1
|
Chen S, Li J, Zhu Q, Li Z. Theoretical kinetic studies on intramolecular H-migration reactions of peroxy radicals of diethoxymethane. Phys Chem Chem Phys 2024; 26:24676-24688. [PMID: 39282693 DOI: 10.1039/d4cp02302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Diethoxymethane (DEM), a promising carbon-neutral fuel, has high reactivity at low temperatures. The intramolecular hydrogen migration reaction of the DEM peroxy radicals can be viewed as a critical step in the low temperature oxidation mechanism of DEM. In this work, multistructural transition state theory (MS-TST) was utilized to calculate the high-pressure limit rate constants of 1,5, 1,6 and 1,7 H-migration reactions for DEM peroxy radicals. In addition to the tunneling effects and anharmonic effects, the intramolecular effects, including steric hindrance, intramolecular hydrogen bonding and conformational changes in reactants and transition states, are also considered in the rate constant calculations. The calculated energy barriers and rate constants demonstrated the substantial impact of intramolecular effects on the kinetics of H-migration reactions in DEM peroxy radicals. Specifically, the distinct configurations of transition states could potentially influence the reaction kinetics. The pressure-dependent rate constants are computed using system-specific quantum RRK theory. The calculated results show that the falloff effect of 1,5 and 1,6 H-migration reactions is more pronounced than that of the 1,7 H-migration reaction. The thermodynamics and kinetics presented in this study could be instrumental in understanding the low-temperature oxidation mechanism of DEM and might prove crucial for future research on comprehensively analyzing the autoignition behavior.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Juanqin Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Quan Zhu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zerong Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Golin Almeida T, Martí C, Kurtén T, Zádor J, Johansen SL. Theoretical analysis of the OH-initiated atmospheric oxidation reactions of imidazole. Phys Chem Chem Phys 2024; 26:23570-23587. [PMID: 39106054 DOI: 10.1039/d4cp02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Imidazoles are present in Earth's atmosphere in both the gas-phase and in aerosol particles, and have been implicated in the formation of brown carbon aerosols. The gas-phase oxidation of imidazole (C3N2H4) by hydroxyl radicals has been shown to be preferentially initiated via OH-addition to position C5, producing the 5-hydroxyimidazolyl radical adduct. However, the fate of this adduct upon reaction with O2 in the atmospheric gas-phase is currently unknown. We employed an automated approach to investigate the reaction mechanism and kinetics of imidazole's OH-initiated gas-phase oxidation, in the presence of O2 and NOx. The explored mechanism included reactions available to first-generation RO2 radicals, as well as alkoxyl radicals produced from RO2 + NO reactions. Product distributions were obtained by assembling and solving a master equation, under conditions relevant to the Earth's atmosphere. Our calculations show a complex, branched reaction mechanism, which nevertheless converges to yield two major closed-shell products: 4H-imidazol-4-ol (4H-4ol) and N,N'-diformylformamidine (FMF). At 298 K and 1 atm, we estimate the yields of 4H-4ol and FMF from imidazole oxidation initiated via OH-addition to position C5 to be 34 : 66, 12 : 85 and 2 : 95 under 10 ppt, 100 ppt and 1 ppb of NO respectively. This work also revealed O2-migration pathways between the α-N-imino peroxyl radical isomers. This reaction channel is fast for the first-generation RO2 radicals, and may be important during the atmospheric oxidation of other unsaturated organic nitrogen compounds as well.
Collapse
Affiliation(s)
- Thomas Golin Almeida
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| |
Collapse
|
3
|
Shang Y, Yan G, Cai Y, Lu L, Zhao H, Sun R. Theoretical Investigation on Water-Free, Water- and Self-Assisted H-Abstraction Reactions from Dimethylamine by Hydroxy Radicals. J Phys Chem A 2024; 128:6264-6273. [PMID: 39034617 DOI: 10.1021/acs.jpca.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Accurate branching ratios of the H-abstraction reactions from dimethylamine (DMA) by OH radicals are important in understanding the atmospheric fate of DMA. In this work, the reaction kinetics of the water-free, water-assisted, and self-assisted H-abstraction reactions between DMA and OH radicals are accurately determined using the multipath canonical variational theory with the small-curvature tunneling correction, to explore the catalytic effects of the reactant (DMA) and product (water). To choose a suitable method that well describes the current reaction systems, various combinations with seven DFT methods and six basis sets are first evaluated, and the M08-HX/ma-TZVP method is identified as the most appropriate, with a mean unsigned deviation of 0.9 kcal mol-1 against the gold-standard CCSD(T)/CBS(T-Q) method. Based on the determined potential energy surfaces with the considerations of ground-state structures and specific-reaction parameters of zero-point energies, rate constants and branching ratios are calculated in a wide temperature range. The calculations show that the participation of water and DMA can lead to three-body complexes with a lower energy and influence the energy barriers, but neither of them shows the catalytic effect on the H-abstraction reactions in terms of kinetics. Additionally, the branching ratio analysis demonstrates that the product distribution is significantly altered in the presence of DMA and water.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - Guihuan Yan
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
- Ecology Institute of Shandong Academy of Sciences, Jinan, Shandong 250014, P. R. China
| | - Yang Cai
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, P. R. China
| | - Lei Lu
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
- School of Materials Science and Engineering, Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Haiyong Zhao
- Xiling DigitIntel Institute, Chengdu, Sichuan 610000, P. R. China
| | - Rongfeng Sun
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
| |
Collapse
|
4
|
Kumar A, Iyer S, Barua S, Brean J, Besic E, Seal P, Dall’Osto M, Beddows DCS, Sarnela N, Jokinen T, Sipilä M, Harrison RM, Rissanen M. Direct Measurements of Covalently Bonded Sulfuric Anhydrides from Gas-Phase Reactions of SO 3 with Acids under Ambient Conditions. J Am Chem Soc 2024; 146:15562-15575. [PMID: 38771742 PMCID: PMC11157540 DOI: 10.1021/jacs.4c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.
Collapse
Affiliation(s)
- Avinash Kumar
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Shawon Barua
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - James Brean
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Emin Besic
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Prasenjit Seal
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Manuel Dall’Osto
- Institute
of Marine Science, Consejo Superior de Investigaciones Científicas
(CSIC), Barcelona 08003, Spain
| | - David C. S. Beddows
- National
Centre for Atmospheric Science, School of Geography, Earth and Environmental
Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Nina Sarnela
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Tuija Jokinen
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
- Climate &
Atmosphere Research Centre (CARE-C), The
Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Roy M. Harrison
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Matti Rissanen
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Pasik D, Frandsen BN, Meder M, Iyer S, Kurtén T, Myllys N. Gas-Phase Oxidation of Atmospherically Relevant Unsaturated Hydrocarbons by Acyl Peroxy Radicals. J Am Chem Soc 2024; 146:13427-13437. [PMID: 38712858 PMCID: PMC11389977 DOI: 10.1021/jacs.4c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study assesses the atmospheric impact of reactions between unsaturated hydrocarbons such as isoprene and monoterpenes and peroxy radicals containing various functional groups. We find that reactions between alkenes and acyl peroxy radicals have reaction rates high enough to be feasible in the atmosphere and lead to high molar mass accretion products. Moreover, the reaction between unsaturated hydrocarbons and acyl peroxy radicals leads to an alkyl radical, to which molecular oxygen rapidly adds. This finding is confirmed by both theoretical calculations and experiments. The formed perester peroxy radical may either undergo further H-shift reactions or react bimolecularly. The multifunctional oxygenated compounds formed through acyl peroxy radical + alkene reactions are potentially important contributors to particle formation and growth. Thus, acyl peroxy radical-initiated oxidation chemistry may need to be included in atmospheric models.
Collapse
Affiliation(s)
- Dominika Pasik
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| | - Benjamin N Frandsen
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Aerosol Physics Laboratory, Tampere University, Tampere 33014, Finland
| | - Melissa Meder
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Tampere University, Tampere 33014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| | - Nanna Myllys
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
6
|
Pasik D, Iyer S, Myllys N. Cost-effective approach for atmospheric accretion reactions: a case of peroxy radical addition to isoprene. Phys Chem Chem Phys 2024; 26:2560-2567. [PMID: 38170853 DOI: 10.1039/d3cp04308h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an accurate and cost-effective method for investigating the accretion reactions between unsaturated hydrocarbons and oxidized organic radicals. We use accretion between isoprene and primary, secondary and tertiary alkyl peroxy radicals as model reactions. We show that a systematic semiempirical transition state search can lead to better transition state structures than relaxed scanning with density functional theory with a significant gain in computational efficiency. Additionally, we suggest accurate and effective quantum chemical methods to study accretion reactions between large unsaturated hydrocarbons and oxidized organic radicals. Furthermore, we examine the atmospheric relevance of these types of reactions by calculating the bimolecular reaction rate coefficients and formation rates under atmospheric conditions from the quantum chemical reaction energy barriers.
