1
|
Alshehri A, Tickner BJ, Iali W, Duckett SB. Enhancing the NMR signals of plant oil components using hyperpolarisation relayed via proton exchange. Chem Sci 2023; 14:9843-9853. [PMID: 37736655 PMCID: PMC10510812 DOI: 10.1039/d3sc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of μM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.
Collapse
Affiliation(s)
- Adel Alshehri
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Ben J Tickner
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Wissam Iali
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Simon B Duckett
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| |
Collapse
|
2
|
Zlobina VV, Kiryutin AS, Nikovskiy IA, Artyushin OI, Kozinenko VP, Peregudov AS, Yurkovskaya AV, Novikov VV. Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives. Int J Mol Sci 2022; 24:ijms24010557. [PMID: 36613997 PMCID: PMC9820518 DOI: 10.3390/ijms24010557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Parahydrogen-induced nuclear polarization offers a significant increase in the sensitivity of NMR spectroscopy to create new probes for medical diagnostics by magnetic resonance imaging. As precursors of the biocompatible hyperpolarized probes, unsaturated derivatives of phosphoric acid, propargyl and allyl phosphates, are proposed. The polarization transfer to 1H and 31P nuclei of the products of their hydrogenation by parahydrogen under the ALTADENA and PASADENA conditions, and by the PH-ECHO-INEPT+ pulse sequence of NMR spectroscopy, resulted in a very high signal amplification, which is among the largest for parahydrogen-induced nuclear polarization transfer to the 31P nucleus.
Collapse
Affiliation(s)
- Veronika V. Zlobina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, Pirogova Str. 2, 30090 Novosibirsk, Russia
| | - Igor A. Nikovskiy
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Oleg I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Vitaly P. Kozinenko
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, Pirogova Str. 2, 30090 Novosibirsk, Russia
| | - Alexander S. Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, Pirogova Str. 2, 30090 Novosibirsk, Russia
| | - Valentin V. Novikov
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
- BMSTU Center of National Technological Initiative “Digital Material Science: New Material and Substances”, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Eriksson SL, Mammen MW, Eriksson CW, Lindale JR, Warren WS. Multiaxial fields improve SABRE efficiency by preserving hydride order. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107282. [PMID: 35970048 DOI: 10.1016/j.jmr.2022.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Signal Amplification By Reversible Exchange (SABRE) and the heteronuclear variant, X-SABRE, increase the sensitivity of magnetic resonance techniques using order derived from reversible binding of para-hydrogen. One current limitation of SABRE is suboptimal polarization transfer over the lifetime of the complex. Here, we demonstrate a multiaxial low-field pulse sequence which allows optimal polarization build-up during a low-field "evolution" pulse, followed by a high-field "mixing" pulse which permits proton decoupling along an orthogonal axis. This preserves the singlet character of the hydrides while allowing exchange to replenish the ligands on the iridium catalyst. This strategy leads to a 2.5-fold improvement over continuous field SABRE SHEATH experimentally which was confirmed with numerical simulation.
Collapse
Affiliation(s)
- Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, United States; School of Medicine, Duke University, Durham, NC 27708, United States
| | - Mathew W Mammen
- Department of Physics, Duke University, NC 27708, United States
| | - Clark W Eriksson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Warren S Warren
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
4
|
Li X, Lindale JR, Eriksson SL, Warren WS. SABRE enhancement with oscillating pulse sequences. Phys Chem Chem Phys 2022; 24:16462-16470. [PMID: 35552575 DOI: 10.1039/d2cp00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, combined with simulations and experiment, shows substantial magnetization improvements relative to traditional X-SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time symmetry in the toggling frame make magnetization generation more robust to experimental imperfections.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Physics, Duke University Durham, NC 27708, USA.
| | - Jacob R Lindale
- Department of Chemistry, Duke University Durham, NC 27708, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University Durham, NC 27708, USA
- School of Medicine, Duke University Durham, NC 27708, USA
| | - Warren S Warren
- Department of Physics, Duke University Durham, NC 27708, USA.
- Department of Chemistry, Duke University Durham, NC 27708, USA
- Department of Biomedical Engineering, and Radiology, Duke University, Durham, NC (27708), USA.
