1
|
Li M, Li L, Liu S, Zhang Q, Wang W, Wang Q. Insights into the catalytic effect of atmospheric organic trace species on the hydration of Criegee intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174877. [PMID: 39047816 DOI: 10.1016/j.scitotenv.2024.174877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The bimolecular reactions between Criegee intermediates (CIs) and atmospheric trace species have been extensively investigated, with a particular focus on the reaction with water, while the catalytic role of atmospheric organic compounds in hydration reactions was often neglected. In this study, we employed quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the catalytic effects of atmospheric organic amines, organic acids, and alcohols on the hydration reactions of CIs in the gas phase and at the gas-liquid interface. The catalytic reactions were found to follow a cyclic catalytic structure and a stepwise reaction mechanism. Gas-phase studies revealed that organic acids exhibited stronger catalytic effects compared to amines and alcohols, and the catalytic efficiency of amines and alcohols was similar to those of single water molecule. In addition, the catalytic reaction barriers of organic acids and alcohols were positively correlated with their gas-phase acidity (R2 = 0.94 to 0.97). A negative correlation was observed between the catalytic reaction barrier of amines and their gas-phase basicity (R2 = 0.84 to 0.90) and proton affinity (R2 = 0.84 to 0.92). At the gas-liquid interface, organic acids promoted the formation of hydroxyethyl hydroperoxide (HEHP, CH3CH(OH)(OOH)), organic acid ions, and H3O+, whereas the catalytic hydration of CIs by organic amines resulted in the formation of CH3CH(OH)OO and amine ions. Both HEHP and CH3CH(OH)OO can be further decomposed to form OH and HO2, or participate in new particles formation as precursors. This study complements the research gap on the reaction of CIs with water, providing valuable insights into the atmospheric sources of HEHP and HOx as well as the formation of secondary organic aerosols (SOAs).
Collapse
Affiliation(s)
- Mengyao Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Lei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wengxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Ni S, Meng TT, Huang GQ, Tang YZ, Bai FY, Zhao Z. Roles of Amides on the Formation of Atmospheric HONO and the Nucleation of Nitric Acid Hydrates. J Phys Chem A 2023. [PMID: 37311006 DOI: 10.1021/acs.jpca.3c01518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Guo-Qing Huang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Yi-Zhen Tang
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
3
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
4
|
Li GB, Cai SH, Long B. New Reactions for the Formation of Organic Nitrate in the Atmosphere. ACS OMEGA 2022; 7:39671-39679. [PMID: 36385897 PMCID: PMC9647854 DOI: 10.1021/acsomega.2c03321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 05/24/2023]
Abstract
Organic nitrates make an important contribution to the formation of secondary organic aerosols, but the formation mechanisms of organic nitrates are not fully understood at the molecular level. In the present work, we explore a new route for the formation of organic nitrates in the reaction of formaldehyde (HCHO) with nitric acid (HNO3) catalyzed by water (H2O), ammonia (NH3), and dimethylamine ((CH3)2NH) using theoretical methods. The present results using CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S unravel that dimethylamine has a stronger catalytic ability in the reaction of HCHO with HNO3, reducing the barrier by 21.97 kcal/mol, while water and ammonia only decrease the energy barrier by 7.35 and 13.56 kcal/mol, respectively. In addition, the calculated kinetics combined with the corresponding concentrations of these species show that the HCHO + HNO3 + (CH3)2NH reaction can compete well with the naked HCHO + HNO3 reaction at 200-240 K, which may make certain contributions to the formation of organic nitrates under some atmospheric conditions.