Collapse
Affiliation(s)
- Dominika Pasik
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Tampere University, Tampere FI-3720, Finland
| | - Nanna Myllys
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Liu Y, Pickard FC, Sluggett GW, Mustakis IG. Robust fragment-based method of calculating hydrogen atom transfer activation barrier in complex molecules. Phys Chem Chem Phys 2024; 26:1869-1880. [PMID: 38175161 DOI: 10.1039/d3cp05028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Dynamic processes driven by non-covalent interactions (NCI), such as conformational exchange, molecular binding, and solvation, can strongly influence the rate constants of reactions with low activation barriers, especially at low temperatures. Examples of this may include hydrogen-atom-transfer (HAT) reactions involved in the oxidative stress of an active pharmaceutical ingredient (API). Here, we develop an automated workflow to generate HAT transition-state (TS) geometries for complex and flexible APIs and then systematically evaluate the influences of NCI on the free activation energies, based on the multi-conformational transition-state theory (MC-TST) within the framework of a multi-step reaction path. The two APIs studied: fesoterodine and imipramine, display considerable conformational complexity and have multiple ways of forming hydrogen bonds with the abstracting radical-a hydroxymethyl peroxyl radical. Our results underscore the significance of considering conformational exchange and multiple activation pathways in activation calculations. We also show that structural elements and NCIs outside the reaction site minimally influence TS core geometry and covalent activation barrier, although they more strongly affect reactant binding and consequently the overall activation barrier. We further propose a robust and economical fragment-based method to obtain overall activation barriers, by combining the covalent activation barrier calculated for a small molecular fragment with the binding free energy calculated for the whole molecule.
Collapse
Affiliation(s)
- Yizhou Liu
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Frank C Pickard
- Pharmaceutical Sciences, Pfizer Research & Development, Groton, CT 06340, USA
- Medicine Design, Pfizer Research & Development, Cambridge, MA 02139, USA
| | - Gregory W Sluggett
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Iasson G Mustakis
- Chemical Research & Development, Pfizer Research & Development, Groton, CT 06340, USA
| |
Collapse
|
8
|
Kenseth CM, Hafeman NJ, Rezgui SP, Chen J, Huang Y, Dalleska NF, Kjaergaard HG, Stoltz BM, Seinfeld JH, Wennberg PO. Particle-phase accretion forms dimer esters in pinene secondary organic aerosol. Science 2023; 382:787-792. [PMID: 37972156 DOI: 10.1126/science.adi0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene-substantial global SOA sources-through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Samir P Rezgui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan F Dalleska
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Yu H, Møller KH, Buenconsejo RS, Crounse JD, Kjaergaard HG, Wennberg PO. Atmospheric Photo-Oxidation of 2-Ethoxyethanol: Autoxidation Chemistry of Glycol Ethers. J Phys Chem A 2023; 127:9564-9579. [PMID: 37934888 DOI: 10.1021/acs.jpca.3c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation─intramolecular H-shifts followed by O2 addition─has recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources.
Collapse
Affiliation(s)
- Hongmin Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Reina S Buenconsejo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| |
Collapse
|
10
|
Kjærgaard ER, Møller KH, Kjaergaard HG. Atmospheric Oxidation of Hydroperoxy Amides. J Phys Chem A 2023; 127:9311-9321. [PMID: 37877667 DOI: 10.1021/acs.jpca.3c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown. Using high-level theoretical methods, we study the most likely OH-initiated oxidation pathways of the hydroperoxy and dihydroperoxy amides derived from trimethylamine autoxidation. Overall, we find that the OH-initiated oxidation of the hydroperoxy amides predominantly leads to the formation of imides under NO-dominated conditions and more highly oxidized hydroperoxy amides under HO2-dominated conditions. Unimolecular reactions are found to be surprisingly slow, likely due to the restricting, planar structure of the amide moiety.
Collapse
Affiliation(s)
- Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Seal P, Barua S, Iyer S, Kumar A, Rissanen M. A systematic study on the kinetics of H-shift reactions in pristine acyl peroxy radicals. Phys Chem Chem Phys 2023; 25:28205-28212. [PMID: 37823187 PMCID: PMC10599409 DOI: 10.1039/d3cp01833d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
A series of acyl peroxy radical H-shifts were systematically studied using computational approaches. Acyl peroxy radicals were categorized into small- (ethanal-pentanal), medium- (hexanal and heptanal) and large-sized (octanal and nonanal) molecules. The H-shifts spanning from 1,4 to 1,9 were inspected for each studied system. For all acyl peroxy radicals, it is the combination of barrier heights and quantum mechanical tunneling that explains the yield of the peracid alkyl radical product. We used the ROHF-ROCCSD(T)-F12a/VDZ-F12//ωB97X-D/aug-cc-pVTZ level of theory to estimate the barrier heights and the subsequent rate coefficients with the exception of the smallest acyl peroxy radical ethanal, for which MN15 density functional was applied. The estimated multiconformer H-shift rate coefficients were found to be in the range of 10-2 s-1 to 10-1 s-1 for the fastest H-migrations. The determined rates imply that these H-shift reactions are often competitive with other RO2 loss processes and should be considered as a path to functionalization in modelling not only rural but also urban air quality.
Collapse
Affiliation(s)
- Prasenjit Seal
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland.
| | - Shawon Barua
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland.
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland.
| | - Avinash Kumar
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland.
| | - Matti Rissanen
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland.
- Department of Chemistry, University of Helsinki, P. O. Box 55, FI-00014, Helsinki, Finland
| |
Collapse
|
12
|
Kjærgaard ER, Møller KH, Berndt T, Kjaergaard HG. Highly Efficient Autoxidation of Triethylamine. J Phys Chem A 2023; 127:8623-8632. [PMID: 37802497 DOI: 10.1021/acs.jpca.3c04341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene and monoterpenes. More recently, autoxidation has also been identified as central and even dominant in the atmospheric oxidation of the rather small nonhydrocarbons dimethyl sulfide (DMS) and trimethylamine (TMA). Here, we find even faster autoxidation in the aliphatic amine triethylamine (TEA). The atmospherically dominating autoxidation leads to highly oxygenated and functionalized compounds. Products with as many as three hydroperoxy (OOH) groups and an O:C ratio larger than 1 are formed. We present theoretical multiconformer transition-state theory (MC-TST) calculations of the unimolecular reactions in the autoxidation following the OH + TEA reaction and calculate peroxy radical H-shift rate coefficients >20 s-1 for the first two generations of H-shifts. The efficient autoxidation in TEA is verified by the observation of the proposed highly oxidized products and radicals in flow-tube experiments. We find that the initial OH hydrogen abstraction at the α-carbon is strongly favored, with the β-carbon abstraction yield being less than a few percent.
Collapse
Affiliation(s)
- Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße. 15, 04318 Leipzig, Germany
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
13
|
Thoben N, Kaper T, de Graaff S, Gerhards L, Schmidtmann M, Klüner T, Beckhaus R, Doye S. Density Functional Theory Calculations for Multiple Conformers Explaining the Regio- and Stereoselectivity of Ti-Catalyzed Hydroaminoalkylation Reactions. Chemphyschem 2023; 24:e202300370. [PMID: 37326019 DOI: 10.1002/cphc.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
Hybrid Density Functional Theory (DFT) calculations for multiple conformers of the insertion reactions of a methylenecyclopropane into the Ti-C bond of two differently α-substituted titanaaziridines explain the experimentally observed differences in regioselectivity between catalytic hydroaminoalkylation reactions of methylenecyclopropanes with α-phenyl-substituted secondary amines and corresponding stoichiometric reactions of a methylenecyclopropane with titanaaziridines, which can only be achieved with α-unsubstituted titanaaziridines. In addition, the lack of reactivity of α-phenyl-substituted titanaaziridines as well as the diastereoselectivity of the catalytic and stoichiometric reactions can be understood.