| |
Collapse
|
5
|
Fraser R, Rutjes FPJT, Feiters MC, Tessari M. Analysis of Complex Mixtures by Chemosensing NMR Using para-Hydrogen-Induced Hyperpolarization. Acc Chem Res 2022; 55:1832-1844. [PMID: 35709417 PMCID: PMC9260963 DOI: 10.1021/acs.accounts.1c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR) is a powerful technique for chemical
analysis. The use of NMR to investigate dilute analytes in complex
systems is, however, hampered by its relatively low sensitivity. An
additional obstacle is represented by the NMR signal overlap. Because
solutes in a complex mixture are usually not isotopically labeled,
NMR studies are often limited to 1H measurements, which,
because of the modest dispersion of the 1H resonances (typically
∼10 ppm), can result in challenging signal crowding. The low
NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization
(i.e., transiently increasing the differences in nuclear spin populations),
which determines large NMR signal enhancements. This has been demonstrated
for hyperpolarization methods such as dynamic nuclear polarization,
spin-exchange optical pumping and para-hydrogen-induced
polarization (PHIP). In particular, PHIP has grown into a fast, efficient,
and versatile technique since the recent discovery of non-hydrogenative
routes to achieve nuclear spin hyperpolarization. For instance,
signal amplification by reversible exchange (SABRE)
can generate proton as well as heteronuclear spin hyperpolarization
in a few seconds in compounds that are able to transiently bind to
an iridium catalyst in the presence of para-hydrogen
in solution. The hyperpolarization transfer catalyst acts as a chemosensor
in the sense that it is selective for analytes that can coordinate
to the metal center, such as nitrogen-containing aromatic heterocycles,
sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines,
carboxylic acids, and amines. We have demonstrated that the signal
enhancement achieved by SABRE allows rapid NMR detection and quantification
of a mixture of substrates down to low-micromolar concentration. Furthermore,
in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization
to produce up to 1000-fold enhanced NMR hydride signals. Because the
hydrides’ chemical shifts are highly sensitive to the structure
of the analyte associating with the iridium complex, they can be employed
as hyperpolarized “probes” to signal the presence of
specific compounds in the mixture. This indirect detection of the
analytes in solution provides important benefits in the case of complex
systems, as hydrides resonate in a region of the 1H spectrum
(at ca. −20 ppm) that is generally signal-free. The enhanced
sensitivity provided by non-hydrogenative PHIP (nhPHIP), together
with the absence of interference from the complex matrix (usually
resonating between 0 and 10 ppm), set the detection limit for this
NMR chemosensor down to sub-μM concentrations, approximately
3 orders of magnitude lower than for conventional NMR. This nhPHIP
approach represents, therefore, a powerful tool for NMR analysis of
dilute substrates in complex mixtures as it addresses at once the
issues of signal crowding and NMR sensitivity. Importantly, being
performed at high field inside the NMR spectrometer, the method allows
for rapid acquisition of multiple scans, multidimensional hyperpolarized
NMR spectra, in a fashion comparable to that of standard NMR measurements. In this Account, we focus on our chemosensing NMR technology, detailing
its principles, advantages, and limitations and presenting a number
of applications to real systems such as biofluids, beverages, and
natural extracts.
Collapse
Affiliation(s)
- Roan Fraser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martin C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
7
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
8
|
Eriksson SL, Lindale JR, Li X, Warren WS. Improving SABRE hyperpolarization with highly nonintuitive pulse sequences: Moving beyond avoided crossings to describe dynamics. SCIENCE ADVANCES 2022; 8:eabl3708. [PMID: 35294248 PMCID: PMC8926330 DOI: 10.1126/sciadv.abl3708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 05/26/2023]
Abstract
Signal amplification by reversible exchange (SABRE) creates "hyperpolarization" (large spin magnetization) using a transition metal catalyst and parahydrogen, addressing the sensitivity limitations of magnetic resonance. SABRE and its heteronuclear variant X-SABRE are simple, fast, and general, but to date have not produced polarization levels as large as more established methods. We show here that the commonly used theoretical framework for these applications, which focuses on avoided crossings (also called level anticrossings or LACs), steer current SABRE and X-SABRE experiments away from optimal solutions. Accurate simulations show astonishingly rich and unexpected dynamics in SABRE/X-SABRE, which we explain with a combination of perturbation theory and average Hamiltonian approaches. This theoretical picture predicts simple pulse sequences with field values far from LACs (both instantaneously and on average) using different terms in the effective Hamiltonian to strategically control evolution and improve polarization transfer. Substantial signal enhancements under such highly nonintuitive conditions are verified experimentally.
Collapse
Affiliation(s)
- Shannon L. Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- School of Medicine, Duke University, Durham, NC 27708, USA
| | | | - Xiaoqing Li
- Department of Physics, Duke University, Durham, NC 27708, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC 27704, USA
| |
Collapse
|
9
|
Tickner BJ, Komulainen S, Palosaari S, Heikkinen J, Lehenkari P, Zhivonitko VV, Telkki VV. Hyperpolarised NMR to aid molecular profiling of electronic cigarette aerosols. RSC Adv 2022; 12:1479-1485. [PMID: 35425197 PMCID: PMC8979170 DOI: 10.1039/d1ra07376a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Signal amplification by reversible exchange (SABRE) hyperpolarisation is used to enhance the NMR signals of nicotine and acrolein in methanol-d4 solutions of electronic cigarette aerosols. Consequently, detection of 74 μM nicotine is possible in just a single scan 1H NMR spectrum. The first example of an aldehyde hyperpolarised using SABRE is demonstrated and we work towards novel real-world applications of SABRE-hyperpolarised NMR for chemical analysis.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu 90014 Finland
| | - Sanna Komulainen
- NMR Research Unit, Faculty of Science, University of Oulu 90014 Finland
| | - Sanna Palosaari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
- Medical Research Center Oulu, Faculty of Medicine, University of Oulu and Oulu University Hospital 90014 Finland
| | - Janne Heikkinen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
- Medical Research Center Oulu, Faculty of Medicine, University of Oulu and Oulu University Hospital 90014 Finland
- Division of Orthopedic Surgery, Oulu University Hospital 90220 Finland
| | | | | |
Collapse
|
10
|
Kiryutin AS, Yurkovskaya AV, Petrov PA, Ivanov KL. Simultaneous 15 N polarization of several biocompatible substrates in ethanol-water mixtures by signal amplification by reversible exchange (SABRE) method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1216-1224. [PMID: 34085303 DOI: 10.1002/mrc.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Chukanov NV, Salnikov OG, Trofimov IA, Kabir MSH, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis and 15 N NMR Signal Amplification by Reversible Exchange of [ 15 N]Dalfampridine at Microtesla Magnetic Fields. Chemphyschem 2021; 22:960-967. [PMID: 33738893 DOI: 10.1002/cphc.202100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15 N-labeled [15 N]dalfampridine (4-amino[15 N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15 N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15 N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15 N polarization levels of [15 N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15 N polarization levels of free and equatorial catalyst-bound [15 N]dalfampridine were investigated. Moreover, we studied 15 N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15 N polarization decay at the Earth's magnetic field and at 1.4 T.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.,Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
13
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Alcicek S, Put P, Kontul V, Pustelny S. Zero-Field NMR J-Spectroscopy of Organophosphorus Compounds. J Phys Chem Lett 2021; 12:787-792. [PMID: 33411543 PMCID: PMC7877728 DOI: 10.1021/acs.jpclett.0c03532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organophosphorus compounds are a wide and diverse class of chemicals playing a crucial role in living organisms. This aspect has been often investigated using nuclear magnetic resonance (NMR), which provides information about molecular structure and function. In this paper, we report the results of theoretical and experimental studies on basic organophosphorus compounds using zero-field NMR, where spin dynamics are investigated in the absence of a magnetic field with the dominant heteronuclear J-coupling. We demonstrate that the zero-field NMR enables distinguishing the chemicals owing to their unique electronic environment even though their spin systems have the same alphabetic designation. Such information can be obtained just in a single measurement, while amplitudes and widths of observed low-field NMR resonances enable the study of processes affecting spin dynamics. An excellent agreement between simulations and measurements of the spectra, particularly in the largest frequency J-couplings range ever reported in zero-field NMR, is demonstrated.