Collapse
Affiliation(s)
- Gang-Biao Li
- Department
of Physics, Guizhou University, Guiyang550025, China
| | - Shao-Hong Cai
- Department
of Physics, Guizhou University, Guiyang550025, China
| | - Bo Long
- Department
of Physics, Guizhou University, Guiyang550025, China
- College
of Materials Science and Engineering, Guizhou
Minzu university, Guiyang550025, China
| |
Collapse
|
5
|
Menezes F, Popowicz GM. Acid Rain and Flue Gas: Quantum Chemical Hydrolysis of NO 2. Chemphyschem 2022; 23:e202200395. [PMID: 35875889 PMCID: PMC9804303 DOI: 10.1002/cphc.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of efforts, much is still unknown about the hydrolysis of nitrogen dioxide (NO2 ), a reaction associated with the formation of acid rain. From the experimental point of view, quantitative analyses are hard, and without pH control the products decompose to some reagents. We resort to high-level quantum chemistry to compute Gibbs energies for a network of reactions relevant to the hydrolysis of NO2 . With COSMO-RS solvation corrections we calculate temperature dependent thermodynamic data in liquid water. Using the computed reaction energies, we determine equilibrium concentrations for a gas-liquid system at controlled pH. For different temperatures and initial concentrations of the different species, we observe that nitrogen dioxide should be fully converted to nitric and nitrous acid. The thermodynamic data in this work can have a potential major impact for several industries with regards to the understanding of atmospheric chemistry and in the reduction of anthropomorphic pollution.
Collapse
Affiliation(s)
- Filipe Menezes
- Institute of Structural Biology Helmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| | - Grzegorz Maria Popowicz
- Institute of Structural Biology Helmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| |
Collapse
|
6
|
Bai FY, Liu ZY, Ni S, Yang YS, Yu Z, Wang GH, Zhao Z, Pan XM. Metal-free catalysis for the reaction of nitrogen dioxide dimer with phenol: An unexpected favorable source of nitrate and aerosol precursors in vehicle exhaust. CHEMOSPHERE 2022; 291:132705. [PMID: 34710448 DOI: 10.1016/j.chemosphere.2021.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric reaction mechanism and dynamics of phenol with nitrogen dioxide dimer were explored by the density functional theory and high-level quantum chemistry combined with statistical kinetic calculations within 220-800 K. The nitric acid and phenyl nitrite, the typical aerosol precursors, are the preponderant products because of the low formation free energy barrier (∼8.7 kcal/mol) and fast rate constants (∼10-15 cm3 molecule-1 s-1 at 298 K). Phenyl nitrate is the minor product and it would be also formed from the transformation of phenyl nitrite in NO2-rich environment. More importantly, kinetic effects and catalytic mechanism of a series of metal-free catalysts (H2O, NH3, CH3NH2, CH3NHCH3, HCOOH, and CH3COOH) on the title reaction were investigated at the same level. The results indicate that CH3NH2 and CH3NHCH3 can not only catalyze the title reaction by lowering the free energy barrier (about 1.4-6.5 kcal/mol) but also facilitate the production of organic ammonium nitrate via acting as a donor-acceptor of hydrogen. Conversely, the other species are non-catalytic upon the title reaction. The stabilization energies and donor-acceptor interactions in alkali-catalyzed product complexes were explored, which can provide new insights to the properties of aerosol precursors. Moreover, the lifetime of phenol determined by nitrogen dioxide dimer in the presence of dimethylamine may compete with that of determined by OH radicals, indicating that nitrogen dioxide dimer is responsible for the elimination of phenol in the polluted atmosphere. This work could help us thoroughly understand the removal of nitrogen oxides and phenol as well as new aerosol precursor aggregation in vehicle exhaust.
Collapse
Affiliation(s)
- Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Zi-Yu Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yong-Sheng Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Zhou Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Guang-Hui Wang
- Department of Automation, Innovation and Entrepreneurship Center, Shenyang Ligong University, Shenyang, 110159, People's Republic of China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing, 102249, People's Republic of China.
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
7
|
Zhang T, Zhang Y, Tian S, Zhou M, Liu D, Lin L, Zhang Q, Wang R, Muthiah B. Possible atmospheric source of NH 2SO 3H: the hydrolysis of HNSO 2 in the presence of neutral, basic, and acidic catalysts. Phys Chem Chem Phys 2022; 24:4966-4977. [PMID: 35141735 DOI: 10.1039/d1cp04437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NH2SO3H can directly participate in H2SO4-(CH3)2NH-based cluster formation, and thereby substantially enhance the cluster formation rate. Herein, the reaction mechanisms and kinetics for the formation of NH2SO3H from the hydrolysis of HNSO2 without and with neutral (H2O, (H2O)2, and (H2O)3), basic (NH3 and CH3NH2), and acidic (HCOOH, H2SO4, H2SO4⋯H2O, and (H2SO4)2) catalysts were studied theoretically at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311+G(2df,2pd) level. The calculated results showed that neutral, basic, and acidic catalysts decrease the energy barrier by over 18.1 kcal mol-1; meanwhile, the product formation of NH2SO3H was more strongly bonded to neutral, basic, and acidic catalysts than to the reactants HNSO2 and H2O. This reveals that the reported neutral, basic, and acidic catalysts promote the formation of NH2SO3H from the hydrolysis of HNSO2 both kinetically and thermodynamically. Kinetic calculations using the master equation showed that (H2O)2 (100% RH) dominate over the other catalysts within the range of 0-10 km altitudes and 230-320 K with its rate ratio larger by at least 2.98 times, whereas HCOOH (3.2 × 109 molecules cm-3) is the most favorable catalysts at 15 km altitude in the troposphere. Overall, the present results will provide a definitive example that neutral, basic, and acidic catalysts have important influences on atmospheric reactions.
