1
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Hovan A, Gala M, Sedláková D, Bánó G, Lee OS, Žoldák G, Sedlák E. On the production of singlet oxygen by the isoalloxazine ring in free and protein-bound flavin cofactors. Biophys Chem 2025; 316:107333. [PMID: 39413722 DOI: 10.1016/j.bpc.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, 1O2, with high efficiency, ΦΔ,FMN ∼ 0.6. In fact, in contrast with one main conformation of FMN in water, the presence of the adenosine mononucleotide in FAD induces a dynamic equilibrium of two main conformations - closed (∼80 %) and open (∼20 %). The presence of predominant closed conformation of FAD in water has a significant impact on the ΦΔ,FAD value, which is nearly 10-fold lower, ΦΔ,FAD ∼ 0.07, than that of FMN. On the other hand, based on our analysis of a non-homologous dataset of FAD containing 105 proteins, ∼75 % enzyme-bound FAD exists predominantly in open conformations but the ΦΔ values are significantly decreased, ΦΔ < 0.03. We addressed these contradictory observations by analysis of: (i) dependence of ΦΔ,FAD value on opening the FAD conformation by urea and (ii) amino acid propensities for isoalloxazine binding site. We demonstrated that urea-induced destabilization, in 7 M vs 0 M urea, of the closed FAD conformation leads to a ∼ 3-fold increase of ΦΔ, proving the causative relation between ΦΔ value and the flavin cofactor conformation. Detailed examination of the flavoproteins dataset clearly indicated positive propensities of three amino acids: glycine, cysteine, and tryptophan for isoalloxazine ring binding site. We hypothesize that both the closed conformation of free FAD and the arrangement of the isoalloxazine binding site is important for prevention of potentially harmful 1O2 production in cells.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
3
|
Zhuang B, Ramodiharilafy R, Aleksandrov A, Liebl U, Vos MH. Mechanism of ultrafast flavin photoreduction in the active site of flavoenzyme LSD1 histone demethylase. Chem Sci 2024; 16:338-344. [PMID: 39620080 PMCID: PMC11603641 DOI: 10.1039/d4sc06857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
Photoreduction of oxidized flavins has a functional role in photocatalytic and photoreceptor flavoproteins. In flavoproteins without light-dependent physiological functions, ultrafast, reversible flavin photoreduction is supposedly photoprotective by nature, and holds potential for nonnatural photocatalytic applications. In this work, we combine protein mutagenesis, ultrafast spectroscopy, molecular dynamics simulations and quantum mechanics calculations to investigate the nonfunctional flavin photoreduction in a flavoenzyme, lysine-specific demethylase 1 (LSD1) which is pivotal in DNA transcription. LSD1 harbors an oxidized flavin adenine dinucleotide (FAD) cofactor and multiple electron-donating residues in the active site. Upon photoexcitation, the FAD cofactor is photoreduced in <200 fs by electron transfer (ET) from nearby residue(s), and the charge pairs recombine in ca. 2 ps. Site-directed mutagenesis pinpoints a specific tryptophan residue, W751, as the primary electron donor, whereas a tyrosine residue, Y761, despite being located closer to the flavin ring, does not effectively contribute to the process. Based on a hybrid quantum-classical computational approach, we characterize the W751-FAD and Y761-FAD charge-transfer states (CTW751 and CTY761, respectively), as well as the FAD locally excited state (LEFAD), and demonstrate that the coupling between LEFAD and CTW751 is larger than those involving CTY761 by an order of magnitude, rationalizing the experimental observations. More generally, this work highlights the role of the intrinsic protein environment and details of donor-acceptor molecular configurations on the dynamics of short-range ET involving a flavin cofactor and amino acid residue(s).