Collapse
|
15
|
Tickner BJ, Ahwal F, Whitwood AC, Duckett SB. Reversible Hyperpolarization of Ketoisocaproate Using Sulfoxide-containing Polarization Transfer Catalysts. Chemphyschem 2021; 22:13-17. [PMID: 33196137 PMCID: PMC7839500 DOI: 10.1002/cphc.202000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Indexed: 12/16/2022]
Abstract
The substrate scope of sulfoxide-containing magnetisation transfer catalysts is extended to hyperpolarize α-ketoisocaproate and α-ketoisocaproate-1-[13 C]. This is achieved by forming [Ir(H)2 (κ2 -ketoisocaproate)(N-heterocyclic carbene)(sulfoxide)] which transfers latent magnetism from p-H2 via the signal amplification by reversible exchange (SABRE) process. The effect of polarization transfer field on the formation of enhanced 13 C magnetization is evaluated. Consequently, performing SABRE in a 0.5 μT field enabled most efficient magnetisation transfer. 13 C NMR signals for α-ketoisocaproate-1-[13 C] in methanol-d4 are up to 985-fold more intense than their traditional Boltzmann derived signal intensity (0.8 % 13 C polarisation). Single crystal X-ray diffraction reveals the formation of the novel catalyst decomposition products [Ir(μ-H)(H)2 (IMes)(SO(Ph)(Me)2 )]2 and [(Ir(H)2 (IMes)(SO(Me)2 ))2 (μ-S)] when the sulfoxides methylphenylsulfoxide and dimethylsulfoxide are used respectively.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
- NMR Research Unit, Faculty of ScienceUniversity of OuluP.O. Box 300090014OuluFinland
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
| | | | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic ResonanceUniversity of York, HeslingtonYorkU.K.YO10 5NY
- Department of ChemistryUniversity of York, HeslingtonYorkU.K.YO10 5DD
| |
Collapse
|
16
|
Volkov PA, Telezhkin AA, Khrapova KO, Ivanova NI, Albanov AI, Gusarova NK, Trofimov BA. Metal-free SHN cross-coupling of pyridines with phosphine chalcogenides: polarization/deprotonation/oxidation effects of electron-deficient acetylenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00245g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Terminal acylacetylenes act as trimodal auxiliaries in SHN cross-coupling of pyridines with phosphine chalcogenides. The reaction proceeds via phosphorylation of the pyridine 2 position followed by 2 → 4-migration of phosphoryl moieties.
Collapse
Affiliation(s)
- Pavel A. Volkov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Anton A. Telezhkin
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Kseniya O. Khrapova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina I. Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander I. Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina K. Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| |
Collapse
|
17
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
Affiliation(s)
- Thomas Tennant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Matthew C Hulme
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Thomas B R Robertson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
18
|
Knecht S, Barskiy DA, Buntkowsky G, Ivanov KL. Theoretical description of hyperpolarization formation in the SABRE-relay method. J Chem Phys 2020; 153:164106. [PMID: 33138423 DOI: 10.1063/5.0023308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SABRE (Signal Amplification By Reversible Exchange) has become a widely used method for hyper-polarizing nuclear spins, thereby enhancing their Nuclear Magnetic Resonance (NMR) signals by orders of magnitude. In SABRE experiments, the non-equilibrium spin order is transferred from parahydrogen to a substrate in a transient organometallic complex. The applicability of SABRE is expanded by the methodology of SABRE-relay in which polarization can be relayed to a second substrate either by direct chemical exchange of hyperpolarized nuclei or by polarization transfer between two substrates in a second organometallic complex. To understand the mechanism of the polarization transfer and study the transfer efficiency, we propose a theoretical approach to SABRE-relay, which can treat both spin dynamics and chemical kinetics as well as the interplay between them. The approach is based on a set of equations for the spin density matrices of the spin systems involved (i.e., SABRE substrates and complexes), which can be solved numerically. Using this method, we perform a detailed study of polarization formation and analyze in detail the dependence of the attainable polarization level on various chemical kinetic and spin dynamic parameters. We foresee the applications of the present approach for optimizing SABRE-relay experiments with the ultimate goal of achieving maximal NMR signal enhancements for substrates of interest.