Collapse
Affiliation(s)
- Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Shiyu Tian
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Mi Zhou
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Dong Liu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Ling Lin
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Qiang Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Balaganesh Muthiah
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
8
|
Ni S, Bai F, Pan X. Synergistic effect of glutaric acid and ammonia/amine/amide on their hydrates in the clustering: A theoretical study. CHEMOSPHERE 2021; 275:130063. [PMID: 33984898 DOI: 10.1016/j.chemosphere.2021.130063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The formation of molecular clusters makes influence on the atmosphere. The clusters of glutaric acid (GA) and common ammonia (A), amine (methylamine MA, dimethylamine DMA) and representative amide (urea U) along with water molecule were systematically studied theoretically. GA-A-nW (n = 1, 2), GA-MA-nW (n = 1, 2), GA-DMA-1W and GA-U-nW (n = 1-6) are predicted to be feasible thermodynamically with the hydrogen bonds as interaction force. GA and urea promote the clustering synergistically, and ammonia, methylamine, dimethylamine promote the clustering of small GA hydrates (n = 1-2), while inhibit that of large GA hydrates (n = 3-6). The results of humidity show that un-hydrate or mono-hydrate is the main form of GA-mbase-nW (m = 0, 1; n = 1-6) under relative humidity of 20%, 50% and 80%. The global minima remain dominant over the temperature range of 220-320 K. GA contributes more to the Rayleigh scattering properties than sulfuric acid. More importantly, the local minima can undergo isomerization to form the global minima crossing a free energy barrier ranging from 6.66 to 11.78 kcal mol-1. This study indicates that GA and base molecules play a synergistic role to promote the formation of clusters. We hope it can provide more insights on interesting clustering in theory.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fengyang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
9
|
Ma X, Zhao X, Ding Z, Wang W, Wei Y, Xu F, Zhang Q, Wang W. Determination of the amine-catalyzed SO 3 hydrolysis mechanism in the gas phase and at the air-water interface. CHEMOSPHERE 2020; 252:126292. [PMID: 32203779 DOI: 10.1016/j.chemosphere.2020.126292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
New particle formation (NPF) involving amines in the atmosphere is considered an aggregation process, during which stable molecular clusters are formed from amines and sulfuric acid via hydrogen bond interaction. In this work, ab initio dynamics simulations of ammonium bisulfate formation from a series of amines, SO3, and H2O molecules were carried out in the gas phase and at the air-water interface. The results show that reactions between amines and hydrated SO3 molecules in the gas phase are barrierless or nearly barrierless processes. The reaction rate is related to the basicity of gas-phase amines-the stronger the basicity, the faster the reaction. Furthermore, SO3 hydrolysis catalyzed by amines occurs simultaneously with H2SO4-amine cluster formation. At the air-water interface, reactions between amines and SO3 involve multiple water molecules. The reaction center's ring structure (amine-SO3-nH2O) promotes the transfer of protons in the water molecules. The formed ammonium cation (-RNH3+) and the bisulfate anion (HSO4-) are present and stable by means of hydrogen bond interaction. The cluster formation mechanism provides new insights into NPF involving amines, which may play an important role in the formation of aerosols in some heavily polluted areas - e.g., those with a high amine concentration.