Collapse
Affiliation(s)
- Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Rivo Ramodiharilafy
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Ursula Liebl
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| |
Collapse
|
4
|
Hovan A, Sedláková D, Lee OS, Bánó G, Sedlák E. pH modulates efficiency of singlet oxygen production by flavin cofactors. RSC Adv 2024; 14:28783-28790. [PMID: 39263436 PMCID: PMC11388723 DOI: 10.1039/d4ra05540c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are frequently used interchangeably in the catalysis of various reactions as part of flavoenzymes because they have the same functional component, the isoalloxazine ring. However, they differ significantly in their conformational properties. The inclusion of two planar rings in the structure of FAD greatly increases the range of possible conformations compared to FMN. An exemplary instance of this is the remarkable disparity in singlet oxygen efficiency production, Φ Δ, between FMN and FAD. Under neutral pH conditions, FAD has low photosensitizing activity with Φ Δ ∼ 0.07 while FMN demonstrates high photosensitizing activity with Φ Δ ∼ 0.6. Both adenine rings and isoalloxazine in FAD contain pH titratable groups. Through comprehensive analysis of the kinetics of the transient absorbance of the triplet state and the phosphorescence of singlet oxygen from FAD and FMN, we determined the correlation between different conformational states and the pH-dependent generation of singlet oxygen. Based on our findings, we may deduce that within the pH range of pH 2 to pH 13, only two out of the five potential structural states of FAD are capable of efficiently producing singlet oxygen. There are two open conformations: (i) an acidic FAD conformation with a protonated adenine ring, which is around 10 times more populated than the neutral open FAD conformation, and (ii) a neutral pH FAD conformation, which is significantly less populated. The FAD conformer with a protonated adenine ring at acidic pH generates singlet oxygen with approximately 50% efficiency compared to the constantly open FMN at neutral pH. This may have implications for singlet oxygen synthesis in acidic environments.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice Moyzesova 11 041 54 Košice Slovakia
| |
Collapse
|
5
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
6
|
Ihara M, Tsuchida N, Sumida M, Himiyama T, Kitayama T, Shirasaka N, Fukuta Y. Crystal Structure of the Native Chromoprotein from Pleurotus salmoneostramineus Provides Insights into the Pigmentation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17626-17632. [PMID: 39073883 PMCID: PMC11311226 DOI: 10.1021/acs.jafc.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
The pink-colored protein from the fungus Pleurotus salmoneostramineus (PsPCP) possesses unusual primary sequences with little resemblance to those of known proteins and exhibits a red color in aqueous solution. To understand the pigmentation mechanism of PsPCP, we elucidated the X-ray crystal structure of the native PsPCP. We identified a highly conjugated polyene ligand 2-dehydro-3-deoxylaetiporic acid A as a chromophore ligand, whose solution exhibits yellow. The crystal structure of PsPCP indicated that the ligand is secured in the central cavity and anchored at both termini by hydrophilic interactions and that surrounding residues show CH-pi and C-H···O hydrogen bondings. Geometrical analyses of the bound ligand demonstrated that the conjugated C-C and C═C bonds exhibit similar bond distances. The result indicated enhanced electron delocalization within the conjugated CC bond system, resulting in a redshift of the chromophore ligand. The computational estimates of the UV-vis spectra support the view that the electron delocalization within the conjugated CC bonds system of the bound ligand, induced by the specific ligand geometry within a limited space of PsPCP cavity, is responsible for the red pigmentation of PsPCP. Thus, we propose that the coloring mechanism of PsPCP, which constrains the geometry of a highly conjugated polyene ligand, is a novel type of pigment chemistry.
Collapse
Affiliation(s)
- Makoto Ihara
- Faculty
of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| | - Noriko Tsuchida
- Faculty
of Medicine, Saitama Medical University, 38 Moroyama, Saitama 350-8550, Japan
| | - Marina Sumida
- Faculty
of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| | - Tomoki Himiyama
- National
Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Takashi Kitayama
- Faculty
of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| | - Norifumi Shirasaka
- Faculty
of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| | - Yasuhisa Fukuta
- Faculty
of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| |
Collapse
|
7
|
Wörner S, Rauthe P, Werner J, Afonin S, Ulrich AS, Unterreiner AN, Wagenknecht HA. Flavin-induced charge separation in transmembrane model peptides. Org Biomol Chem 2024; 22:5930-5935. [PMID: 38973494 DOI: 10.1039/d4ob00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hydrophobic peptide models derived from the α-helical transmembrane segment of the epidermal growth factor receptor were synthetically modified with a flavin amino acid as a photo-inducible charge donor and decorated with tryptophans along the helix as charge acceptors. The helical conformation of the peptides was conserved despite the modifications, notably also in lipid vesicles and multibilayers. Their ability to facilitate photo-induced transmembrane charge transport was examined by means of steady-state and time-resolved optical spectroscopy. The first tryptophan next to the flavin donor plays a major role in initiating the charge transport near the N-terminus, while the other tryptophans might promote charge transport along the transmembrane helix. These artificially modified, but still naturally derived helical peptides are important models for studying transmembrane electron transfer and the principles of photosynthesis.