Collapse
Affiliation(s)
- Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Danila A Barskiy
- University of California at Berkeley, College of Chemistry and QB3, Berkeley, California 94720, USA
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parawasserstoff‐induzierte Hyperpolarisation von Gasen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Igor V. Koptyug
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
| |
Collapse
|
20
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parahydrogen-Induced Hyperpolarization of Gases. Angew Chem Int Ed Engl 2020; 59:17788-17797. [PMID: 31972061 PMCID: PMC7453723 DOI: 10.1002/anie.201915306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/16/2022]
Abstract
Imaging of gases is a major challenge for any modality including MRI. NMR and MRI signals are directly proportional to the nuclear spin density and the degree of alignment of nuclear spins with applied static magnetic field, which is called nuclear spin polarization. The level of nuclear spin polarization is typically very low, i.e., one hundred thousandth of the potential maximum at 1.5 T and a physiologically relevant temperature. As a result, MRI typically focusses on imaging highly concentrated tissue water. Hyperpolarization methods transiently increase nuclear spin polarizations up to unity, yielding corresponding gains in MRI signal level of several orders of magnitude that enable the 3D imaging of dilute biomolecules including gases. Parahydrogen-induced polarization is a fast, highly scalable, and low-cost hyperpolarization technique. The focus of this Minireview is to highlight selected advances in the field of parahydrogen-induced polarization for the production of hyperpolarized compounds, which can be potentially employed as inhalable contrast agents.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
21
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
22
|
Tickner BJ, Semenova O, Iali W, Rayner PJ, Whitwood AC, Duckett SB. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal Sci Technol 2020; 10:1343-1355. [PMID: 32647563 PMCID: PMC7315823 DOI: 10.1039/c9cy02498k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Hyperpolarisation techniques such as signal amplification by reversible exchange (SABRE) can deliver NMR signals several orders of magnitude larger than those derived under Boltzmann conditions. SABRE is able to catalytically transfer latent magnetisation from para-hydrogen to a substrate in reversible exchange via temporary associations with an iridium complex. SABRE has recently been applied to the hyperpolarisation of pyruvate, a substrate often used in many in vivo MRI studies. In this work, we seek to optimise the pyruvate-13C2 signal gains delivered through SABRE by fine tuning the properties of the active polarisation transfer catalyst. We present a detailed study of the effects of varying the carbene and sulfoxide ligands on the formation and behaviour of the active [Ir(H)2(η2-pyruvate)(sulfoxide)(NHC)] catalyst to produce a rationale for achieving high pyruvate signal gains in a cheap and refreshable manner. This optimisation approach allows us to achieve signal enhancements of 2140 and 2125-fold for the 1-13C and 2-13C sites respectively of sodium pyruvate-1,2-[13C2].
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Olga Semenova
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Wissam Iali
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Peter J Rayner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , YO10 5DD , UK
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| |
Collapse
|
23
|
Appelt S, Kentner A, Lehmkuhl S, Blümich B. From LASER physics to the para-hydrogen pumped RASER. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:1-32. [PMID: 31779878 DOI: 10.1016/j.pnmrs.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 06/10/2023]
Abstract
The properties of the LASER with respect to self-organization are compared with the key features of the p-H2 pumped RASER. According to LASER theory the equations of motion for the LASER can be derived from the enslaving principle, i.e. the slowest-changing order parameter (the light field in the resonator) enslaves the rapidly relaxing atomic degrees of freedom. Likewise, it is shown here that the equations of motion for the p-H2 pumped RASER result from a set of order parameters, where the transverse magnetization of the RASER-active spin states enslaves the electromagnetic modes. The consequences are striking for nuclear magnetic resonance (NMR) spectroscopy, since long-lasting multi-mode RASER oscillations enable unprecedented spectroscopic resolution down to the micro-Hertz regime. Based on the theory for multi-mode RASER operation we analyze the conditions that reveal either the collapse of the entire NMR spectrum, the occurrence of self-organized frequency-combs, or RASER spectra which reflect the J-coupled network of the molecule. Certain RASER experiments involving the protons of 15N pyridine or 3-picoline molecules pumped with p-H2 via SABRE (Signal Amplification By Reversible Exchange) show either a single RASER oscillation in the time domain, giant RASER pulses or a complex RASER beat pattern. The corresponding 1H spectra consist of one narrow line, equidistant narrow lines (frequency-comb), or highly resolved lines reporting NMR properties, respectively. Numerous applications in the areas of material sciences, fundamental physics and medicine involving high precision sensors for magnetic fields, rotational motions or molecular structures become feasible.
Collapse
Affiliation(s)
- S Appelt
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - A Kentner
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - S Lehmkuhl
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, D-52056 Aachen, Germany
| | - B Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, D-52056 Aachen, Germany
| |
Collapse
|
24
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
25
|
Štěpánek P, Kantola AM. Low-Concentration Measurements of Nuclear Spin-Induced Optical Rotation Using SABRE Hyperpolarization. J Phys Chem Lett 2019; 10:5458-5462. [PMID: 31454246 PMCID: PMC7076727 DOI: 10.1021/acs.jpclett.9b02194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Nuclear spin-induced optical rotation (NSOR) is a promising phenomenon for molecular structure elucidation due to its sensitivity to electronic structure near atomic nuclei. It is the only experimentally verified nuclear magneto-optic effect (NMOE), so far observed usually in neat liquids or in concentrated binary mixtures, with the proportion of the minor component at least 10%. We report a method to extend the lower-concentration range of NSOR measurements by 2 orders of magnitude by employing continuous-flow SABRE (signal amplification by reversible exchange) hyperpolarization. This approach significantly increases the sensitivity of NSOR and enables its detection in dilute samples, as demonstrated with measurements of NSOR of 90 mmol/L solutions of pyridine and pyrazine. The results are compared with first-principles calculations, and good agreement is found. The possibility to measure low-concentration solutions significantly extends the pool of samples available for further studies of NMOEs.
