1
|
Chruściel E, Ślusarczyk L, Gładyszewska B, Karcz D, Luchowski R, Nucia A, Ociepa T, Nowak M, Kowalczyk K, Włodarczyk A, Gagoś M, Okoń S, Matwijczuk A. Assessment of the Microbiological Potential and Spectroscopic Properties of New Imino-1,3,4-Thiadiazoles Showing the ESIPT Effect Strongly Enhanced by Aggregation. Molecules 2025; 30:531. [PMID: 39942635 PMCID: PMC11820074 DOI: 10.3390/molecules30030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
There is currently a growing interest in imino derivatives of compounds such as thiadiazoles and other groups of compounds whose extended π-electron systems enhance their photophysical properties. These compounds also show low toxicity and strong antifungal activity, making them effective against fungal pathogens in crops. For the above reasons, in the first part of the paper, the structure of the selected analogs was considered, and detailed spectroscopic analyses were conducted focusing on the excited state intramolecular proton transfer (ESIPT) process taking place in the same. Measurements were taken in terms of absorption spectroscopy and electron fluorescence, synchronous spectra, and fluorescence lifetimes, as well as calculations of fluorescence quantum efficiency in selected solvents and concentrations. In the spectral observations, the ESIPT process was manifested in several solvents as very distinct dual fluorescence. Moreover, in selected molecules, this phenomenon was strongly related to molecular aggregation, which was associated with not very efficient but nonetheless visible fluorescence of the AIE (Aggregation-Induced Emission) type. In the second part of the paper, a detailed preliminary study is presented exploring the microbiological properties of selected imino-1,3,4-thiadiazole derivatives in the context of their potential applicability as inhibitors affecting the development and growth of some of the most important fungal pathogens attacking cereal crops and posing an increasing threat to modern agriculture. Overall, the research presented in this article provides a detailed, experimental analysis of the spectroscopic properties of selected imino-thiadiazoles and points to their potential use as novel and effective solutions capable of limiting the growth and development of fungal pathogens in cereals.
Collapse
Affiliation(s)
- Edyta Chruściel
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (E.C.); (L.Ś.); (B.G.)
| | - Lidia Ślusarczyk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (E.C.); (L.Ś.); (B.G.)
| | - Bożena Gładyszewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (E.C.); (L.Ś.); (B.G.)
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Aleksandra Nucia
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.N.); (T.O.); (M.N.); (K.K.)
| | - Tomasz Ociepa
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.N.); (T.O.); (M.N.); (K.K.)
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.N.); (T.O.); (M.N.); (K.K.)
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.N.); (T.O.); (M.N.); (K.K.)
| | - Adam Włodarczyk
- Department of Organic Chemistry and Crystallochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland;
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Sylwia Okoń
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.N.); (T.O.); (M.N.); (K.K.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (E.C.); (L.Ś.); (B.G.)
| |
Collapse
|
2
|
Ślusarczyk L, Rząd K, Niedzielski G, Gurba M, Chavez J, Ceresa L, Kimball J, Gryczyński I, Gryczyński Z, Gagoś M, Hooper J, Matwijczuk A. Understanding the synergistic interaction between a 1,3,4-thiadiazole derivative and amphotericin B using spectroscopic and theoretical studies. Sci Rep 2024; 14:31870. [PMID: 39738538 DOI: 10.1038/s41598-024-83180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS. Fluorescence emission spectra revealed that the addition of C1 molecules triggered significant changes in the emission spectra of the system. Measurements of the fluorescence lifetimes and fluorescence anisotropy supported by synchronous spectra clearly showed evidence of disaggregation. The AmB molecular aggregates indicated interaction of C1 with the antibiotic at points responsible for the formation of dimer structures. The spectroscopic results were further corroborated, analyzed, and interpreted using the methods of quantum mechanical modelling. Analyses based on the density functional tight-binding and time-dependent density functional theory confirmed that molecular interactions between "small" molecules and AmB lead to a significant increase in the clinical efficacy of the antibiotic.