Collapse
Affiliation(s)
- Niklas Thoben
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Tobias Kaper
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Simon de Graaff
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Luca Gerhards
- Institut für Physik, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Thorsten Klüner
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Sven Doye
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
14
|
Iyer S, Kumar A, Savolainen A, Barua S, Daub C, Pichelstorfer L, Roldin P, Garmash O, Seal P, Kurtén T, Rissanen M. Molecular rearrangement of bicyclic peroxy radicals is a key route to aerosol from aromatics. Nat Commun 2023; 14:4984. [PMID: 37591852 PMCID: PMC10435581 DOI: 10.1038/s41467-023-40675-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
The oxidation of aromatics contributes significantly to the formation of atmospheric aerosol. Using toluene as an example, we demonstrate the existence of a molecular rearrangement channel in the oxidation mechanism. Based on both flow reactor experiments and quantum chemical calculations, we show that the bicyclic peroxy radicals (BPRs) formed in OH-initiated aromatic oxidation are much less stable than previously thought, and in the case of the toluene derived ipso-BPRs, lead to aerosol-forming low-volatility products with up to 9 oxygen atoms on sub-second timescales. Similar results are predicted for ipso-BPRs formed from many other aromatic compounds. This reaction class is likely a key route for atmospheric aerosol formation, and including the molecular rearrangement of BPRs may be vital for accurate chemical modeling of the atmosphere.
Collapse
Affiliation(s)
- Siddharth Iyer
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland
| | - Anni Savolainen
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland
| | - Christopher Daub
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | | | - Pontus Roldin
- Department of Physics, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
- Swedish Environmental Research Institute IVL, SE-211 19, Malmö, Sweden
| | - Olga Garmash
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Prasenjit Seal
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.
| |
Collapse
|
15
|
Viegas LP. A Multiconformational Transition State Theory Approach to OH Tropospheric Degradation of Fluorotelomer Aldehydes. Chemphyschem 2023; 24:e202300259. [PMID: 37326576 DOI: 10.1002/cphc.202300259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the Cx F2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of x ${x}$ . In this work we apply the MC-TST/CTSR protocol to thex = 2 , 3 ${x={\rm 2,3}}$ cases and calculate both rate coefficients at 298.15 K with a value ofk = ( 2 . 4 ± 1 . 4 ) × 10 - 12 ${k=(2.4\pm 1.4)\times {10}^{-12}}$ cm3 molecule-1 s-1 , practically coincident with the recommended experimental value of kexp =( 2 . 8 ± 1 . 4 ) × 10 - 12 ${(2.8\pm 1.4)\times {10}^{-12}}$ cm3 molecule-1 s-1 . We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.
Collapse
Affiliation(s)
- Luís P Viegas
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
16
|
Li Y, Wang Y, Zhang RM, He X, Xu X. Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. J Chem Theory Comput 2023. [PMID: 37164004 DOI: 10.1021/acs.jctc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intramolecular hydrogen shift reactions in peroxy radicals (RO2• → •QOOH) play key roles in the low-temperature combustion and in the atmospheric chemistry. In the present study, we found that a mild-to-moderate multireference character of a potential energy surface (PES) is widely present in four typical hydrogen shift reactions of peroxy radicals (RO2•, R = ethyl, vinyl, formyl methyl, and acetyl) by a systematic assessment based on the T1 diagnostic, %TAE diagnostic, M diagnostic, and contribution of the dominant configuration of the reference CASSCF wavefunction (C02). To assess the effects of these inherent multireference characters on electronic structure calculations, we compared the PESs of the four reactions calculated by the multireference method CASPT2 in the complete basis set (CBS) limit, single-reference method CCSD(T)-F12, and single-reference-based composite method WMS. The results showed that ignoring the multireference character will introduce a mean unsigned deviation (MUD) of 0.46-1.72 kcal/mol from CASPT2/CBS results by using the CCSD(T)-F12 method or a MUD of 0.49-1.37 kcal/mol by WMS for three RO2• reactions (R = vinyl, formyl methyl, and acetyl) with a stronger multireference character. Further tests by single-reference Kohn-Sham (KS) density functional theory methods showed even larger deviations. Therefore, we specifically developed a new hybrid meta-generalized gradient approximation (GGA) functional M06-HS for the four typical H-shift reactions of peroxy radicals based on the WMS results for the ethyl peroxy radical reaction and on the CASPT2/CBS results for the others. The M06-HS method has an averaged MUD of 0.34 kcal/mol over five tested basis sets against the benchmark PESs, performing best in the tested 38 KS functionals. Last, in a temperature range of 200-3000 K, with the new functional, we calculated the high-pressure-limit rate coefficients of these H-shift reactions by the multi-structural variational transition-state theory with the small-curvature tunneling approximation (MS-CVT/SCT) and the thermochemical properties of all of the involved key radicals by the multi-structural torsional (MS-T) anharmonicity approximation method.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Assaf E, Finewax Z, Marshall P, Veres PR, Neuman JA, Burkholder JB. Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH 3SCH 2OO Radical between 314 and 433 K. J Phys Chem A 2023; 127:2336-2350. [PMID: 36862996 DOI: 10.1021/acs.jpca.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The intramolecular hydrogen-shift rate coefficient of the CH3SCH2O2 (methylthiomethylperoxy, MSP) radical, a product formed in the oxidation of dimethyl sulfide (DMS), was measured using a pulsed laser photolysis flow tube reactor coupled to a high-resolution time-of-flight chemical ionization mass spectrometer that measured the formation of the DMS degradation end product HOOCH2SCHO (hydroperoxymethyl thioformate). Measurements performed over the temperature range of 314-433 K yielded a hydrogen-shift rate coefficient of k1(T) = (2.39 ± 0.7) × 109 exp(-(7278 ± 99)/T) s-1 Arrhenius expression and a value extrapolated to 298 K of 0.06 s-1. The potential energy surface and the rate coefficient have also been theoretically investigated using density functional theory at the M06-2X/aug-cc-pVTZ level combined with approximate CCSD(T)/CBS energies yielding k1(273-433 K) = 2.4 × 1011 × exp(-8782/T) s-1 and k1(298 K) = 0.037 s-1 in fair agreement with the experimental results. Present results are compared with the previously reported values of k1(293-298 K).
Collapse
Affiliation(s)
- Emmanuel Assaf
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Zachary Finewax
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Paul Marshall
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick R Veres
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - J Andrew Neuman
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - James B Burkholder
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| |
Collapse
|
18
|
Hasan G, Salo VT, Golin Almeida T, Valiev RR, Kurtén T. Computational Investigation of Substituent Effects on the Alcohol + Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions. J Phys Chem A 2023; 127:1686-1696. [PMID: 36753050 PMCID: PMC9969516 DOI: 10.1021/acs.jpca.2c08927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Organic peroxy radicals (RO2) are key intermediates in atmospheric chemistry and can undergo a large variety of both uni- and bimolecular reactions. One of the least understood reaction classes of RO2 are their self- and cross-reactions: RO2 + R'O2. In our previous work, we have investigated how RO2 + R'O2 reactions can lead to the formation of ROOR' accretion products through intersystem crossings and subsequent recombination of a triplet intermediate complex 3(RO···OR'). Accretion products can potentially have very low saturation vapor pressures, and may therefore participate in the formation of aerosol particles. In this work, we investigate the competing H-shift channel, which leads to the formation of more volatile carbonyl and alcohol products. This is one of the main, and sometimes the dominant, RO2 + R'O2 reaction channels for small RO2. We investigate how substituents (R and R' groups) affect the H-shift barriers and rates for a set of 3(RO···OR') complexes. The variation in barrier heights and rates is found to be surprisingly small, and most computed H-shift rates are fast: around 108-109 s-1. We find that the barrier height is affected by three competing factors: (1) the weakening of the breaking C-H bond due to interactions with adjacent functional groups; (2) the overall binding energy of the 3(RO···OR'), which tends to increase the barrier height; and (3) the thermodynamic stability of the reaction products. We also calculated intersystem crossing rate coefficients (ISC) for the same systems and found that most of them were of the same order of magnitude as the H-shift rates. This suggests that both studied channels are competitive for small and medium-sized RO2. However, for complex enough R or R' groups, the binding energy effect may render the H-shift channel uncompetitive with intersystem crossings (and thus ROOR' formation), as the rate of the latter, while variable, seems to be largely independent of system size. This may help explain the experimental observation that accretion product formation becomes highly effective for large and multifunctional RO2.