Collapse
|
26
|
Zhang G, Colell JFP, Glachet T, Lindale JR, Reboul V, Theis T, Warren WS. Terminal Diazirines Enable Reverse Polarization Transfer from
15
N
2
Singlets. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guannan Zhang
- Department of Chemistry Duke University Durham NC 27708 USA
| | | | - Thomas Glachet
- Normandie Univ LCMT, ENSICAEN UNICAEN CNRS 14000 Caen France
| | | | - Vincent Reboul
- Normandie Univ LCMT, ENSICAEN UNICAEN CNRS 14000 Caen France
| | - Thomas Theis
- Department of Chemistry NC State University Raleigh NC 27695 USA
| | - Warren S. Warren
- Department of Chemistry Duke University Durham NC 27708 USA
- Department of Physics, Radiology and Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
27
|
Zhang G, Colell JFP, Glachet T, Lindale JR, Reboul V, Theis T, Warren WS. Terminal Diazirines Enable Reverse Polarization Transfer from 15 N 2 Singlets. Angew Chem Int Ed Engl 2019; 58:11118-11124. [PMID: 31168901 DOI: 10.1002/anie.201904026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 01/09/2023]
Abstract
Diazirine moieties are chemically stable and have been incorporated into biomolecules without impediment of biological activity. The 15 N2 labeled diazirines are appealing motifs for hyperpolarization supporting relaxation protected states with long-lived lifetimes. The (-CH15 N2 ) diazirine groups investigated here are analogues to methyl groups, which provides the opportunity to transfer polarization stored on a relaxation protected (-CH15 N2 ) moiety to 1 H, thus combining the advantages of long lifetimes of 15 N polarization with superior sensitivity of 1 H detection. Despite the proximity of 1 H to 15 N nuclei in the diazirine moiety, 15 N T1 times of up to (4.6±0.4) min and singlet lifetimes Ts of up to (17.5±3.8) min are observed. Furthermore, we found terminal diazirines to support hyperpolarized 1 H2 singlet states in CH2 groups of chiral molecules. The singlet lifetime of 1 H singlets is up to (9.2±1.8) min, thus exceeding 1 H T1 relaxation time (at 8.45 T) by a factor of ≈100.
Collapse
Affiliation(s)
- Guannan Zhang
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | - Thomas Glachet
- Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 14000, Caen, France
| | - Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Vincent Reboul
- Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 14000, Caen, France
| | - Thomas Theis
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.,Department of, Physics, Radiology and Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
28
|
Svyatova A, Skovpin IV, Chukanov NV, Kovtunov KV, Chekmenev EY, Pravdivtsev AN, Hövener JB, Koptyug IV. 15 N MRI of SLIC-SABRE Hyperpolarized 15 N-Labelled Pyridine and Nicotinamide. Chemistry 2019; 25:8465-8470. [PMID: 30950529 PMCID: PMC6679352 DOI: 10.1002/chem.201900430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful non-invasive diagnostic method extensively used in biomedical studies. A significant limitation of MRI is its relatively low signal-to-noise ratio, which can be increased by hyperpolarizing nuclear spins. One promising method is Signal Amplification By Reversible Exchange (SABRE), which employs parahydrogen as a source of hyperpolarization. Recent studies demonstrated the feasibility to improve MRI sensitivity with this hyperpolarization technique. Hyperpolarized 15 N nuclei in biomolecules can potentially retain their spin alignment for tens of minutes, providing an extended time window for the utilization of the hyperpolarized compounds. In this work, we demonstrate for the first time that radio-frequency-based SABRE hyperpolarization techniques can be used to obtain 15 N MRI of biomolecule 1-15 N-nicotinamide. Two image acquisition strategies were utilized and compared: Single Point Imaging (SPI) and Fast Low Angle SHot (FLASH). These methods demonstrated opportunities of high-field SABRE for biomedical applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Ivan V Skovpin
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Nikita V Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Wayne State University, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Detroit, MI 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, Moscow, 119991, Russia
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| |
Collapse
|
29
|
Tickner BJ, John RO, Roy SS, Hart SJ, Whitwood AC, Duckett SB. Using coligands to gain mechanistic insight into iridium complexes hyperpolarized with para-hydrogen. Chem Sci 2019; 10:5235-5245. [PMID: 31191878 PMCID: PMC6540910 DOI: 10.1039/c9sc00444k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
We report the formation of a series of novel [Ir(H)2(IMes)(α-13C2-carboxyimine)L] complexes in which the identity of the coligand L is varied. When examined with para-hydrogen, complexes in which L is benzylamine or phenethylamine show significant 1H hydride and 13C2 imine enhancements and may exist in 13C2 singlet spin order. Isotopic labeling techniques are used to double 13C2 enhancements (up to 750-fold) and singlet state lifetimes (up to 20 seconds) compared to those previously reported. Exchange spectroscopy and Density Functional Theory are used to investigate the stability and mechanism of rapid hydrogen exchange in these complexes, a process driven by dissociative coligand loss to form a key five coordinate intermediate. When L is pyridine or imidazole, competitive binding to such intermediates leads to novel complexes whose formation, kinetics, behaviour, structure, and hyperpolarization is investigated. The ratio of the observed PHIP enhancements were found to be affected not only by the hydrogen exchange rates but the identity of the coligands. This ligand reactivity is accompanied by decoherence of any 13C2 singlet order which can be preserved by isotopic labeling. Addition of a thiol coligand proved to yield a thiol oxidative addition product which is characterized by NMR and MS techniques. Significant 870-fold 13C enhancements of pyridine can be achieved using the Signal Amplification By Reversible Exchange (SABRE) process when α-carboxyimines are used to block active coordination sites. [Ir(H)2(IMes)(α-13C2-carboxyimine)L] therefore acts as unique sensors whose 1H hydride chemical shifts and corresponding hyperpolarization levels are indicative of the identity of a coligand and its binding strength.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Richard O John