Collapse
Affiliation(s)
- Samantha Wörner
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Werner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG2), POB 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG2), POB 3640, 76021 Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
8
|
Agee A, Pace G, Yang V, Segalman R, Furst AL. Mixed Conducting Polymers Alter Electron Transfer Thermodynamics to Boost Current Generation from Electroactive Microbes. J Am Chem Soc 2024; 146:19728-19736. [PMID: 39001879 PMCID: PMC11276794 DOI: 10.1021/jacs.4c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Electroactive microbes that can release or take up electrons are essential components of nearly every ecological niche and are powerful tools for the development of alternative energy technologies. Small-molecule mediators are critical for this electron transfer but remain difficult to study and engineer because they perform concerted two-electron transfer in native systems but only individual, one-electron transfers in electrochemical studies. Here, we report that electrode modification with ion- and electron-conductive polymers yields biosimilar, concerted two-electron transfer from Shewanella oneidensis via flavin mediators. S. oneidensis biofilms on these polymers show significantly improved per-microbe current generation and morphologies that more closely resemble native systems, setting a new paradigm for the study and optimization of these electron transfer processes. The unprecedented concerted electron transfer was found to be due to altered mediator electron transfer thermodynamics, enabling biologically relevant studies of electroactive biofilms in the lab for the first time. These important findings pave the way for a complete understanding of the ecological role of electroactive microbes and their broad application in sustainable technologies.
Collapse
Affiliation(s)
- Alec Agee
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gordon Pace
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Victoria Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachel Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Xu J, Hao J, Bu C, Meng Y, Xiao H, Zhang M, Li C. XMECP: Reaching State-of-the-Art MECP Optimization in Multiscale Complex Systems. J Chem Theory Comput 2024; 20:3590-3600. [PMID: 38651739 DOI: 10.1021/acs.jctc.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.
Collapse
Affiliation(s)
- Jiawei Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Hao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caijie Bu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, Fujian, P. R. China
| | - Yajie Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Minyi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, P. R. China
| |
Collapse
|
10
|
Aleksandrov A, Bonvalet A, Müller P, Sorigué D, Beisson F, Antonucci L, Solinas X, Joffre M, Vos MH. Catalytic Mechanism of Fatty Acid Photodecarboxylase: On the Detection and Stability of the Initial Carbonyloxy Radical Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401376. [PMID: 38466236 DOI: 10.1002/anie.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
In fatty acid photodecarboxylase (FAP), light-induced formation of the primary radical product RCOO⋅ from fatty acid RCOO- occurs in 300 ps, upon which CO2 is released quasi-immediately. Based on the hypothesis that aliphatic RCOO⋅ (spectroscopically uncharacterized because unstable) absorbs in the red similarly to aromatic carbonyloxy radicals such as 2,6-dichlorobenzoyloxy radical (DCB⋅), much longer-lived linear RCOO⋅ has been suggested recently. We performed quantum chemical reaction pathway and spectral calculations. These calculations are in line with the experimental DCB⋅ decarboxylation dynamics and spectral properties and show that in contrast to DCB⋅, aliphatic RCOO⋅ radicals a) decarboxylate with a very low energetic barrier and on the timescale of a few ps and b) exhibit little red absorption. A time-resolved infrared spectroscopy experiment confirms very rapid, ≪300 ps RCOO⋅ decarboxylation in FAP. We argue that this property is required for the observed high quantum yield of hydrocarbons formation by FAP.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Adeline Bonvalet
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Damien Sorigué
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108, Saint-Paul-lez-Durance, France
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Fred Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108, Saint-Paul-lez-Durance, France
| | - Laura Antonucci
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Xavier Solinas
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Manuel Joffre
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| |
Collapse
|
11
|
Melčák M, Šebesta F, Heyda J, Gray HB, Záliš S, Vlček A. Tryptophan to Tryptophan Hole Hopping in an Azurin Construct. J Phys Chem B 2024; 128:96-108. [PMID: 38145895 PMCID: PMC10788906 DOI: 10.1021/acs.jpcb.3c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Electron transfer (ET) between neutral and cationic tryptophan residues in the azurin construct [ReI(H126)(CO)3(dmp)](W124)(W122)CuI (dmp = 4,7-Me2-1,10-phenanthroline) was investigated by Born-Oppenheimer quantum-mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) simulations. We focused on W124•+ ← W122 ET, which is the middle step of the photochemical hole-hopping process *ReII(CO)3(dmp•-) ← W124 ← W122 ← CuI, where sequential hopping amounts to nearly 10,000-fold acceleration over single-step tunneling (ACS Cent. Sci. 2019, 5, 192-200). In accordance with experiments, UKS-DFT QM/MM/MD simulations identified forward and reverse steps of W124•+ ↔ W122 ET equilibrium, as well as back ET ReI(CO)3(dmp•-) → W124•+ that restores *ReII(CO)3(dmp•-). Strong electronic coupling between the two indoles (≥40 meV in the crossing region) makes the productive W124•+ ← W122 ET adiabatic. Energies of the two redox states are driven to degeneracy by fluctuations of the electrostatic potential at the two indoles, mainly caused by water solvation, with contributions from the protein dynamics in the W122 vicinity. ET probability depends on the orientation of Re(CO)3(dmp) relative to W124 and its rotation diminishes the hopping yield. Comparison with hole hopping in natural systems reveals structural and dynamics factors that are important for designing efficient hole-hopping processes.