Collapse
Affiliation(s)
- Lidia Ślusarczyk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Klaudia Rząd
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Grzegorz Niedzielski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza 11, 30-348, Kraków, Poland
| | - Mikołaj Gurba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Jose Chavez
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Luca Ceresa
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Joe Kimball
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Ignacy Gryczyński
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Zygmunt Gryczyński
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - James Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
- USA Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
3
|
David M, Enache TA, Barbu-Tudoran L, Bala C, Florescu M. Biologically Synthesized Gold Nanoparticles with Enhanced Antioxidant and Catalytic Properties. Pharmaceuticals (Basel) 2024; 17:1105. [PMID: 39338271 PMCID: PMC11434865 DOI: 10.3390/ph17091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Increasing levels of reactive oxygen species generate oxidative stress in the human body that can lead to various medical conditions. The use of nanomaterials exhibiting antioxidant properties may prevent these effects. The biological synthesis of metallic nanoparticles using plant extracts with antioxidant properties can offer benefits due to their active compounds. The used extracts contained reducing and stabilizing agents, which were shown to be transferred onto the gold nanoparticles, functionalizing them. Herin, we report a gold nanoparticle synthesis by eco-friendly biological methods (b-AuNPs) using extracts of sea buckthorn, lavender, walnuts, and grapes, obtained through ultrasound-assisted extraction and pressure-enhanced extraction. The obtained b-AuNPs were characterized by UV-Vis and FTIR spectroscopies and visualized using transmission electron microscopy. The catalytic and scavenging effect of the b-AuNPs towards H2O2 (as reactive oxygen species) was evaluated electrochemically, highlighting the protective behavior of b-AuNPs towards lipid peroxidation. All experiments demonstrated the stability and reproducibility of prepared b-AuNPs with enhanced antioxidant and catalytic properties, opening a new perspective for their use in biomedical applications.
Collapse
Affiliation(s)
- Melinda David
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| | - Teodor A. Enache
- National Institute of Material Physics, Atomistilor 405A, 077125 Magurele, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “C. Craciun”, Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, 4-6 Clinicilor Str., 400006 Cluj-Napoca, Romania;
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM) Cluj-Napoca, 67-103 Donath Str., 400293 Cluj-Napoca, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| |
Collapse
|
4
|
Synergistic Antifungal Interactions between Antibiotic Amphotericin B and Selected 1, 3, 4-thiadiazole Derivatives, Determined by Microbiological, Cytochemical, and Molecular Spectroscopic Studies. Int J Mol Sci 2023; 24:ijms24043430. [PMID: 36834848 PMCID: PMC9966784 DOI: 10.3390/ijms24043430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, drug-resistant and multidrug-resistant fungal strains have been more frequently isolated in clinical practice. This phenomenon is responsible for difficulties in the treatment of infections. Therefore, the development of new antifungal drugs is an extremely important challenge. Combinations of selected 1,3,4-thiadiazole derivatives with amphotericin B showing strong synergic antifungal interactions are promising candidates for such formulas. In the study, microbiological, cytochemical, and molecular spectroscopy methods were used to investigate the antifungal synergy mechanisms associated with the aforementioned combinations. The present results indicate that two derivatives, i.e., C1 and NTBD, demonstrate strong synergistic interactions with AmB against some Candida species. The ATR-FTIR analysis showed that yeasts treated with the C1 + AmB and NTBD + AmB compositions, compared with those treated with single compounds, exhibited more pronounced abnormalities in the biomolecular content, suggesting that the main mechanism of the synergistic antifungal activity of the compounds is related to a disturbance in cell wall integrity. The analysis of the electron absorption and fluorescence spectra revealed that the biophysical mechanism underlying the observed synergy is associated with disaggregation of AmB molecules induced by the 1,3,4-thiadiazole derivatives. Such observations suggest the possibility of the successful application of thiadiazole derivatives combined with AmB in the therapy of fungal infections.
Collapse
|
5
|
Budziak-Wieczorek I, Ślusarczyk L, Myśliwa-Kurdziel B, Kurdziel M, Srebro-Hooper M, Korona-Glowniak I, Gagoś M, Gładyszewski G, Stepulak A, Kluczyk D, Matwijczuk A. Spectroscopic characterization and assessment of microbiological potential of 1,3,4-thiadiazole derivative showing ESIPT dual fluorescence enhanced by aggregation effects. Sci Rep 2022; 12:22140. [PMID: 36550169 PMCID: PMC9780306 DOI: 10.1038/s41598-022-26690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the presented study, advanced experimental techniques, including electronic absorption and fluorescence spectroscopies [with Resonance Light Scattering (RLS)], measurements of fluorescence lifetimes in the frequency domain, calculations of dipole moment fluctuations, quantum yields, and radiative and non-radiative transfer constants, were used to characterize a selected analogue from the group of 1,3,4-thiadiazole, namely: 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD), intrinsically capable to demonstrate enol → keto excited-states intramolecular proton transfer (ESIPT) effects. The results