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Soumya S Roy
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Sam J Hart
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| |
Collapse
|
30
|
Štěpánek P, Sanchez-Perez C, Telkki VV, Zhivonitko VV, Kantola AM. High-throughput continuous-flow system for SABRE hyperpolarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:8-17. [PMID: 30684826 DOI: 10.1016/j.jmr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a versatile method for hyperpolarizing small organic molecules that helps to overcome the inherent low signal-to-noise ratio of nuclear magnetic resonance (NMR) measurements. It offers orders of magnitude enhanced signal strength, but the obtained nuclear polarization usually rapidly relaxes, requiring a quick transport of the sample to the spectrometer. Here we report a new design of a polarizing system, which can be used to prepare a continuous flow of SABRE-hyperpolarized sample with a considerable throughput of several millilitres per second and a rapid delivery into an NMR instrument. The polarizer performance under different conditions such as flow rate of the hydrogen or liquid sample is tested by measuring a series of NMR spectra and magnetic resonance images (MRI) of hyperpolarized pyridine in methanol. Results show a capability to continuously produce sample with dramatically enhanced signal over two orders of magnitude. The constant supply of hyperpolarized sample can be exploited, e.g., in experiments requiring multiple repetitions, such as 2D- and 3D-NMR or MRI measurements, and also naturally allows measurements of flow maps, including systems with high flow rates, for which the level of achievable thermal polarization might not be usable any more. In addition, the experiments can be viably carried out in a non-deuterated solvent, due to the effective suppression of the thermal polarization by the fast sample flow. The presented system opens the possibilities for SABRE experiments requiring a long-term, stable and high level of nuclear polarization.
Collapse
Affiliation(s)
- Petr Štěpánek
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Clara Sanchez-Perez
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, FI-90014, Finland.
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Anu M Kantola
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| |
Collapse
|
31
|
Manoharan A, Rayner PJ, Fekete M, Iali W, Norcott P, Hugh Perry V, Duckett SB. Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization. Chemphyschem 2018; 20:285-294. [DOI: 10.1002/cphc.201800915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Anand Manoharan
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Peter J. Rayner
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Marianna Fekete
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Wissam Iali
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Philip Norcott
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - V. Hugh Perry
- School of Biological Sciences; University of Southampton; Southampton UK
| | - Simon B. Duckett
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| |
Collapse
|
32
|
Rayner PJ, Norcott P, Appleby KM, Iali W, John RO, Hart SJ, Whitwood AC, Duckett SB. Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design. Nat Commun 2018; 9:4251. [PMID: 30315170 PMCID: PMC6185983 DOI: 10.1038/s41467-018-06766-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate's NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations offer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Philip Norcott
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Kate M Appleby
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Sam J Hart
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Adrian C Whitwood
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK.
| |
Collapse
|
33
|
Wong CM, Fekete M, Nelson-Forde R, Gatus MRD, Rayner PJ, Whitwood AC, Duckett SB, Messerle BA. Harnessing asymmetric N-heterocyclic carbene ligands to optimise SABRE hyperpolarisation. Catal Sci Technol 2018; 8:4925-4933. [PMID: 30319759 PMCID: PMC6171487 DOI: 10.1039/c8cy01214h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023]
Abstract
The catalytic signal amplification by reversible exchange process has become widely used for the hyperpolarisation of small molecules to improve their magnetic resonance detectability. It harnesses the latent polarisation of parahydrogen, and involves the formation of a labile metal complex that often contains an N-heterocyclic carbene (NHC) ligand (e.g. [Ir(H)2(NHC)(pyridine)3]Cl), which act as a polarisation transfer catalyst. Unfortunately, if the target molecule is too bulky, binding to the catalyst is poor and the hyperpolarisation yield is therefore low. We illustrate here the behaviour of a series of asymmetric NHC containing catalysts towards 3,4- and 3,5-lutidine in order to show how catalyst design can be used to dramatically improve the outcome of this catalytic process for sterically encumbered ligands.
Collapse
Affiliation(s)
- Chin Min Wong
- School of Chemistry , University of New South Wales , Sydney 2052 , Australia
- Department of Molecular Sciences , Macquarie University , North Ryde 2109 , Australia .
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance , York Science Park , University of York , Heslington , York YO10 5NY , UK .
| | - Rhianna Nelson-Forde
- Centre for Hyperpolarisation in Magnetic Resonance , York Science Park , University of York , Heslington , York YO10 5NY , UK .
| | - Mark R D Gatus
- Department of Molecular Sciences , Macquarie University , North Ryde 2109 , Australia .
