen X. Kinetic study on the heterogeneous degradation of coniferyl alcohol by OH radicals. CHEMOSPHERE 2020; 241:125088. [PMID: 31629237 DOI: 10.1016/j.chemosphere.2019.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Coniferyl alcohol derived from lignin pyrolysis, is a potential tracer for wood burning emissions, but its atmospheric stability toward OH radicals is not well known. In this work, the degradation kinetics of coniferyl alcohol by OH radicals was studied using a flow reactor at different OH concentrations, temperatures, and relative humidity (RH). The results showed that coniferyl alcohol could be degraded effectively by OH radials, and the average second-order rate constant (k2) was (11.6 ± 0.5) × 10-12 cm3 molecule-1 s-1 at the temperature and RH of 25 °C and 40%, respectively. Additionally, increasing temperature facilitated the degradation of coniferyl alcohol and the Arrhenius equation could be expressed as k2 = (1.7 ± 0.3) × 10-9exp [-(1480.2 ± 55.6)/T] at 40% RH. Meanwhile, increasing RH had a negative impact on the degradation of coniferyl alcohol. According to the k2 obtained under different conditions, the atmospheric lifetime of coniferyl alcohol was in the range of 13.5 ± 0.4 h to 22.9 ± 1.4 h. The results suggested that the atmosphere lifetime of coniferyl alcohol was predominantly controlled by OH radicals.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China.
| | - Yucan He
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| |
Collapse
|
14
|
Mechanistic and Kinetic Investigations on the Ozonolysis of Biomass Burning Products: Guaiacol, Syringol and Creosol. Int J Mol Sci 2019; 20:ijms20184492. [PMID: 31514377 PMCID: PMC6770092 DOI: 10.3390/ijms20184492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/26/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023] Open
Abstract
The lignin pyrolysis products generated by biomass combustion make an essential contribution to the formation of secondary organic aerosols (SOAs). The ozone-initiated oxidation of guaiacol, syringol and creosol, major constituents of biomass burning, were investigated theoretically by using the density functional theory (DFT) method at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. Six primary addition reaction pathways and further decomposition routes with corresponding thermodynamic values were proposed. The Criegee intermediates can be excited by small molecules, such as NOx, H2O in the atmosphere, and would further proceed via self-decomposition or isomerization. The most predominant product for ozonation of guaiacol is the monomethyl muconate (P1). At 295 K and atmospheric pressure, the rate constant is 1.10 × 10-19 cm3 molecule-1 s-1, which is lies a factor of 4 smaller than the previous experimental study. The branching ratios of the six channels are calculated based on corresponding rate coefficient. The present work mainly provides a more comprehensive and detailed theoretical research on the ozonation of methoxyphenol, which aspires to offer novel insights and reference for future experimental and theoretical work and control techniques of SOAs caused by lignin pyrolysis products.
Collapse
|
15
|
Decker ZCJ, Zarzana KJ, Coggon M, Min KE, Pollack I, Ryerson TB, Peischl J, Edwards P, Dubé WP, Markovic MZ, Roberts JM, Veres PR, Graus M, Warneke C, de Gouw J, Hatch LE, Barsanti KC, Brown SS. Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2529-2538. [PMID: 30698424 DOI: 10.1021/acs.est.8b05359] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign. We use these observations in conjunction with detailed chemical box modeling to investigate the formation and fate of oxidants (NO3, N2O5, O3, and OH) and BB volatile organic compounds (BBVOCs), using emissions representative of agricultural burns (rice straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr-1, while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to roughly 55% overnight depletion of the most reactive BBVOCs and NO2.
Collapse
Affiliation(s)
- Zachary C J Decker
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Kyle J Zarzana
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Matthew Coggon
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Kyung-Eun Min
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Ilana Pollack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
| | - Thomas B Ryerson
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Pete Edwards
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry , University of York , York YO10 5DD , United Kingdom
| | - William P Dubé
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Milos Z Markovic
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
| | - James M Roberts
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Patrick R Veres
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Martin Graus
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder , Colorado 80309 , United States
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Lindsay E Hatch
- Department of Chemical and Environmental Engineering and College of Engineering - Center for Environmental Research and Technology (CE-CERT) , University of California , Riverside , California 92507 , United States
| | - Kelley C Barsanti
- Department of Chemical and Environmental Engineering and College of Engineering - Center for Environmental Research and Technology (CE-CERT) , University of California , Riverside , California 92507 , United States
| | - Steven S Brown
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
- NOAA Earth System Research Laboratory (ESRL) , Chemical Sciences Division , Boulder , Colorado 80305 , United States
| |
Collapse
|
16
|
Deb DK, Sarkar B. Formation of Criegee intermediates and peroxy acids: a computational study of gas-phase 1,3-cycloaddition of ozone with catechol. Phys Chem Chem Phys 2019; 21:14589-14597. [PMID: 31140492 DOI: 10.1039/c9cp01312a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed theoretical investigation of gas-phase 1,3-cycloaddition of ozone with catechol is presented to explore the discrepancies in previous theoretical and experimental rate constants. DFT based PBE, TPSS, B3LYP, B3PW91, M06-2X, wB97XD, MN15 and high-level CCSD(T) methods are used for the calculation. Canonical transition state theory has been used to calculate the rate coefficients of individual steps. The calculated rate coefficients are compared with the experimental and previously calculated rate constant. The possible pathways for primary ozonide (POZ) formation and subsequent reactions to yield the Criegee Intermediates (CI) and peroxy acids (POA) are investigated. The endo-POZ may undergo conversion to exo-POZ or form the Creigee Intermediates. This work shows a novel pathway by which the exo-POZ can form more stable and chemically different species, peroxy acids, by abstracting an H atom from the OH group.