of spectroscopic analyses conducted in solvent media as well as selected mixtures were complemented by considering biological properties of the derivative in question, particularly in terms of its potential microbiological activity. The compound demonstrated a dual fluorescence effect in non-polar solvents, e.g. chloroform and DMSO/H2O mixtures, while in polar solvents only a single emission maximum was detected. In the studied systems, ESIPT effects were indeed observed, as was the associated phenomenon of dual fluorescence, and, as demonstrated for the DMSO: H2O mixtures, the same could be relatively easily induced by aggregation effects related to aggregation-induced emission (AIE). Subsequently conducted quantum-chemical (TD-)DFT calculations supported further possibility of ESIPT effects. The following article provides a comprehensive description of the spectroscopic and biological properties of the analyzed 1,3,4-thiadiazole derivatives, highlighting its potential applicability as a very good fluorescence probes as well as a compound capable of high microbiological activity.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- grid.411201.70000 0000 8816 7059Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Lidia Ślusarczyk
- grid.411201.70000 0000 8816 7059Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Beata Myśliwa-Kurdziel
- grid.5522.00000 0001 2162 9631Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Martyna Kurdziel
- grid.5522.00000 0001 2162 9631Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika Srebro-Hooper
- grid.5522.00000 0001 2162 9631Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Izabela Korona-Glowniak
- grid.411484.c0000 0001 1033 7158Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- grid.29328.320000 0004 1937 1303Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland ,grid.411484.c0000 0001 1033 7158Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grzegorz Gładyszewski
- grid.41056.360000 0000 8769 4682Department of Applied Physics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
| | - Andrzej Stepulak
- grid.411484.c0000 0001 1033 7158Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dariusz Kluczyk
- grid.29328.320000 0004 1937 1303Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Arkadiusz Matwijczuk
- grid.411201.70000 0000 8816 7059Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
6
|
Dróżdż A, Sławińska-Brych A, Kubera D, Kimsa-Dudek M, Gola JM, Adamska J, Kruszniewska-Rajs C, Matwijczuk A, Karcz D, Dąbrowski W, Stepulak A, Gagoś M. Effect of Antibiotic Amphotericin B Combinations with Selected 1,3,4-Thiadiazole Derivatives on RPTECs in an In Vitro Model. Int J Mol Sci 2022; 23:ijms232315260. [PMID: 36499589 PMCID: PMC9738598 DOI: 10.3390/ijms232315260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (C1) and 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl] benzene1,3-diol (NTBD) are representative derivatives of the thiadiazole group, with a high antimycotic potential and minimal toxicity against normal human fibroblast cells. The present study has proved its ability to synergize with the antifungal activity of AmB. The aim of this work was to evaluate the cytotoxic effects of C1 or NTBD, alone or in combination with AmB, on human renal proximal tubule epithelial cells (RPTECs) in vitro. Cell viability was assessed with the MTT assay. Flow cytometry and spectrofluorimetric techniques were used to assess the type of cell death and production of reactive oxygen species (ROS), respectively. The ELISA assay was performed to measure the caspase-2, -3, and -9 activity. ATR-FTIR spectroscopy was used to evaluate biomolecular changes in RPTECs induced by the tested formulas. The combinations of C1/NTBD and AmB did not exert a strong inhibitory effect on the viability/growth of kidney cells, as evidenced by the negligible changes in the apoptotic/necrotic rate and caspase activity, compared to the control cells. Both NTBD and C1 displayed stronger anti-oxidant activity when combined with AmB. The relatively low nephrotoxicity of the thiadiazole derivative combinations and the protective activity against AmB-induced oxidative stress may indicate their potential use in the therapy of fungal infections.
Collapse
Affiliation(s)
- Agnieszka Dróżdż
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dominika Kubera
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence:
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 31-155 Krakow, Poland
| | - Wojciech Dąbrowski
- I Clinic of Anaesthesiology and Intensive Therapy with Clinical Paediatric Department, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
7
|
Sun L, Pan F, Li S. Self-Assembly of Lipid Mixtures in Solutions: Structures, Dynamics Processes and Mechanical Properties. MEMBRANES 2022; 12:membranes12080730. [PMID: 35893448 PMCID: PMC9394357 DOI: 10.3390/membranes12080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
The self-assembly of lipid mixtures in aqueous solution was investigated by dissipative particle dynamics simulation. Two types of lipid molecules were modelled, where three mixed structures, i.e., the membrane, perforated membrane and vesicle, were determined in the self-assembly processes. Phase behaviour was investigated by using the phase diagrams based on the tail chain lengths for the two types of lipids. Several parameters, such as chain number and average radius of gyration, were employed to explore the structural formations of the membrane and perforated membrane in the dynamic processes. Interface tension was used to demonstrate the mechanical properties of the membrane and perforated membrane in the equilibrium state and dynamics processes. Results help us to understand the self-assembly mechanism of the biomolecule mixtures, which has a potential application for designing the lipid molecule-based bio-membranes in solutions.