Collapse
Affiliation(s)
- Xiaohui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xianwei Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zhezheng Ding
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuanyuan Wei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
10
|
Ni S, Bai FY, Pan XM. Atmospheric chemistry of thiourea: nucleation with urea and roles in NO2 hydrolysis. Phys Chem Chem Phys 2020; 22:8109-8117. [DOI: 10.1039/c9cp04300d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleation with urea and roles in NO2 hydrolysis in the presence of thiourea.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| |
Collapse
|
11
|
Ni S, Bai FY, Pan XM. Can nitrous acid contribute to atmospheric new particle formation from nitric acid and water? NEW J CHEM 2020. [DOI: 10.1039/d0nj02992k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties of (HNO3)(HONO)(H2O)n (n = 1–6) clusters are reported including thermodynamics, structures, temperature-dependence, intermolecular forces, optical properties, and evaporation rates.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| |
Collapse
|
12
|
Zhang Y, Chi G, He Y, Xu Z, Zhang L, Luo J, Zhou B. In situ generated amine as a Lewis base catalyst in the reaction of 3,7‐dinitro‐1,3,5,7‐tetraazabicyclo[3.3.1]nonane in nitric acid: Experimental and DFT study. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Zhang
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing China
| | - Guoli Chi
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing China
| | - Ying He
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing China
| | - Zishuai Xu
- Gansu Yin Guang Chemical Industry Group Co. Ltd Baiyin China
| | - Luyao Zhang
- Gansu Yin Guang Chemical Industry Group Co. Ltd Baiyin China
| | - Jun Luo
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing China
| | - Baojing Zhou
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing China
| |
Collapse
|
13
|
Bai FY, Ni S, Tang YZ, Pan XM, Zhao Z. New insights into 3M3M1B: the role of water in ˙OH-initiated degradation and aerosol formation in the presence of NOX (X = 1, 2) and an alkali. Phys Chem Chem Phys 2019; 21:17378-17392. [DOI: 10.1039/c9cp02793a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metal-free catalysis of the ˙OH-initiated degradation of 3M3M1B, nitrate aerosol formation, and peroxynitrate decomposition.
Collapse
Affiliation(s)
- Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Shuang Ni
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Yi-Zhen Tang
- School of Environmental and Municipal Engineering
- Qingdao Technological University
- Qingdao 266033
- People's Republic of China
| | - Xiu-Mei Pan
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| |
Collapse
|
14
|
Ma Y, Jia ZM, Bai FY, Pan XM, Zhao L. Theoretical study on the formation mechanisms, dynamics and the effective catalysis of the nitrophenols. ChemistrySelect 2018. [DOI: 10.1002/slct.201802006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Ma
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Zi-man Jia
- Civil and Environmental Engineering; Henry Samueli School of Engineering and Applied Science; University of California, Los Angeles, California; 90095 United States
| | - Feng-yang Bai
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Xiu-mei Pan
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Liang Zhao
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| |
Collapse
|
15
|
Lv G, Nadykto AB, Sun X, Zhang C, Xu Y. Towards understanding the role of amines in the SO 2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere. CHEMOSPHERE 2018; 205:275-285. [PMID: 29702347 DOI: 10.1016/j.chemosphere.2018.04.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
By theoretical calculations, the gas-phase SO2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol-1) can be found in the case of SO2 + 2H2O + DMA. These lead us to conclude that the SO2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH3NH3+-HSO3--H2O or (CH3)2NH2+-HSO3--H2O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF.
Collapse
Affiliation(s)
- Guochun Lv
- Environment Research Institute, Shandong University, Jinan, 250100, China
| | - Alexey B Nadykto
- Department of Applied Mathematics, Moscow State University of Technology "Stankin", Vadkovsky 1, Moscow, 127055, Russia
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Chenxi Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Zhao Y, Zou S, Jiang YY, Bi S. Theoretical study of the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone. RSC Adv 2017. [DOI: 10.1039/c7ra09445k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone, two reaction types (Cl-addition and H-abstraction) and the subsequent reactions for the primary intermediates (IM1, IM2 and IM6) are presented and discussed.
Collapse
Affiliation(s)
- Yan Zhao
- School of Life Sciences
- Qufu Normal University
- Qufu
- P. R. China
| | - Shengli Zou
- Department of Chemistry
- University of Central Florida
- Orlando
- USA
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|