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance , York Science Park , University of York , Heslington , York YO10 5NY , UK .
| | - Adrian C Whitwood
- Centre for Hyperpolarisation in Magnetic Resonance , York Science Park , University of York , Heslington , York YO10 5NY , UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance , York Science Park , University of York , Heslington , York YO10 5NY , UK .
| | - Barbara A Messerle
- Department of Molecular Sciences , Macquarie University , North Ryde 2109 , Australia .
| |
Collapse
|
34
|
Tickner BJ, Iali W, Roy SS, Whitwood AC, Duckett SB. Iridium α
-Carboxyimine Complexes Hyperpolarized with para
-Hydrogen Exist in Nuclear Singlet States before Conversion into Iridium Carbonates. Chemphyschem 2018; 20:241-245. [DOI: 10.1002/cphc.201800829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Ben. J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Adrian C. Whitwood
- Department of Chemistry; University of York; Heslington U.K. Kingdom YO10 5DD
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| |
Collapse
|
35
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
36
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
37
|
Richardson PM, Parrott AJ, Semenova O, Nordon A, Duckett SB, Halse ME. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy. Analyst 2018; 143:3442-3450. [PMID: 29917031 PMCID: PMC6040279 DOI: 10.1039/c8an00596f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.
Collapse
Affiliation(s)
- Peter M. Richardson
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Andrew J. Parrott
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Alison Nordon
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Meghan E. Halse
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| |
Collapse
|
38
|
Olaru AM, Burt A, Rayner PJ, Hart SJ, Whitwood AC, Green GGR, Duckett SB. Using signal amplification by reversible exchange (SABRE) to hyperpolarise 119Sn and 29Si NMR nuclei. Chem Commun (Camb) 2018; 52:14482-14485. [PMID: 27904890 PMCID: PMC5436037 DOI: 10.1039/c6cc07109k] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperpolarisation of the 119Sn and 29Si nuclei in 5-(tributylstannyl)pyrimidine (ASn) and 5-(trimethylsilyl)pyrimidine (BSi) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process.
The hyperpolarisation of the 119Sn and 29Si nuclei in 5-(tributylstannyl)pyrimidine (ASn) and 5-(trimethylsilyl)pyrimidine (BSi) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process. 1a exhibits superior activity in both cases. The two inequivalent pyrimidine proton environments of ASn readily yielded signal enhancements totalling ∼2300-fold in its 1H NMR spectrum at a field strength of 9.4 T, with the corresponding 119Sn signal being 700 times stronger than normal. In contrast, BSi produced analogous 1H signal gains of ∼2400-fold and a 29Si signal that could be detected with a signal to noise ratio of 200 in a single scan. These sensitivity improvements allow NMR detection within seconds using micromole amounts of substrate and illustrate the analytical potential of this approach for high-sensitivity screening. Furthermore, after extended reaction times, a series of novel iridium trimers of general form [Ir(H)2Cl(NHC)(μ-pyrimidine-κN:κN′)]3 precipitate from these solutions whose identity was confirmed crystallographically for BSi.
Collapse
Affiliation(s)
- Alexandra M Olaru
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Alister Burt
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Peter J Rayner
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Sam J Hart
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Gary G R Green
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
39
|
Norcott P, Burns MJ, Rayner PJ, Mewis RE, Duckett SB. Using 2 H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:663-671. [PMID: 29274294 PMCID: PMC6001449 DOI: 10.1002/mrc.4703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 05/08/2023]
Abstract
By introducing a range of 2 H labels into pyridine and the para-substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T1 relaxation for the remaining 1 H nuclei are increased and show how this leads to a concomitant increase in the level of 1 H and 13 C hyperpolarization that can ultimately be detected.
Collapse
Affiliation(s)
| | | | | | - Ryan E. Mewis
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterGreater ManchesterUK
| | | |
Collapse
|
40
|
Lehmkuhl S, Wiese M, Schubert L, Held M, Küppers M, Wessling M, Blümich B. Continuous hyperpolarization with parahydrogen in a membrane reactor. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:8-13. [PMID: 29625356 DOI: 10.1016/j.jmr.2018.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/22/2023]
Abstract
Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.
Collapse
Affiliation(s)
- Sören Lehmkuhl
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany.
| | - Martin Wiese
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany
| | - Lukas Schubert
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| | - Mathias Held
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany
| | - Markus Küppers
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Bernhard Blümich
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| |
Collapse
|
41
|
Rayner PJ, Duckett SB. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis. Angew Chem Int Ed Engl 2018; 57:6742-6753. [DOI: 10.1002/anie.201710406] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| |
Collapse
|
42
|
Rayner PJ, Duckett SB. Signalverstärkung durch reversiblen Austausch (SABRE): von der Entdeckung zur diagnostischen Anwendung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| |
Collapse
|
43
|
Iali W, Rayner PJ, Alshehri A, Holmes AJ, Ruddlesden AJ, Duckett SB. Direct and indirect hyperpolarisation of amines using parahydrogen. Chem Sci 2018; 9:3677-3684. [PMID: 29780498 PMCID: PMC5935062 DOI: 10.1039/c8sc00526e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 01/13/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are two widely used techniques for the study of molecules and materials. Hyperpolarisation methods, such as Signal Amplification By Reversible Exchange (SABRE), turn typically weak magnetic resonance responses into strong signals. In this article we detail how it is possible to hyperpolarise the 1H, 13C and 15N nuclei of a range of amines. This involved showing how primary amines form stable but labile complexes of the type [Ir(H)2(IMes)(amine)3]Cl that allow parahydrogen to relay its latent polarisation into the amine. By optimising the temperature and parahydrogen pressure a 1000-fold per proton NH signal gain for deuterated benzylamine is achieved at 9.4 T. Additionally, we show that sterically hindered and electron poor amines that bind poorly to iridium can be hyperpolarised by either employing a co-ligand for complex stabilisation, or harnessing the fact that it is possible to exchange hyperpolarised protons between amines in a mixture, through the recently reported SABRE-RELAY method. These chemical refinements have significant potential to extend the classes of agent that can be hyperpolarised by readily accessible parahydrogen.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Adel Alshehri
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - A Jonathan Holmes
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Amy J Ruddlesden
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| |
Collapse
|
44
|
Roy S, Appleby KM, Fear EJ, Duckett SB. SABRE-Relay: A Versatile Route to Hyperpolarization. J Phys Chem Lett 2018; 9:1112-1117. [PMID: 29432020 PMCID: PMC5840861 DOI: 10.1021/acs.jpclett.7b03026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf- to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method.