Collapse
Affiliation(s)
| | - Fan Pan
- Correspondence: (F.P.); (S.L.)
| | | |
Collapse
|
8
|
Kot A, Kamińska-Dwórznicka A, Antczak A, Jakubczyk E, Matwijczuk A. Effect of ι-carrageenan and its acidic and enzymatic hydrolysates on ice crystal structure changes in model sucrose solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
David M, Budziak-Wieczorek I, Karcz D, Florescu M, Matwijczuk A. Insight into dual fluorescence effects induced by molecular aggregation occurring in membrane model systems containing 1,3,4-thiadiazole derivatives. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1083-1101. [PMID: 34515830 PMCID: PMC8566415 DOI: 10.1007/s00249-021-01569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
This work reports on biophysical insights into the excited state intramolecular proton transfer (ESIPT) processes taking place in three 1,3,4-thiadiazole derivatives that served as model compounds, on which electronic absorption, fluorescence, Fourier-transform infrared spectroscopy (FTIR), surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies were performed. The fluorescence spectra recorded in various solvents revealed an interesting dual fluorescence effect. In molecules in their monomeric form, the effect is associated with the ESIPT phenomenon, and may be further enhanced by aggregation-related effects, such as aggregation-induced emissions. Other spectroscopic studies on the selected molecules in a liposomal medium as a model revealed that, in a biomimetic environment, they can exist in both monomeric and aggregated forms. In both cases, however, the effects observed are closely related to the lipid's main phase transition temperature and the structure of the molecule. Introduction of specific substituents to the phenyl moiety either allows or prevents proton transfer from occurring in the excited state. The hydrophobicity changes in a lipid environment may result in an emergence of specific molecular forms and therefore either facilitate or hinder ESIPT processes. SPR and EIS confirmed the significant hydrophobicity changes in the model lipid systems, while FTIR measurements revealed a notable influence of 1,3,4-thiadiazoles on the fluidity of liposomal membranes. The results obtained clearly show that the thiadiazole derivatives are very good model molecules for studying hydrophobic-hydrophilic environments, and particularly with polymers or liposomes used as drug delivery systems.
Collapse
Affiliation(s)
- Melinda David
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania
| | | | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Monica Florescu
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland.
| |
Collapse
|
10
|
Chen Y, Wang Z, Ji Y, He L, Wang X, Li S. Asymmetric Lipid Membranes under Shear Flows: A Dissipative Particle Dynamics Study. MEMBRANES 2021; 11:655. [PMID: 34564472 PMCID: PMC8465239 DOI: 10.3390/membranes11090655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022]
Abstract
We investigate the phase behavior of the asymmetric lipid membranes under shear flows, using the dissipative particle dynamics simulation. Two cases, the weak and strong shear flows, are considered for the asymmetric lipid microstructures. Three typical asymmetric structures, the membranes, tubes, and vesicle, are included in the phase diagrams, where the effect of two different types of lipid chain length on the formation of asymmetric membranes is evaluated. The dynamic processes are demonstrated for the asymmetric membranes by calculating the average radius of gyration and shape factor. The result indicates that different shear flows will affect the shape of the second type of lipid molecules; the shape of the first type of lipid molecules is more stable than that of the second type of lipid molecules. The mechanical properties are investigated for the asymmetric membranes by analyzing the interface tension. The results reveal an absolute pressure at the junctions of different types of particles under the weak shear flow; the other positions are almost in a state of no pressure; there is almost no pressure inside the asymmetric lipid membrane structure under the strong shear flow. The findings will help us to understand the potential applications of asymmetric lipid microstructures in the biological and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.C.); (Z.W.); (Y.J.); (L.H.); (X.W.)