Collapse
Affiliation(s)
- Martin Melčák
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Filip Šebesta
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague, Czech Republic
| | - Jan Heyda
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Harry B. Gray
- Beckman
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanislav Záliš
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
12
|
Vos MH. Filming DNA repair at the atomic level. Science 2023; 382:996-997. [PMID: 38033077 DOI: 10.1126/science.adl3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Dissection of multistep catalysis by a photoenzyme could inspire green chemistry applications.
Collapse
Affiliation(s)
- Marten H Vos
- Laboratoire d'Optique et Biosciences, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
13
|
Uleanya KO, Anstöter CS, Dessent CEH. Photodissociative decay pathways of the flavin mononucleotide anion and its complexes with tryptophan and glutamic acid. Phys Chem Chem Phys 2023; 25:30697-30707. [PMID: 37934009 DOI: 10.1039/d3cp04359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Flavin mononucleotide (FMN) is a highly versatile biological chromophore involved in a range of biochemical pathways including blue-light sensing proteins and the control of circadian rhythms. Questions exist about the effect of local amino acids on the electronic properties and photophysics of the chromophore. Using gas-phase anion laser photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (3.1-5.7 eV) and accompanying photodissociative decay pathways of the native deprotonated form of FMN, i.e. [FMN-H]- complexed with the amino acids tryptophan (TRP) and glutamic acid (GLU), i.e. [FMN-H]-·TRP and [FMN-H]-·GLU, to investigate the extent to which these amino acids perturb the electronic properties and photodynamics of the [FMN-H]- chromophore. The overall photodepletion profiles of [FMN-H]-·TRP and [FMN-H]-·GLU are similar to that of the monomer, revealing that amino acid complexation occurs without significant spectral shifting of the [FMN-H]- electronic excitations over this region. Both [FMN-H]-·TRP and [FMN-H]-·GLU are observed to decay by non-statistical photodecay pathways, although the behaviour of [FMN-H]-·TRP is closer to statistical fragmentation. Long-lived FMN excited states (triplet) are therefore relatively quenched when TRP binds to [FMN-H]-. Importantly, we find that [FMN-H]-, [FMN-H]-·TRP and [FMN-H]-·GLU all decay predominantly via electron detachment following photoexcitation of the flavin chromophore, with amino acid complexation appearing not to inhibit this decay channel. The strong propensity for electron detachment is attributed to excited-state proton transfer within FMN, with proton transfer from a ribose alcohol to the phosphate preceding electron detachment.
Collapse
Affiliation(s)
- Kelechi O Uleanya
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Cate S Anstöter
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
14
|
Raics K, Pirisi K, Zhuang B, Fekete Z, Kis-Bicskei N, Pecsi I, Ujfalusi KP, Telek E, Li Y, Collado JT, Tonge PJ, Meech SR, Vos MH, Bodis E, Lukacs A. Photocycle alteration and increased enzymatic activity in genetically modified photoactivated adenylate cyclase OaPAC. J Biol Chem 2023; 299:105056. [PMID: 37468104 PMCID: PMC10448171 DOI: 10.1016/j.jbc.2023.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.