Collapse
|
45
|
Manoharan A, Rayner PJ, Iali W, Burns MJ, Perry VH, Duckett SB. Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study. ChemMedChem 2018; 13:352-359. [PMID: 29232489 PMCID: PMC5838797 DOI: 10.1002/cmdc.201700725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/09/2023]
Abstract
Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study.
Collapse
Affiliation(s)
- Anand Manoharan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Peter J. Rayner
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Wissam Iali
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Michael J. Burns
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - V. Hugh Perry
- School of Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Simon B. Duckett
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
46
|
Iali W, Rayner PJ, Duckett SB. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. SCIENCE ADVANCES 2018; 4:eaao6250. [PMID: 29326984 PMCID: PMC5756661 DOI: 10.1126/sciadv.aao6250] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use parahydrogen to rapidly hyperpolarize appropriate 1H, 13C, 15N, and 31P responses of analytes (such as NH3) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5'-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the 1H signal gains reach as high as 650-fold per proton, whereas for 13C, the corresponding signal gains achieved in a 1H-13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected 13C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique.
Collapse
|
47
|
Olaru AM, Robertson TBR, Lewis JS, Antony A, Iali W, Mewis RE, Duckett SB. Extending the Scope of 19F Hyperpolarization through Signal Amplification by Reversible Exchange in MRI and NMR Spectroscopy. ChemistryOpen 2017; 7:97-105. [PMID: 29318102 PMCID: PMC5754555 DOI: 10.1002/open.201700166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 01/21/2023] Open
Abstract
Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F-labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F-containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve 19F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE. We conclude by presenting 19F MRI results in phantoms, which demonstrate that many of these agents show great promise as future 19F MRI contrast agents for diagnostic investigations.
Collapse
Affiliation(s)
- Alexandra M Olaru
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Thomas B R Robertson
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Jennifer S Lewis
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Alex Antony
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Wissam Iali
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Ryan E Mewis
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| |
Collapse
|
48
|
Achieving High 1
H Nuclear Hyperpolarization Levels with Long Lifetimes in a Range of Tuberculosis Drug Scaffolds. Chemistry 2017; 23:16990-16997. [DOI: 10.1002/chem.201703278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/22/2022]
|
49
|
Fekete M, Rayner PJ, Green GGR, Duckett SB. Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:944-957. [PMID: 28497481 PMCID: PMC5599957 DOI: 10.1002/mrc.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 05/24/2023]
Abstract
The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co-ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2 H-labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2 H labelling of the N-heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700-fold1 H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90-fold increase per proton is achieved. The co-ligand acetonitrile proved to optimally exhibit a 190-fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Marianna Fekete
- Centre for Hyperpolarization in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkYO10 5NYUK
| | - Peter J. Rayner
- Centre for Hyperpolarization in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkYO10 5NYUK
| | - Gary G. R. Green
- Centre for Hyperpolarization in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkYO10 5NYUK
| | - Simon B. Duckett
- Centre for Hyperpolarization in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkYO10 5NYUK
| |
Collapse
|
50
|
Nardi-Schreiber A, Gamliel A, Harris T, Sapir G, Sosna J, Gomori JM, Katz-Brull R. Biochemical phosphates observed using hyperpolarized 31P in physiological aqueous solutions. Nat Commun 2017; 8:341. [PMID: 28839124 PMCID: PMC5570947 DOI: 10.1038/s41467-017-00364-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/24/2017] [Indexed: 11/11/2022] Open
Abstract
The dissolution-dynamic nuclear polarization technology had previously enabled nuclear magnetic resonance detection of various nuclei in a hyperpolarized state. Here, we show the hyperpolarization of 31P nuclei in important biological phosphates (inorganic phosphate and phosphocreatine) in aqueous solutions. The hyperpolarized inorganic phosphate showed an enhancement factor >11,000 (at 5.8 T, 9.3% polarization) in D2O (T1 29.4 s). Deuteration and the solution composition and pH all affected the lifetime of the hyperpolarized state. This capability opens up avenues for real-time monitoring of phosphate metabolism, distribution, and pH sensing in the live body without ionizing radiation. Immediate changes in the microenvironment pH have been detected here in a cell-free system via the chemical shift of hyperpolarized inorganic phosphate. Because the 31P nucleus is 100% naturally abundant, future studies on hyperpolarized phosphates will not require expensive isotope labeling as is usually required for hyperpolarization of other substrates. Real-time monitoring of phosphate metabolism and distribution in the live body without ionizing radiation is highly desirable. Here, the authors show dissolution-dynamic nuclear polarization technology can enable nuclear magnetic resonance detection of hyperpolarized 31P of important biological phosphates in aqueous solutions.
Collapse
Affiliation(s)
- Atara Nardi-Schreiber
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|