| |
Collapse
|
11
|
Chaudhari R, Tandel N, Sahu K, Negi S, Bashir H, Rupareliya A, Mishra RPN, Dalai SK, Tyagi RK. Transdermal Immunization of Elastic Liposome-Laden Recombinant Chimeric Fusion Protein of P. falciparum ( PfMSP-Fu 24) Mounts Protective Immune Response. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:406. [PMID: 33562617 PMCID: PMC7914931 DOI: 10.3390/nano11020406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Transdermal immunization exhibits poor immunogenic responses due to poor permeability of antigens through the skin. Elastic liposomes, the ultradeformable nanoscale lipid vesicles, overcome the permeability issues and prove a versatile nanocarrier for transcutaneous delivery of protein, peptide, and nucleic acid antigens. Elastic liposome-mediated subcutaneous delivery of chimeric fusion protein (PfMSP-Fu24) of Plasmodium falciparum exhibited improved immunogenic responses. Elastic liposomes-mediated immunization of PfMSP-Fu24 conferred immunity to the asexual blood-stage infection. Present study is an attempt to compare the protective immune response mounted by the PfMSP-Fu24 upon administered through transdermal and intramuscular routes. Humoral and cell-mediated immune (CMI) response elicited by topical and intramuscularly administered PfMSP-Fu24-laden elastic liposomes (EL-PfMSP-Fu24) were compared and normalized with the vehicle control. Sizeable immune responses were seen with the transcutaneously immunized EL-PfMSP-Fu24 and compared with those elicited with intramuscularly administered antigen. Our results show significant IgG isotype subclass (IgG1and IgG3) response of specific antibody levels as well as cell-mediated immunity (CMI) activating factor (IFN-γ), a crucial player in conferring resistance to blood-stage malaria in mice receiving EL-PfMSP-Fu24 through transdermal route as compared to the intramuscularly administered formulation. Heightened immune response obtained by the vaccination of EL-PfMSP-Fu24 was complemented by the quantification of the transcript (mRNA) levels cell-mediated (IFN-γ, IL-4), and regulatory immune response (IL-10) in the lymph nodes and spleen. Collectively, elastic liposomes prove their immune-adjuvant property as they evoke sizeable and perdurable immune response against PfMSP-Fu24 and justify its potential for the improved vaccine delivery to inducing both humoral and CM immune response.
Collapse
Affiliation(s)
- Ramesh Chaudhari
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Kiran Sahu
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| | - Hilal Bashir
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India;
| | - Arzu Rupareliya
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Ravi PN Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India;
| | - Sarat K. Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India; (R.C.); (N.T.); (A.R.); (S.K.D.)
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab., CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; (K.S.); (S.N.)
| |
Collapse
|
12
|
Czernel G, Budziak I, Oniszczuk A, Karcz D, Pustuła K, Górecki A, Matwijczuk A, Gładyszewska B, Gagoś M, Niewiadomy A, Matwijczuk A. ESIPT-Related Origin of Dual Fluorescence in the Selected Model 1,3,4-Thiadiazole Derivatives. Molecules 2020; 25:molecules25184168. [PMID: 32933032 PMCID: PMC7570705 DOI: 10.3390/molecules25184168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
In our previous work, we discussed the emergence of the dual fluorescence phenomenon in selected compounds from the group of 1,3,4-thiadiazoles. The results obtained in a number of experimental studies, supported by [TD]DFT calculations, clearly indicated that the phenomenon of dual fluorescence stemmed from an overlap of several factors, including the correct conformation of the analyzed molecule and, very significantly in this context, aggregation effects. Where those two conditions were met, we could observe the phenomenon of intermolecular charge transfer (CT) and the emergence of electronic states responsible for long wave emissions. However, in light of the new studies presented in this paper, we were able, for the first time, to provide a specific theory for the effect of dual fluorescence observed in the analyzed group of 1,3,4-thiadiazoles. We present the results of spectroscopic measurements conducted for two selected analogues from the 1,3,4-thiadiazole group, both in polar and non-polar solvents, which clearly evidence (as we have already suspected in the past, albeit have not shown in publications to date) the possibility of processes related to emission from the tautomer formed in the process of excited state intramolecular proton transfer, which is responsible for the long-wavelength emissions observed in the selected analogues. The presented results obtained with the use of UV-Vis, fluorescence (stationary and time-resolved), FTIR, and Raman spectroscopy, as well as from calculations of dipole moment changes between the ground and excited state with the use of two derivatives with different structures of the resorcylic system, corroborated our standing hypothesis. At the same time, they excluded the presence of ground state keto forms of the analyzed analogues unless necessitated by the structure of the molecule itself. In this case, aggregation factors enhance the observed effects related to the dual fluorescence of the analyzed compounds (by way of AIE-aggregated induced emissions).
Collapse
Affiliation(s)
- Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (G.C.); (A.M.); (B.G.)
| | - Iwona Budziak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University in Lublin, 20-059 Lublin, Poland
- Correspondence: (A.O.); (D.K.); (A.M.); Tel.: +48-814-456-937 (A.M.); Fax: +48-814-456-684 (A.M.)
| | - Dariusz Karcz
- Department of Analytical Chemistry (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Correspondence: (A.O.); (D.K.); (A.M.); Tel.: +48-814-456-937 (A.M.); Fax: +48-814-456-684 (A.M.)
| | - Katarzyna Pustuła
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| | - Alicja Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (G.C.); (A.M.); (B.G.)
| | - Bożena Gładyszewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (G.C.); (A.M.); (B.G.)
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland;
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (G.C.); (A.M.); (B.G.)