Collapse
Affiliation(s)
- Katalin Raics
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Bo Zhuang
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Ildiko Pecsi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Elek Telek
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang City, China
| | | | - Peter J Tonge
- Department of Chemistry, Stony Brook University, New York, USA
| | | | - Marten H Vos
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Emoke Bodis
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
15
|
Hope TO, Reyes-Robles T, Ryu KA, Mauries S, Removski N, Maisonneuve J, Oslund RC, Fadeyi OO, Frenette M. Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical-radical recombination pathway. Chem Sci 2023; 14:7327-7333. [PMID: 37416718 PMCID: PMC10321502 DOI: 10.1039/d3sc00638g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism-primarily with the excited riboflavin-photocatalyst or singlet oxygen-and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical-radical recombination.
Collapse
Affiliation(s)
- Taylor O Hope
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | | | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | - Steven Mauries
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Nicole Removski
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Jacinthe Maisonneuve
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | | | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
16
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
17
|
Zhuang B, Aleksandrov A, Seo D, Vos MH. Excited-State Properties of Fully Reduced Flavins in Ferredoxin-NADP + Oxidoreductase. J Phys Chem Lett 2023; 14:1096-1102. [PMID: 36700861 DOI: 10.1021/acs.jpclett.2c03741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fully reduced flavin cofactor (FADred) in ferredoxin-NADP+ oxidoreductase (FNR) is a functional intermediate that displays different catalytic and steady-state spectral properties for enzymes from Bacillus subtilis (BsFNR), Chlorobaculum tepidum (CtFNR), and Rhodopseudomonas palustris (RpFNR). Using ultrafast spectroscopy, we reveal that at physiological pH, photoexcited FADred in BsFNR and RpFNR exhibits unprecedentedly fast decays (dominantly in 6 and 8 ps, respectively), whereas in CtFNR the decay is much slower (∼400 ps), as in other flavoproteins. Correlating these observations with the protonation states of FADred and the dynamic properties of the protein environment, we conclude that the excited state of neutral FADred can be intrinsically short-lived even in proteins, contrasting with the well-documented behavior of the anionic form that systematically displays markedly increased excited-state lifetime upon binding to proteins. This work provides new insight into the photochemistry of fully reduced flavins, which are emerging as functional initial states in bioengineered photocatalysts.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
18
|
Weik M, Domratcheva T. Insight into the structural dynamics of light sensitive proteins from time-resolved crystallography and quantum chemical calculations. Curr Opin Struct Biol 2022; 77:102496. [PMID: 36462226 DOI: 10.1016/j.sbi.2022.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
The structural dynamics underlying molecular mechanisms of light-sensitive proteins can be studied by a variety of experimental and computational biophysical techniques. Here we review recent progress in combining time-resolved crystallography at X-ray free electron lasers and quantum chemical calculations to study structural changes in photoenzymes, photosynthetic proteins, photoreceptors, and photoswitchable fluorescent proteins following photoexcitation.
Collapse
Affiliation(s)
- Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Zhuang B, Vos MH. Photoswitching Behavior of Flavin-Inhibitor Complex in a Nonphotocatalytic Flavoenzyme. J Am Chem Soc 2022; 144:11569-11573. [PMID: 35727223 DOI: 10.1021/jacs.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented photoswitching phenomenon of flavin-inhibitor complexes in a flavoenzyme was revealed by femtosecond transient absorption spectroscopy. The vast majority of flavoenzymes, including monomeric sarcosine oxidase (MSOX), perform non-light-driven physiological functions. Yet, the participation of flavin cofactors in photoinduced electron transfer reactions is widespread. MSOX catalyzes the oxidative demethylation of sarcosine; methylthioacetate (MTA) is a substrate analog inhibitor that forms a complex with MSOX exhibiting intense absorption bands over the whole visible range due to flavin-MTA charge transfer (CT) interactions. Here, we demonstrate that upon excitation, these CT interactions vanish during a barrierless high quantum yield reaction in ∼300 fs. The initial complex subsequently geminately re-forms in a few nanoseconds near room temperature in a thermally activated way with an activation energy of 28 kJ/mol. We attribute this hitherto undocumented process to a well-defined photoinduced isomerization of MTA in the active site, as corroborated by experiments with the heavier ligand methylselenoacetate. Photoisomerization phenomena involving CT transitions may be further explored in photocatalytic and photoswitching applications of flavoenzymes.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|