Collapse
Affiliation(s)
- Galib Hasan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| | - Vili-Taneli Salo
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas Golin Almeida
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Rashid R. Valiev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| |
Collapse
|
19
|
Zhao Q, Møller KH, Chen J, Kjaergaard HG. Cost-Effective Implementation of Multiconformer Transition State Theory for Alkoxy Radical Unimolecular Reactions. J Phys Chem A 2022; 126:6483-6494. [PMID: 36053271 DOI: 10.1021/acs.jpca.2c04328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkoxy radicals are important intermediates in the gas-phase oxidation of volatile organic compounds (VOCs) determining the nature of the first-generation products. An accurate description of their chemistry under atmospheric conditions is essential for understanding the atmospheric oxidation of VOCs. Unfortunately, experimental measurements of the rate coefficients of unimolecular alkoxy radical reactions are scarce, especially for larger systems. As has previously been done for peroxy radical hydrogen shift reactions, we present a cost-effective approach to the practical implementation of multiconformer transition state theory (MC-TST) for alkoxy radical unimolecular (H-shift and decomposition) reactions. Specifically, we test the optimal approach for the conformational sampling as well as the best value for a cutoff of high-energy conformers. In order to obtain accurate rate coefficients at a reduced computational cost, an energy cutoff is employed to reduce the required number of high-level calculations. The rate coefficients obtained with the developed theoretical approach are compared to available experimental rate coefficients for both 1,5 H-shifts and decomposition reactions. For all but one of the reactions tested, the calculated MC-TST rate coefficients agree with experimental results to within a factor of 7. The discrepancy for the final reaction is about a factor of 15, but part of the discrepancy is caused by pressure effects, which are not included in MC-TST. Thus, for the fastest alkoxy reactions, deviation from the high-pressure limit even at 1 bar should be considered.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shanxi, Xi'an710049, China.,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
20
|
Viegas LP. Gas-phase OH-oxidation of 2-butanethiol: Multiconformer transition state theory rate constant with constrained transition state randomization. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Salo VT, Valiev R, Lehtola S, Kurtén T. Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides. J Phys Chem A 2022; 126:4046-4056. [PMID: 35709531 PMCID: PMC9251773 DOI: 10.1021/acs.jpca.2c01321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The recombination
(“dimerization”) of peroxyl radicals
(RO2•) is one of the pathways suggested in the literature
for the formation of peroxides (ROOR′, often referred to as
dimers or accretion products in the literature) in the atmosphere.
It is generally accepted that these dimers play a major role in the
first steps of the formation of submicron aerosol particles. However,
the precise reaction pathways and energetics of RO2•
+ R′O2• reactions are still unknown. In this
work, we have studied the formation of tetroxide intermediates (RO4R′): their formation from two peroxyl radicals and
their decomposition to triplet molecular oxygen (3O2) and a triplet pair of alkoxyl radicals (RO•). We
demonstrate this mechanism for several atmospherically relevant primary
and secondary peroxyl radicals. The potential energy surface corresponds
to an overall singlet state. The subsequent reaction channels of the
alkoxyl radicals include, but are not limited to, their dimerization
into ROOR′. Our work considers the multiconfigurational character
of the tetroxides and the intermediate phases of the reaction, leading
to reliable mechanistic insights for the formation and decomposition
of the tetroxides. Despite substantial uncertainties in the computed
energetics, our results demonstrate that the barrier heights along
the reaction path are invariably small for these systems. This suggests
that the reaction mechanism, previously validated at a multireference
level only for methyl peroxyl radicals, is a plausible pathway for
the formation of aerosol-relevant larger peroxides in the atmosphere.
Collapse
Affiliation(s)
- Vili-Taneli Salo
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Rashid Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Susi Lehtola
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Molecular Sciences Software Institute, Blacksburg, Virginia 24061, United States
| | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
22
|
Fu Z, Xie HB, Elm J, Liu Y, Fu Z, Chen J. Atmospheric Autoxidation of Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6944-6955. [PMID: 34793133 DOI: 10.1021/acs.est.1c04817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, have frequently been identified in the atmosphere. However, their atmospheric fate and toxicity associated with atmospheric transformations are unclear. Here, we performed quantum chemical calculations and computational toxicology to investigate the reaction mechanism of peroxy radicals of OPEs (OPEs-RO2•), key intermediates in determining the atmospheric chemistry of OPEs, and the toxicity of the reaction products. TMP-RO2• (R1) and TCPP-RO2• (R2) derived from trimethyl phosphate and tris(2-chloroisopropyl) phosphate, respectively, are selected as model systems. The results indicate that R1 and R2 can follow an H-shift-driven autoxidation mechanism under low NO concentration ([NO]) conditions, clarifying that RO2• from esters can follow an autoxidation mechanism. The unexpected autoxidation mechanism can be attributed to the distinct role of the ─(O)3P(═O) phosphate-ester group in facilitating the H-shift of OPEs-RO2• from commonly encountered ─OC(═O)─ and ─ONO2 ester groups in the atmosphere. Under high [NO] conditions, NO can mediate the autoxidation mechanism to form organonitrates and alkoxy radical-related products. The products from the autoxidation mechanism have low volatility and aquatic toxicity compared to their corresponding parent compounds. The proposed autoxidation mechanism advances our current understanding of the atmospheric RO2• chemistry and the environmental risk of OPEs.
Collapse
Affiliation(s)
- Zihao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Berndt T, Chen J, Kjærgaard ER, Møller KH, Tilgner A, Hoffmann EH, Herrmann H, Crounse JD, Wennberg PO, Kjaergaard HG. Hydrotrioxide (ROOOH) formation in the atmosphere. Science 2022; 376:979-982. [PMID: 35617402 DOI: 10.1126/science.abn6012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Erik H Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
24
|
Chen L, Huang Y, Xue Y, Jia Z, Wang W. Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. J Phys Chem A 2022; 126:2976-2988. [PMID: 35536543 DOI: 10.1021/acs.jpca.2c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl butyl ketone (MBK, 2-hexanone) is a common atmospheric oxygenated volatile organic compound (OVOC) owing to broad industrial applications, but its atmospheric oxidation mechanism remains poorly understood. Herein, the detailed mechanisms and kinetic properties of MBK oxidation initiated by OH radicals and subsequent transformation of the resulting intermediates are performed by employing quantum chemical and kinetic modeling methods. The calculations show that H-abstraction at the C4 position of MBK is more favorable than those at the other positions, with the total rate coefficient of k(T) = 4.13 × 10-14 exp(1576/T) cm3 molecule-1 s-1 at 273-400 K. The dominant pathway of unimolecular degradation of the C-centered alkyl radical is 1,2-acyl group migration. For the isomerization of the peroxy radical RO2, 1,5- and 1,6-H shifts are more favorable than 1,3- and 1,4-H shifts. The multiconformer rate coefficient kMC-TST of the first H-shift of the RO2 radical is estimated to be 1.40 × 10-3 s-1 at room temperature. Compared to the H-shifts of analogous aliphatic RO2 radicals, it can be concluded that the carbonyl group enhances the H-shift rates by as much as 2-4 orders of magnitude. The rate coefficients of the RO2 radical reaction with the HO2 radical exhibit a weakly negative temperature dependence, and the pseudo-first-order rate constant k'HO2 = kHO2[HO2] is calculated to be 3.32-22.10 × 10-3 s-1 at ambient temperature. The bimolecular reaction of the RO2 radical with NO leads to the formation of 3-oxo-butanal as the main product with the formation concentration of 2.2-7.4 μg/m3 in urban areas. The predicted pseudo-first-order rate constant k'NO = kNO[NO] is 2.20-9.98 s-1 at room temperature. By comparing the kMC-TST, k'HO2, and k'NO, it can be concluded that reaction with NO is the dominant removal pathway for the RO2 radical formed from the OH-initiated oxidation of MBK. These findings are expected to deepen our understanding of the photochemical oxidation of ketones under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yonggang Xue
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhihui Jia
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
25
|
Zhao X, Liu Z, Zhao R, Xu T. The effect of (H 2O) n ( n = 1-3) clusters on the reaction of HONO with HCl: a mechanistic and kinetic study. Phys Chem Chem Phys 2022; 24:10011-10024. [PMID: 35415725 DOI: 10.1039/d1cp05792h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between HONO and HCl is a possible pathway for the generation of ClNO, which is prone to photolyze, produce chlorine radicals, and accelerate the oxidation of tropospheric VOCs. Current experimental and theoretical studies have significant differences in rate constants under similar conditions. This study aims to examine the reasons for this difference. In this study, the effects of a single water molecule, water dimer, water trimer, excess HCl and excess HONO on the reaction mechanism of HONO + HCl were studied at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(2df,2p) level and the rate constants of each reaction channel were calculated. Our results showed that the reaction potential barrier of HONO with HCl was the lowest only when the water dimer was present, and the reaction rate constants were close to the experimental results, and both the cis-HONO⋯(H2O)2 + HCl and the trans-HONO⋯(H2O)2 + HCl reaction paths are likely to occur. We think that the reason for the inconsistency between experimental and theoretical results is that the water dimer is involved in the reaction in experiments.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Chemistry and Environment Science College, Inner Mongolia Normal University, Inner Mongolia Key Laboratory of Green Catalysis, Hohhot, Inner Mongolia 010022, China.