- Correspondence: (A.O.); (D.K.); (A.M.); Tel.: +48-814-456-937 (A.M.); Fax: +48-814-456-684 (A.M.)
| |
Collapse
|
13
|
Abstract
Liposomes are spherical vesicles made up of an aqueous core surrounded by phospholipids. These delivery systems (DS) are largely employed as drug carriers in several industrial fields, such as pharmaceutical and nutraceutical fields. The aim of this short review is to provide a fast overview on the main fundamentals of liposomes, thought as a compact guide for researchers and students that want to approach this topic for the first time. The mini-review will focus on the definitions, production methods and characterization protocols of the liposomes produced, making a critical comparison of the main conventional and supercritical based manufacturing methods available. The literature was analyzed deeply from the first works by Dr. Bangham in 1965 to the most recent supercritical fluid applications. The advantages and disadvantages of conventional and high-pressure processes will be described in terms of solvent elimination, production at the nanometric (50–300 nm) and micrometric level (1–100 μm) and encapsulation efficiency (20–90%). The first proposed methods were characterized by a low encapsulation efficiency (20–40%), resulting in drug loss, a high solvent residue and high operating cost. The repeatability of conventional processes was also low, due to the prevalent batch mode. Supercritical-assisted methods were developed in semi-continuous layouts, resulting in an easy process scale-up, better control of liposome dimensions (polydispersity index, PDI) and also higher encapsulation efficiencies (up to 90%).
Collapse
|
14
|
Zakharova AA, Efimova SS, Yuskovets VN, Yakovlev IP, Sarkisyan ZM, Ostroumova OS. 1,3-Thiazine, 1,2,3,4-Dithiadiazole, and Thiohydrazide Derivatives Affect Lipid Bilayer Properties and Ion-Permeable Pores Induced by Antifungals. Front Cell Dev Biol 2020; 8:535. [PMID: 32695784 PMCID: PMC7339130 DOI: 10.3389/fcell.2020.00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Over the past decade, thiazines, thiadiazoles, and thiohydrazides have attracted increasing attention due to their sedative, antimicrobial, antiviral, antifungal, and antitumor activities. The clinical efficacy of such drugs, as well as the possibility of developing resistance to antimicrobials, will depend on addressing a number of fundamental problems, including the role of membrane lipids during their interaction with plasma membranes. The effects of the eight 1,3- thiazine-, 1,2,3,4- dithiadiazole-, and thiohydrazide-related compounds on the physical properties of model lipid membranes and the effects on reconstituted ion channels induced by the polyene macrolide antimycotic nystatin and antifungal cyclic lipopeptides syringomycin E and fengycin were observed. We found that among the tested agents, the fluorine-containing compound N′-(3,5-difluorophenyl)-benzenecarbothiohydrazide (C6) was the most effective at increasing the electric barrier for anion permeation into the hydrophobic region of the membrane and reducing the conductance of anion-permeable syringomycin pores. A decrease in the membrane boundary potential with C6 adsorption also facilitated the immersion of positively charged syringomycin molecules into the lipid bilayer and increases the pore-forming ability of the lipopeptide. Using differential scanning microcalorimetry, we showed that C6 led to disordering of membrane lipids, possibly by potentiating positive curvature stress. Therefore, we used C6 as an agonist of antifungals forming the pores that are sensitive to membrane curvature stress and lipid packing, i.e., nystatin and fengycin. The dramatic increase in transmembrane current induced by syringomycin E, nystatin, and fengycin upon C6 treatment suggests its potential in combination therapy for treating invasive fungal infections.
Collapse
Affiliation(s)
- Anastasiia A Zakharova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Valeriy N Yuskovets
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Igor P Yakovlev
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Zara M Sarkisyan
- Department of General and Medical Chemistry, Saint-Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
15
|
Use of FTIR Spectroscopy and Chemometrics with Respect to Storage Conditions of Moldavian Dragonhead Oil. SUSTAINABILITY 2019. [DOI: 10.3390/su11226414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oils often have similar properties and can be difficult to identify based on color, smell or taste alone. The present paper suggests the use of Fourier-transform infrared spectroscopy (FTIR) in combination with chemometric methods to explore similarities and differentiate between samples of Moldavian dragonhead oil subjected to different storage conditions. Dragonhead is a plant characterized by very good honey output and ease of cultivation. Principal component analysis (PCA) was applied to a standard, full range of FTIR spectra. Additionally, hierarchical cluster analysis (HCA) was employed to explore the organization of the samples in groups relative to their “proximity” (similarity), by way of Euclidean distance measurement. PC1 and PC2 accounted respectively for 85.4% and 10.1% of the total data variance. PC1 and PC2 were strongly, negatively correlated within the entire spectral range; the only exception was the region corresponding to νs(-C-Hvst, -CH2) vibrations (aliphatic groups in triglycerides), where PC2 was positively correlated. The use of FTIR spectral analysis revealed noticeable differences in the intensity of bands characteristic of the ageing processes (markers of oxidative processes, etc.) taking place in oleaginous samples and related to the processes of fatty acids oxidation.