Collapse
Affiliation(s)
- Debojit Kumar Deb
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| | - Biplab Sarkar
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
17
|
Liu C, Zeng C. Heterogeneous kinetics of methoxyphenols in the OH-initiated reactions under different experimental conditions. CHEMOSPHERE 2018; 209:560-567. [PMID: 29945049 DOI: 10.1016/j.chemosphere.2018.06.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Methoxyphenols as the potential tracers for wood smoke emissions, are emitted into the atmosphere in large quantities but their atmospheric chemical behaviors have not been well characterized. In this work, heterogeneous kinetics of methoxyphenols in the OH-initiated reactions was investigated using a flow reactor under different experimental conditions. The average second-order rate constants (k2) of vanillic acid (VA), coniferyl aldehyde (CA), and syringaldehyde (SA) were (4.72 ± 0.51) × 10-12, (10.59 ± 0.50) × 10-12, (12.25 ± 0.60) × 10-12 cm3 molecule-1 s-1, respectively, obtained at relative humidity (RH) and temperature of 40% and 25 °C. In addition, the results showed that high temperature played a positive role in promoting these reactions while high RH had an inhibiting impact. The k2 values of VA, CA, and SA at 40% RH and different temperature followed the Arrhenius expressions, i.e., k2 = (2.45 ± 0.40) × 10-10exp [-(1170.73 ± 47.35)/T], k2 = (6.40 ± 0.26) × 10-10exp [-(1516.16 ± 13.71)/T], and k2 = (1.02 ± 0.13) × 10-9exp [-(1310.79 ± 36.75)/T], respectively. Based on the determined rate constants, the atmospheric lifetimes of these three methoxyphenols ranged from 0.54 to 2.18 d under different conditions. The experimental results indicate that OH radicals might play an important role in controlling the atmospheric lifetimes of methoxyphenols, and also help to further cognize the chemical behaviors of methoxyphenols in the atmosphere.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China.
| | - Chenghua Zeng
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| |
Collapse
|
18
|
Ahmad W, Coeur C, Tomas A, Fagniez T, Brubach JB, Cuisset A. Infrared spectroscopy of secondary organic aerosol precursors and investigation of the hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol. APPLIED OPTICS 2017; 56:E116-E122. [PMID: 28414388 DOI: 10.1364/ao.56.00e116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) synchrotron analyses supplemented by density functional theory (DFT) anharmonic calculations have been undertaken to study the fundamental vibrational signatures of guaiacol and syringol, two methoxyphenol compounds found at the highest concentrations in fresh wood smoke and precursors of secondary organic aerosols (SOA) affecting the radiative balance and chemistry of the atmosphere. Nitroderivatives of these two compounds have also been studied experimentally for nitroguaiacol and theoretically for nitrosyringol. All the active fundamental vibrational bands have been assigned and compared to available gas phase measurements, providing a vibrational database of the main precursors for the analysis of SOA produced by atmospheric oxidation of methoxyphenols. In addition, the SOA formed in an atmospheric simulation chamber from the OH reaction with guaiacol and syringol were analyzed using the ATR-FTIR synchrotron spectroscopy and their hygroscopic properties were also investigated. The vibrational study confirms that nitroguaiacol and nitrosyringol are the main oxidation products of methoxyphenols by OH and are key intermediates in SOA production. The hydration experiments highlight the hydrophilic and hydrophobic characters of nitrosyringol and nitroguaiacol, respectively.
Collapse
|
19
|
Sun J, Cao H, Zhang S, Li X, He M. Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozone. RSC Adv 2016. [DOI: 10.1039/c6ra22286b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methoxybenzene (MB), is seen as a potential air pollutant which may cause environmental issues in the troposphere.
Collapse
Affiliation(s)
- Jianfei Sun
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Haijie Cao
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Shiqing Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Xin Li
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Maoxia He
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
20
|
Abstract
Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is proposed to result from the sequential processing of cis,cis-muconic acid, 2- and 3-hydroxy-cis,cis-muconic acid. Overall, these reactions contribute precursors to form aqueous SOA from aromatics in atmospheric aerosols and brown clouds.
Collapse
Affiliation(s)
| | - Ruixin Zhou
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|