| | - Zizhong Liu
- Chemistry and Environment Science College, Inner Mongolia Normal University, Inner Mongolia Key Laboratory of Green Catalysis, Hohhot, Inner Mongolia 010022, China.
| | - Ruisheng Zhao
- Chemistry and Environment Science College, Inner Mongolia Normal University, Inner Mongolia Key Laboratory of Green Catalysis, Hohhot, Inner Mongolia 010022, China.
| | - Tianzi Xu
- Chemistry and Environment Science College, Inner Mongolia Normal University, Inner Mongolia Key Laboratory of Green Catalysis, Hohhot, Inner Mongolia 010022, China.
| |
Collapse
|
26
|
Li J, Wang L, Wang L. Computational Study on the Reaction of β-Hydroxyethylperoxy Radical with HO 2 and Effects of Water Vapor. J Phys Chem A 2022; 126:2234-2243. [PMID: 35362984 DOI: 10.1021/acs.jpca.1c09009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of β-hydroxyethylperoxy radical (β-HEP) and HO2 with and without water was studied using quantum chemistry and kinetic calculations. The main products are HOCH2CH2OOH and 3O2 for the reaction with and without water, while all other reaction channels can be neglected. The rate coefficients of the reaction follow negative temperature dependence. The pseudo-second-order rate coefficients are 2-4 orders of magnitude smaller for the reaction with saturated water vapor, indicating the negligible contribution of water in this reaction. This is probably also true for other peroxy radicals (except for HO2), indicating that a large part of previous results on the water enhancement of reaction rate coefficients might have overestimated the influence of water.
Collapse
Affiliation(s)
- Junjie Li
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyu Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
D’Ambro EL, Hyttinen N, Møller KH, Iyer S, Otkjær RV, Bell DM, Liu J, Lopez-Hilfiker FD, Schobesberger S, Shilling JE, Zelenyuk A, Kjaergaard HG, Thornton JA, Kurtén T. Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2213-2224. [PMID: 35119266 PMCID: PMC8956127 DOI: 10.1021/acs.est.1c06949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.
Collapse
Affiliation(s)
- Emma L. D’Ambro
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Noora Hyttinen
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Kristian H. Møller
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Siddharth Iyer
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Rasmus V. Otkjær
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - David M. Bell
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jiumeng Liu
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Felipe D. Lopez-Hilfiker
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Siegfried Schobesberger
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - John E. Shilling
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Alla Zelenyuk
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Joel A. Thornton
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
28
|
Piletic IR, Kleindienst TE. Rates and Yields of Unimolecular Reactions Producing Highly Oxidized Peroxy Radicals in the OH-Induced Autoxidation of α-Pinene, β-Pinene, and Limonene. J Phys Chem A 2022; 126:88-100. [PMID: 34979075 PMCID: PMC8895440 DOI: 10.1021/acs.jpca.1c07961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent ambient atmospheric measurements have detected highly oxygenated organic molecules (HOMs) at many sites and are a consequence of autoxidation processes occurring at ambient temperatures. Monoterpenes in particular have a propensity to autoxidize although they exhibit a wide range of HOM yields, which may be due to a variety of reasons including reactions with different oxidants like OH and O3, differing hydrogen (H) atom transfer or peroxy radical cyclization rates, numbers of available reaction pathways, and/or energy loss processes for activated HO-monoterpene or O3-monoterpene adducts. In this work, the autoxidation mechanisms of (+)-α-pinene, (+)-β-pinene, and (+)-limonene following initial OH oxidation and three successive O2 additions are examined using density functional theory (DFT) to understand what accounts for the disparity. Rates of different potential autoxidation pathways initiated by OH addition or abstraction reactions are quantified using transition-state theory (TST) and master equation approaches using the lowest-energy conformers. OH abstraction reactions do not appreciably influence HOM production in the pinenes and limit autoxidation for limonene because the subsequent autoxidation reactions are slow while OH addition reactions are found to be the main route to HOMs for all three monoterpenes. Generally, faster autoxidation rates are computed in later unimolecular reactions that produce RO7 radicals after OH addition (∼10 s-1 or greater) than rates for RO5 peroxy radical production (0.2-7 s-1). Mechanistic pathways that form RO7 peroxy radicals are similar for all three monoterpenes with a particular bicyclo RO7 radical involving a five-membered peroxide ring being favored for all three monoterpenes. The molar yields of RO7 radicals are 4.6% (+10.0/-2.4), 3.8% (+9.1/-2.6), and 7.6% (+13.1/-4.9) for α-pinene, β-pinene, and limonene, respectively, at 298 K and 1 ppb of NO and only significantly decline at NO concentrations exceeding 10 ppb. The higher yield for limonene relative to the pinenes is predominantly a consequence of the initial oxidation step: OH adducts of the bicyclic pinenes have to use the excess energy after OH addition to break one of the rings and make the molecule more flexible for autoxidation although this process is inefficient, while one of the prominent OH adducts for monocyclic limonene does not have to do this and may add O2 immediately before autoxidizing further. These insights may be used to guide a better representation of these processes in atmospheric models because they affect particulate matter (PM), NOx, and ozone concentrations via enhanced production of low-volatility species, less early-generation NOx cycling, and altered organic nitrate production.
Collapse
Affiliation(s)
- Ivan R. Piletic
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Tadeusz E. Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| |
Collapse
|
29
|
Kjærgaard ER, Vogt E, Møller KH, Nielsen OJ, Kjaergaard HG. Atmospheric Chemistry of CH 3OCF 2CHF 2. J Phys Chem A 2021; 125:10640-10648. [PMID: 34904843 DOI: 10.1021/acs.jpca.1c08973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fourier transform infrared spectroscopy has been used to follow the reaction of CH3OCF2CHF2 with either Cl or OH radicals within a photoreactor. Rate constants of k(OH + CH3OCF2CHF2) = (2.25 ± 0.60) × 10-14 cm3 molecule-1 s-1 and k(Cl + CH3OCF2CHF2) = (2.50 ± 0.39) × 10-13 cm3 molecule-1 s-1 were determined at 296 ± 2 K. Theoretical and experimental investigation of the Cl + CH3OCF2CHF2 reaction identified the formation of two main products, HC(O)OCF2CHF2 and COF2. Chlorine (and OH) radicals react with CH3OCF2CHF2 by H-abstraction from either the -CH3 or -CHF2 site. Abstraction from the -CH3 site was determined to constitute at least 60%, as determined from the formation of the primary product, HC(O)OCF2CHF2, which can only form from this abstraction site. At longer reaction times, HC(O)OCF2CHF2 further reacts and the yield of COF2 approaches two, the maximum possible with the number of F atoms in the reactant. The atmospheric lifetime of CH3OCF2CHF2 with OH radicals was determined to be 1.4 years. The global warming potentials over 20-, 100-, and 500-year time horizons were estimated to be 325, 88, and 25, respectively.
Collapse
Affiliation(s)
- Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Ole John Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
30
|
Hasan G, Valiev RR, Salo VT, Kurtén T. Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO 3-Initiated Oxidation of α-Pinene. J Phys Chem A 2021; 125:10632-10639. [PMID: 34881893 PMCID: PMC8713291 DOI: 10.1021/acs.jpca.1c08969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The formation of
accretion products (“dimers”) from
recombination reactions of peroxyl radicals (RO2) is a
key step in the gas-phase generation of low-volatility vapors, leading
to atmospheric aerosol particles. We have recently demonstrated that
this recombination reaction very likely proceeds via an intermediate
complex of two alkoxy radicals (RO···OR′) and
that the accretion product pathway involves an intersystem crossing
(ISC) of this complex from the triplet to the singlet surface. However,
ISC rates have hitherto not been computed for large and chemically
complex RO···OR′ systems actually relevant to
atmospheric aerosol formation. Here, we carry out systematic conformational
sampling and ISC rate calculations on 3(RO···OR′)
clusters formed in the recombination reactions of different diastereomers
of the first-generation peroxyl radicals originating in both OH- and
NO3-initiated reactions of α-pinene, a key biogenic
hydrocarbon for atmospheric aerosol formation. While we find large
differences between the ISC rates of different diastereomer pairs,
all systems have ISC rates of at least 106 s–1, and many have rates exceeding 1010 s–1. Especially the latter value demonstrates that accretion product
formation via the suggested pathway is a competitive process also
for α-pinene-derived RO2 and likely explains the
experimentally observed gas-phase formation of C20 compounds
in α-pinene oxidation.