Collapse
|
16
|
Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies. PLoS One 2019; 14:e0222775. [PMID: 31568502 PMCID: PMC6768478 DOI: 10.1371/journal.pone.0222775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Compounds belonging to the group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diols exhibit a broad spectrum of biological activity, including antibacterial, antifungal, and anticancer properties. The mechanism of the antifungal activity of compounds from this group has not been described to date. Among the large group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diol derivatives, the compound 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol, abbreviated as C1, was revealed to be one of the most active agents against pathogenic fungi, simultaneously with the lowest toxicity to human cells. The C1 compound is a potent antifungal agent against different Candida species, including isolates resistant to azoles, and molds, with MIC100 values ranging from 8 to 96 μg/ml. The antifungal activity of the C1 compound involves disruption of the cell wall biogenesis, as evidenced by the inability of cells treated with C1 to maintain their characteristic cell shape, increase in size, form giant cells and flocculate. C1-treated cells were also unable to withstand internal turgor pressure causing protoplast material to leak out, exhibited reduced osmotic resistance and formed buds that were not covered with chitin. Disturbances in the chitin septum in the neck region of budding cells was observed, as well as an uneven distribution of chitin and β(1→3) glucan, and increased sensitivity to substances interacting with wall polymerization. The ATR-FTIR spectral shifts in cell walls extracted from C. albicans cells treated with the C1 compound suggested weakened interactions between the molecules of β(1→3) glucans and β(1→6) glucans, which may be the cause of impaired cell wall integrity. Significant spectral changes in the C1-treated cells were also observed in bands characteristic for chitin. The C1 compound did not affect the ergosterol content in Candida cells. Given the low cytotoxicity of the C1 compound to normal human dermal fibroblasts (NHDF), it is possible to use this compound as a therapeutic agent in the treatment of surface and gastrointestinal tract mycoses.
Collapse
|
17
|
Budziak I, Karcz D, Makowski M, Myśliwa-Kurdziel B, Kasprzak K, Matwijczuk A, Chruściel E, Oniszczuk A, Adwent L, Matwijczuk A. Spectroscopic and theoretical investigation into substituent- and aggregation-related dual fluorescence effects in the selected 2-amino-1,3,4-thiadiazoles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019; 20:E4706. [PMID: 31547569 PMCID: PMC6801558 DOI: 10.3390/ijms20194706] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The development of natural phospholipids for nanostructured drug delivery systems has attracted much attention in the past decades. Lecithin that was derived from naturally occurring in soybeans (SL) has introduced some auspicious accomplishments to the drug carrying aspect, like effectual encapsulation, controlled release, and successful delivery of the curative factors to intracellular regions in which they procure these properties from their flexible physicochemical and biophysical properties, such as large aqueous center and biocompatible lipid, self-assembly, tunable properties, and high loading capacity. Despite the almost perfect properties as a drug carrier, liposome is known to be quite quickly eliminated from the body systems. The surface modification of liposomes has been investigated in many studies to overcome this drawback. In this review, we intensively discussed the surface-modified liposomes that enhancing the targeting, cellular uptake, and therapeutic response. Moreover, the recent applications of soy lecithin-derived liposome, focusing on cancer treatment, brain targeting, and vaccinology, are also summarized.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam.
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Thu Hong Le
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thach Thao Tran
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
19
|
Chudzik B, Bonio K, Dabrowski W, Pietrzak D, Niewiadomy A, Olender A, Malodobry K, Gagoś M. Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol. Sci Rep 2019; 9:12945. [PMID: 31506532 PMCID: PMC6737028 DOI: 10.1038/s41598-019-49425-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Amphotericin B (AmB) is a very potent antifungal drug with very rare resistance among clinical isolates. Treatment with the AmB formulations available currently is associated with severe side effects. A promising strategy to minimize the toxicity of AmB is reducing its dose by combination therapy with other antifungals, showing synergistic interactions. Therefore, substances that display synergistic interactions with AmB are still being searched for. Screening tests carried out on several dozen of synthetic 1,3,4-thiadiazole derivatives allowed selection of a compound called 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (abbreviated as C1), which shows strong synergistic interaction with AmB and low toxicity towards human cells. The aim of the present study was to investigate the type of in vitro antifungal interactions of the C1 compound with AmB against fungal clinical isolates differing in susceptibility. The results presented in the present paper indicate that the C1 derivative shows strong synergistic interaction with AmB, which allows the use of a dozen to several dozen times lower AmB concentration necessary for 100% inhibition of the growth of pathogenic fungi in vitro. Synergistic interactions were noted for all tested strains, including strains with reduced sensitivity to AmB and azole-resistant isolates. These observations give hope for the possibility of application of the AmB - C1 combinatory therapy in the treatment of fungal infections.