Collapse
Affiliation(s)
- Galib Hasan
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland.,Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
31
|
Barber VP, Kroll JH. Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress. J Phys Chem A 2021; 125:10264-10279. [PMID: 34846877 DOI: 10.1021/acs.jpca.1c08221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase oxidation of organic compounds is an important chemical process in the Earth's atmosphere. It governs oxidant levels and controls the production of key secondary pollutants, and hence has major implications for air quality and climate. Organic oxidation is largely controlled by the chemistry of a few reactive intermediates, namely, alkyl (R) radicals, alkoxy (RO) radicals, peroxy (RO2) radicals, and carbonyl oxides (R1R2COO), which may undergo a number of unimolecular and bimolecular reactions. Our understanding of these intermediates, and the reaction pathways available to them, is based largely on studies of unfunctionalized intermediates, formed in the first steps of hydrocarbon oxidation. However, it has become increasingly clear that intermediates with functional groups, which are generally formed later in the oxidation process, can exhibit fundamentally different reactivity than unfunctionalized ones. In this Perspective, we explore the unique chemistry available to functionalized organic intermediates in the Earth's atmosphere. After a brief review of the canonical chemistry available to unfunctionalized intermediates, we discuss how the addition of functional groups can introduce new reactions, either by changing the energetics or kinetics of a given reaction or by opening up new chemical pathways. We then provide examples of atmospheric reaction classes that are available only to functionalized intermediates. Some of these, such as unimolecular H-shift reactions of RO2 radicals, have been elucidated only relatively recently, and can have important impacts on atmospheric chemistry (e.g., on radical cycling or organic aerosol formation); it seems likely that other, as-yet undiscovered reactions of (multi)functional intermediates may also exist. We discuss the challenges associated with the study of the chemistry of such intermediates and review novel experimental and theoretical approaches that have recently provided (or hold promise for providing) new insights into their atmospheric chemistry. The continued use and development of such techniques and the close collaboration between experimentalists and theoreticians are necessary for a complete, detailed understanding of the chemistry of functionalized intermediates and their impact on major atmospheric chemical processes.
Collapse
Affiliation(s)
- Victoria P Barber
- Departments of Civil and Environmental Engineering and Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Departments of Civil and Environmental Engineering and Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Goldman MJ, Green WH, Kroll JH. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO x Level. J Phys Chem A 2021; 125:10303-10314. [PMID: 34843244 DOI: 10.1021/acs.jpca.1c07203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the oxidation of organic compounds in both combustion systems and the atmosphere. While many studies have focused on reactions of RO2 in specific applications, spanning a relatively limited range of reaction conditions, the generalized behavior of RO2 radicals across the full range of reaction conditions (temperatures, pressures, and NO levels) has, to our knowledge, never been explored. In this work, two simple model systems, n-propyl peroxy radical and γ-isobutanol peroxy radical, are used to evaluate RO2 fate using pressure-dependent kinetics. The fate of these radicals was modeled based on literature data over 250-1250 K, 0.01-100 bar, and 1 ppt to 100 ppm of NO, which spans the typical range of atmospheric and combustion conditions. Covering this entire range provides a broad overview of the reactivity of these species under both atmospheric and combustion conditions, as well as under conditions intermediate to the two. A particular focus is on the importance of reactions that were traditionally considered to occur in only one of the two sets of conditions: RO2 unimolecular isomerization reactions (long known to occur in combustion systems but only recently appreciated in atmospheric systems) and RO2 bimolecular reactions of RO2 with NO (thought to occur mainly in atmospheric systems and rarely considered in combustion chemistry).
Collapse
Affiliation(s)
- Mark Jacob Goldman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Manonmani G, Sandhiya L, Senthilkumar K. Mechanism, Kinetics, and Ecotoxicity Assessment of ·OH-Initiated Oxidation Reactions of Sulfoxaflor. J Phys Chem A 2021; 125:10052-10064. [PMID: 34755512 DOI: 10.1021/acs.jpca.1c05030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ·OH-initiated reaction mechanism and kinetics of sulfoxaflor were investigated by using electronic structure calculations. The possible hydrogen atom and cyano group abstraction reaction pathways were studied, and the calculated thermochemical parameters show that the hydrogen atom abstraction from the C7 carbon atom is the more favorable reaction pathway. The subsequent reactions for the favorable intermediate (I4) with other atmospheric reactive species, such as O2, H2O, HO2·, and NOx· (x = 1, 2), were studied in detail. The products identified from the subsequent reactions could contribute to secondary organic aerosol (SOA) formation in the atmosphere. The intermediates and products formed from the initial and subsequent reactions are equally as toxic as the parent sulfoxaflor. At 298 K, the rate constant calculated for the formation of the favorable intermediate I4 is 2.54 × 10-12 cm3 molecule-1 s-1, which shows that the lifetime of sulfoxaflor is 54 h. The excited-state calculation performed through time-dependent density functional theory shows that the photolysis of the title molecule is unlikely in the atmosphere. The global warming potentials (GWPs) for different time horizons, photochemical ozone creation potential (POCP), and ecotoxicity analysis were also studied for the insecticide sulfoxaflor.
Collapse
Affiliation(s)
- G Manonmani
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - L Sandhiya
- Council of Scientific and Industrial Research-National Institute of Science, Technology and Development Studies, New Delhi 110012, India
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
34
|
Wu X, Huang C, Chai J, Zhang F. Formation of Substituted Alkyls as Precursors of Peroxy Radicals with a Rapid H-Shift in the Atmosphere. J Phys Chem Lett 2021; 12:8790-8797. [PMID: 34491756 DOI: 10.1021/acs.jpclett.1c02503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long straight-chain alkyl peroxy (ROO) radicals substituted with C═C and oxo functional groups are expected to undergo a rapid hydrogen shift (H-shift), which is a critical step in the atmospheric autoxidation mechanism. The existence of a weak tertiary C-H bond plays a key role in the rapid H-shift. Here, the reaction kinetics between OH and two typical long straight-chain functionalized volatile organic compounds, 3-methyl-1-hexene (3-MH) and 2-methylpentanal (2-MP), was theoretically investigated to reveal the fate of the weak C-H bond. The results indicate that the most favored reaction pathways are direct consumption (H-abstraction of 2-MP) and indirect destruction (addition of OH to 3-MH) of the "weak" tertiary C-H bond. The yields of abstraction pathways producing precursors of ROO radicals that undergo rapid H-shifts are computed to be less than 10% for both 3-MH + OH and 2-MP + OH reactions.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Can Huang
- Chair of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Jiajue Chai
- Institute at Brown for Environment and Society, and Department of Earth, Environmental and Planetary Sciences, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
35
|
Viegas LP. Simplified Protocol for the Calculation of Multiconformer Transition State Theory Rate Constants Applied to Tropospheric OH-Initiated Oxidation Reactions. J Phys Chem A 2021; 125:4499-4512. [PMID: 33902279 DOI: 10.1021/acs.jpca.1c00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical kinetics plays a fundamental role in the understanding and modeling of tropospheric chemical processes, one of the most important being the atmospheric degradation of volatile organic compounds. These potentially harmful molecules are emitted into the troposphere by natural and anthropogenic sources and are chemically removed by undergoing oxidation processes, most frequently initiated by reaction with OH radicals, the atmosphere's "detergent". Obtaining the respective rate constants is therefore of critical importance, with calculations based on transition state theory (TST) often being the preferred choice. However, for molecules with rich conformational variety, a single-conformer method such as lowest-conformer TST is unsuitable while state-of-the-art TST-based methodologies easily become unmanageable. In this Feature Article, the author reviews his own cost-effective protocol for the calculation of bimolecular rate constants of OH-initiated reactions in the high-pressure limit based on multiconformer transition state theory. The protocol, which is easily extendable to other oxidation reactions involving saturated organic molecules, is based on a variety of freeware and open-source software and tested against a series of oxidation reactions of hydrofluoropolyethers, computationally very challenging molecules with potential environmental relevance. The main features, advantages and disadvantages of the protocol are presented, along with an assessment of its predictive utility based on a comparison with experimental rate constants.
Collapse
Affiliation(s)
- Luís P Viegas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Buildings 1630-1632, Aarhus 8000, Denmark
| |
Collapse
|
36
|
Berndt T, Møller KH, Herrmann H, Kjaergaard HG. Trimethylamine Outruns Terpenes and Aromatics in Atmospheric Autoxidation. J Phys Chem A 2021; 125:4454-4466. [PMID: 33978422 DOI: 10.1021/acs.jpca.1c02465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoxidation in the atmosphere has been realized in the last decade as an important process that forms highly oxidized products relevant for the formation of secondary organic aerosol and likely with detrimental human health effects. It is experimentally shown that the OH radical-initiated oxidation of trimethylamine, the most highly emitted amine in the atmosphere, proceeds via rapid autoxidation steps dominating its atmospheric oxidation process. All three methyl groups are functionalized within a timescale of 10 s following the reaction with OH radicals leading to highly oxidized products. The exceptionally large density of functional groups in the oxidized products is expected to define their chemical properties. A detailed reaction mechanism based on theoretical calculations is able to describe the experimental findings. The comparison with results of the reinvestigated OH radical- and ozone-initiated autoxidation of a series of terpenes and aromatics reveals the trimethylamine process as the most efficient one discovered up to now for atmospheric conditions.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
37
|
Ma F, Guo X, Xia D, Xie HB, Wang Y, Elm J, Chen J, Niu J. Atmospheric Chemistry of Allylic Radicals from Isoprene: A Successive Cyclization-Driven Autoxidation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4399-4409. [PMID: 33769798 DOI: 10.1021/acs.est.0c07925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The atmospheric chemistry of isoprene has broad implications for regional air quality and the global climate. Allylic radicals, taking 13-17% yield in the isoprene oxidation by •Cl, can contribute as much as 3.6-4.9% to all possible formed intermediates in local regions at daytime. Considering the large quantity of isoprene emission, the chemistry of the allylic radicals is therefore highly desirable. Here, we investigated the atmospheric oxidation mechanism of the allylic radicals using quantum chemical calculations and kinetics modeling. The results indicate that the allylic radicals can barrierlessly combine with O2 to form peroxy radicals (RO2•). Under ≤100 ppt NO and ≤50 ppt HO2• conditions, the formed RO2• mainly undergo two times "successive cyclization and O2 addition" to finally form the product fragments 2-alkoxy-acetaldehyde (C2H3O2•) and 3-hydroperoxy-2-oxopropanal (C3H4O4). The presented reaction illustrates a novel successive cyclization-driven autoxidation mechanism. The formed 3-hydroperoxy-2-oxopropanal product is a new isomer of the atmospheric C3H4O4 family and a potential aqueous-phase secondary organic aerosol precursor. Under >100 ppt NO condition, NO can mediate the cyclization-driven autoxidation process to form C5H7NO3, C5H7NO7, and alkoxy radical-related products. The proposed novel autoxidation mechanism advances our current understanding of the atmospheric chemistry of both isoprene and RO2•.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Xirui Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
38
|
Church JR, Vaida V, Skodje RT. Kinetic Study of Gas-Phase Reactions of Pyruvic Acid with HO 2. J Phys Chem A 2021; 125:2232-2242. [PMID: 33705144 DOI: 10.1021/acs.jpca.0c10475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase reactions between pyruvic acid (PA) and HO2 radicals were examined using ab initio quantum chemistry and transition state theory. The rate coefficients were determined over a temperature range of 200-400 K including tunneling contributions. Six potential reaction pathways were identified. The two hydrogen abstraction reactions yielding the H2O2 product were found to have high barriers. The HO2 radical was also found to have a catalytic effect on the intramolecular hydrogen transfer reactions occurring by three distinct routes. These hydrogen-shift reactions are very interesting mechanistically although they are highly endothermic. The only reaction that contributes significantly to the consumption of PA is a multistep pathway involving a peroxy-radical intermediate, PA + HO2 → CH3COOH + OH + CO2. This exothermic process has potential atmospheric relevance because it produces an OH radical as a product. Atmospheric models currently have difficulty predicting accurate OH concentrations for certain atmospheric conditions, such as environments free of NOx and the nocturnal boundary layer. Reactions of this sort, although not necessary with PA, may account for a portion of this deficit. The present study helps settle the issue of the relative roles of reaction and photolysis in consumption of PA in the troposphere.
Collapse
Affiliation(s)
- Jonathan R Church
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Rex T Skodje
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
39
|
Chen J, Møller KH, Wennberg PO, Kjaergaard HG. Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis. J Phys Chem A 2021; 125:669-680. [DOI: 10.1021/acs.jpca.0c09882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
40
|
Sviben I, DŽeba I, Bonifačić M, Ljubić I. Kinetics of chain reaction driven by proton-coupled electron transfer: α-hydroxyethyl radical and bromoacetate in buffered aqueous solutions. Phys Chem Chem Phys 2021; 23:10429-10439. [PMID: 33890593 DOI: 10.1039/d1cp00539a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We measured and computed the rate constants of the reaction between the α-hydroxyethyl radical (˙CH(CH3)OH) and bromoacetate (BrCH2CO2-) in the non-buffered (NB), as well as in the bicarbonate (HCO3-) and hydrogen phosphate (HPO42-) buffered aqueous solutions in the presence of ethanol. These complex multistep reactions are initiated by the proton-coupled electron transfer (PCET) which reduces BrCH2CO2- and incites its debromination. The PCET is followed by the step in which the resulting carboxymethyl radical propagates a radical chain reaction thus recovering ˙CH(CH3)OH and enhancing the debromination yields. It is found that the rate constants for the initial PCET step (k1) are raised by ca. an order of magnitude in the presence of the buffers (k1(NB) = 1.4 × 105 dm3 mol-1 s-1; k1(HCO3-) = 1.4 × 106 dm3 mol-1 s-1; k1(HPO42-) = 1.1 × 106 dm3 mol-1 s-1). To rationalize this, we used density functional theory at the M06-2X-D3/6-311+G(2d,p) level in conjunction with the polarizable continuum model (PCM) for an implicit description of the aqueous environment. To acceptably reproduce the measured rate constants, the minimal solute, consisting of ˙CH(CH3)OH, BrCH2CO2- and the buffer anion, has to be expanded by at least 2-3 explicit molecules of the water solvent. The used kinetic model consisting of a set of coupled differential equations indicates the sigmoid dependence of yields vs. k1 thereby confirming the autocatalytic trait of these reactions. The computations unravel the profound influence of the presence of buffers on these reaction systems. On the one hand, the buffer anions promote the PCET by accelerating the proton transfer; on the other hand, they slow down the propagation step by forming the strong hydrogen bonds with the carboxymethyl radical. The two opposing effects cancel out and cause the Br- yields to remain approximately comparable in the non-buffered and buffered media.
Collapse
Affiliation(s)
- Igor Sviben
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Iva DŽeba
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marija Bonifačić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Ivan Ljubić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
41
|
Xu L, Møller KH, Crounse JD, Kjaergaard HG, Wennberg PO. New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13467-13477. [PMID: 33084314 DOI: 10.1021/acs.est.0c04780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emissions of aromatic compounds cause air pollution and detrimental health effects. Here, we explore the reaction kinetics and products of key radicals in benzene photo-oxidation. After initial OH addition and reaction with O2, the effective production rates of phenol and bicyclic peroxy radical (BCP-peroxy) are experimentally constrained at 295 K to be 420 ± 80 and 370 ± 70 s-1, respectively. These rates lead to approximately 53% yield for phenol and 47% yield for BCP-peroxy under atmospheric conditions. The reaction of BCP-peroxy with NO produces bicyclic hydroxy nitrate with a branching ratio <0.2%, indicating efficient NOx recycling. Similarly, the reaction of BCP-peroxy with HO2 largely recycles HOx, producing the corresponding bicyclic alkoxy radical (BCP-oxy). Because of the presence of C-C double bonds and multiple functional groups, the chemistry of BCP-oxy and other alkoxy radicals in the system is diverse. Experimental results suggest the aldehydic H-shift and ring-closure to produce an epoxide functionality could be competitive with classic decomposition of alkoxy radicals. These reactions are potential sources of highly oxygenated molecules. Finally, despite the large number of compounds observed in our study, we are unable to account for ∼20% of the carbon flow.
Collapse
Affiliation(s)
- Lu Xu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken5, DK-2100 Copenhagen Ø, Denmark
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken5, DK-2100 Copenhagen Ø, Denmark
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Zuraski K, Hui AO, Grieman FJ, Darby E, Møller KH, Winiberg FAF, Percival CJ, Smarte MD, Okumura M, Kjaergaard HG, Sander SP. Acetonyl Peroxy and Hydro Peroxy Self- and Cross-Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product. J Phys Chem A 2020; 124:8128-8143. [PMID: 32852951 DOI: 10.1021/acs.jpca.0c06220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions for the acetonyl peroxy (CH3C(O)CH2O2) self-reaction and its reaction with hydro peroxy (HO2) at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously monitored HO2 and hydroxyl, OH, respectively, while UV absorption measurements monitored the CH3C(O)CH2O2 concentrations. The overall rate constant for the reaction between CH3C(O)CH2O2 and HO2 was found to be (5.5 ± 0.5) × 10-12 cm3 molecule-1 s-1, and the branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The CH3C(O)CH2O2 self-reaction rate constant was measured to be (4.8 ± 0.8) × 10-12 cm3 molecule-1 s-1, and the branching fraction for alkoxy formation was inferred from secondary chemistry as 0.33 ± 0.13. An increase in the rate of the HO2 self-reaction was also observed as a function of acetone (CH3C(O)CH3) concentration which is interpreted as a chaperone effect, resulting from hydrogen-bond complexation between HO2 and CH3C(O)CH3. The chaperone enhancement coefficient for CH3C(O)CH3 was determined to be kA″ = (4.0 ± 0.2) × 10-29 cm6 molecule-2 s-1, and the equilibrium constant for HO2·CH3C(O)CH3 complex formation was found to be Kc(R14) = (2.0 ± 0.89) × 10-18 cm3 molecule-1; from these values, the rate constant for the HO2 + HO2·CH3C(O)CH3 reaction was estimated to be (2 ± 1) × 10-11 cm3 molecule-1 s-1. Results from UV absorption cross-section measurements of CH3C(O)CH2O2 and prompt OH radical yields arising from possible oxidation of the CH3C(O)CH3-derived alkyl radical are also discussed. Using theoretical methods, no likely pathways for the observed prompt OH radical formation have been found and the prompt OH radical yields thus remain unexplained.
Collapse
Affiliation(s)
- Kristen Zuraski
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Aileen O Hui
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Fred J Grieman
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.,Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Emily Darby
- Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Frank A F Winiberg
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Carl J Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Matthew D Smarte
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Mitchio Okumura
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Stanley P Sander
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
43
|
Hasan G, Salo VT, Valiev RR, Kubečka J, Kurtén T. Comparing Reaction Routes for 3(RO···OR') Intermediates Formed in Peroxy Radical Self- and Cross-Reactions. J Phys Chem A 2020; 124:8305-8320. [PMID: 32902986 DOI: 10.1021/acs.jpca.0c05960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the chemistry of the atmosphere. One of the main sink reactions of RO2 is the recombination reaction RO2 + R'O2, which has three main channels (all with O2 as a coproduct): (1) R-H═O + R'OH, (2) RO + R'O, and (3) ROOR'. The RO + R'O "alkoxy" channel promotes radical and oxidant recycling, while the ROOR' "dimer" channel leads to low-volatility products relevant to aerosol processes. The ROOR' channel has only recently been discovered to play a role in the gas phase. Recent computational studies indicate that all of these channels first go through an intermediate complex 1(RO···3O2···OR'). Here, 3O2 is very weakly bound and will likely evaporate from the system, giving a triplet cluster of two alkoxy radicals: 3(RO···OR'). In this study, we systematically investigate the three reaction channels for an atmospherically representative set of RO + R'O radicals formed in the corresponding RO2 + R'O2 reaction. First, we systematically sample the possible conformations of the RO···OR' clusters on the triplet potential energy surface. Next, we compute energetic parameters and attempt to estimate reaction rate coefficients for the three channels: evaporation/dissociation to RO + R'O, a hydrogen shift leading to the formation of R'-H═O + ROH, and "spin-flip" (intersystem crossing) leading to, or at least allowing, the formation of ROOR' dimers. While large uncertainties in the computed energetics prevent a quantitative comparison of reaction rates, all three channels were found to be very fast (with typical rates greater than 106 s-1). This qualitatively demonstrates that the computationally proposed novel RO2 + R'O2 reaction mechanism is compatible with experimental data showing non-negligible branching ratios for all three channels, at least for sufficiently complex RO2.
Collapse
Affiliation(s)
- Galib Hasan
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Jakub Kubečka
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
44
|
Møller KH, Berndt T, Kjaergaard HG. Atmospheric Autoxidation of Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11087-11099. [PMID: 32786344 DOI: 10.1021/acs.est.0c03937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene, monoterpenes, and very recently, dimethyl sulfide. Here, we present a high-level theoretical multiconformer transition-state theory study of the atmospheric autoxidation in amines exemplified by the atmospherically important trimethylamine (TMA) and dimethylamine and generalized by the study of the larger diethylamine. Overall, we find that the initial hydrogen shift reactions have rate coefficients greater than 0.1 s-1 and autoxidation is thus an important atmospheric pathway for amines. This autoxidation efficiently leads to the formation of hydroperoxy amides, a new type of atmospheric nitrogen-containing compounds, and for TMA, we experimentally confirm this. The conversion of amines to hydroperoxy amides may have important implications for nucleation and growth of atmospheric secondary organic aerosols and atmospheric OH recycling.
Collapse
Affiliation(s)
- Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
45
|
A computational investigation on the HO2 and isopropyl peroxy radical reaction: Mechanism and kinetics. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Viegas LSP, Jensen F. Reactivity of α,ω-Dihydrofluoropolyethers toward OH Predicted by Multiconformer Transition State Theory and the Interacting Quantum Atoms Approach. J Phys Chem A 2020; 124:3460-3470. [PMID: 32242667 DOI: 10.1021/acs.jpca.0c02911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report rate constants for the tropospheric reaction between the OH radical and α,ω-dihydrofluoropolyethers, which represent a specific class of the hydrofluoropolyethers family with the formula HF2C(OCF2CF2)p(OCF2)qOCF2H. Four cases were considered: p0q2, p0q3, p1q0, and p1q1 (pxqy denoting p = x and q = y) with the calculations performed by a cost-effective protocol developed for bimolecular hydrogen-abstraction reactions. This protocol is based on multiconformer transition state theory and relies on computationally accessible M08-HX/apcseg-2//M08-HX/pcseg-1 calculations. Within the protocol's approximations, the results show that (1) the calculated rate constants are within a factor of five of the experimental results (p1q0 and p1q1) and (2) the chain length and composition have a negligible effect on the rate constants, which is consistent with the experimental work. The interacting quantum atoms energy decomposition scheme is used to analyze the observed trends and extract chemical information related to the imaginary frequencies and barrier heights that are key parameters controlling the reactivity of the reaction. The intramolecular exchange-correlation contributions in the reactants and transition states were found to be the dominating factor.
Collapse
Affiliation(s)
- Luı S P Viegas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Buildings 1630-1632, Aarhus 8000, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
47
|
Møller KH, Otkjær RV, Chen J, Kjaergaard HG. Double Bonds Are Key to Fast Unimolecular Reactivity in First-Generation Monoterpene Hydroxy Peroxy Radicals. J Phys Chem A 2020; 124:2885-2896. [DOI: 10.1021/acs.jpca.0c01079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
48
|
Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proc Natl Acad Sci U S A 2020; 117:4505-4510. [PMID: 32071211 DOI: 10.1073/pnas.1919344117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.
Collapse
|
49
|
Yang Z, Lin X, Zhou J, Hu M, Gai Y, Zhao W, Long B, Zhang W. Computational study on the mechanism and kinetics for the reaction between HO 2 and n-propyl peroxy radical. RSC Adv 2019; 9:40437-40444. [PMID: 35542643 PMCID: PMC9076281 DOI: 10.1039/c9ra07503h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022] Open
Abstract
The n-propyl peroxy radical (n-C3H7O2) is the key intermediate during atmospheric oxidation of propane (C3H8) which plays an important role in the carbon and nitrogen cycles in the troposphere. In this paper, a comprehensive theoretical study on the reaction mechanism and kinetics of the reaction between HO2 and n-C3H7O2 was performed at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311G(d,p) level of theory. Computational results show that the HO2 + n-C3H7O2 reaction proceeds on both singlet and triplet potential energy surfaces (PESs). From an energetic point of view, the formation of C3H7O2H and 3O2via triplet hydrogen abstraction is the most favorable channel while other product channels are negligible. In addition, the calculated rate constants for the title reaction over the temperature range of 238–398 K were calculated by the multiconformer transition state theory (MC-TST), and the calculated rate constants show a negative temperature dependence. The contributions of the other four reaction channels to the total rate constant are negligible. The negative temperature dependence for the HO2 + n-C3H7O2 reaction in lower temperature regime.![]()
Collapse
Affiliation(s)
- Zhenli Yang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China .,University of Science and Technology of China Hefei 230026 China
| | - Xiaoxiao Lin
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Jiacheng Zhou
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China .,University of Science and Technology of China Hefei 230026 China
| | - Mingfeng Hu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Yanbo Gai
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Bo Long
- College of Computer and Information Engineering, Guizhou Minzu University Guiyang 550025 China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 Anhui China .,School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
50
|
Møller KH, Kurtén T, Bates KH, Thornton JA, Kjaergaard HG. Thermalized Epoxide Formation in the Atmosphere. J Phys Chem A 2019; 123:10620-10630. [DOI: 10.1021/acs.jpca.9b09364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, POB 55, FIN-00014 Helsinki, Finland
| | - Kelvin H. Bates
- Center for the Environment, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|