Collapse
Affiliation(s)
- Barbara Chudzik
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Bonio
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Daniel Pietrzak
- Department of Anaesthesiology and Intensive Therapy Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland.,Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Katarzyna Malodobry
- Department of Nurse and Health Science, Medical Division in University of Rzeszów, Al. Rejtana 16A, 35-310, Rzeszów, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
20
|
Samborska K, Jedlińska A, Wiktor A, Derewiaka D, Wołosiak R, Matwijczuk A, Jamróz W, Skwarczyńska-Maj K, Kiełczewski D, Błażowski Ł, Tułodziecki M, Witrowa-Rajchert D. The Effect of Low-Temperature Spray Drying with Dehumidified Air on Phenolic Compounds, Antioxidant Activity, and Aroma Compounds of Rapeseed Honey Powders. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02260-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Spectroscopic Studies of Dual Fluorescence in 2-(4-Fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole: Effect of Molecular Aggregation in a Micellar System. Molecules 2018; 23:molecules23112861. [PMID: 30400242 PMCID: PMC6278424 DOI: 10.3390/molecules23112861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 01/17/2023] Open
Abstract
The article presents the results of spectroscopic studies focused on a selected compound from the 1,3,4-thiadiazole group-2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thia-diazole (FABT)-in a micellar system formed by Triton X-100, a non-ionic detergent. Fluorescence measurements revealed the phenomenon of dual fluorescence whose emergence is related to the particular molecular organisation of the compound, which depends both on the concentration of the detergent and, most of all, the concentration of the compound itself. Dual fluorescence of FABT in a micellar system was observed for the compound dissolved in a methanol aqueous system, i.e., an environment wherein the dual fluorescence of the compound had never been reported before. Based on the interpretation of UV-Vis electronic absorption, resonance light scattering (RLS), emission and excitation fluorescence spectra, as well as measurements of dynamic light scattering (DLS) and Principal Component Analysis (PCA), we were able to relate the occurrence of this effect to the process of molecular aggregation taking place between FABT molecules in the micellar system in question. Results of fluorescence spectra measurements and time-correlated single photon counting (TCSPC) indicate that dual fluorescence occurs at detergent concentrations necessary to form micellar systems, which in turn facilitate the process of aggregation of FABT molecules. The correlation between the observed fluorescence effects and the previous measurements performed for analogues from this group suggests the possibility of charge transfer (CT) within the range of detergent concentrations wherein the aforementioned fluorescence effects are observed. It ought to be emphasised that this type of fluorescence effects are relatively easy to induce, which predisposes this groups of fluorophores as ideal fluorescence probes in the context of biological samples.
Collapse
|
22
|
Membrane Processing in the Sustainable Production of Low-Sugar Apple-Cranberry Cloudy Juice. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Matwijczuk A, Górecki A, Makowski M, Pustuła K, Skrzypek A, Waś J, Niewiadomy A, Gagoś M. Spectroscopic and Theoretical Studies of Fluorescence Effects in 2-Methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole Induced by Molecular Aggregation. J Fluoresc 2017; 28:65-77. [PMID: 28889356 PMCID: PMC5799588 DOI: 10.1007/s10895-017-2175-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 01/12/2023]
Abstract
The article presents the results of fluorescence analyses of 2-methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (MDFT) in an aqueous environment. MDFT dissolved in aqueous solutions with a pH value in the range from 1 to 4.5 yielded an interesting effect of two clearly separated fluorescence emissions. In turn, a single fluorescence was observed in MDFT dissolved in water solutions with a pH value from 4.5 to 12. As it was suggested in the previous investigations of other 1,3,4-thiadiazole compounds, these effects may be associated with conformational changes in the structure of the analysed molecule accompanied by aggregation effects. Crystallographic data showed that the effect of the two separated fluorescence emissions occurred in a conformation with the –OH group in the resorcyl ring bound on the side of the sulphur atom from the 1,3,4-thiadiazole ring. The hypothesis of aggregation as the mechanism involved in the change in the spectral properties at low pH is supported by the results of (Time-Dependent) Density Functional Theory calculations. The possibility of rapid analysis of conformational changes with the fluorescence spectroscopy technique may be rather important outcome obtained from the spectroscopic studies presented in this article. Additionally, the presented results seem to be highly important as they can be easily observed in solutions and biologically important samples.
Collapse
Affiliation(s)
- Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Marcin Makowski
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Katarzyna Pustuła
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Joanna Waś
- Departament of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Andrzej Niewiadomy
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.,Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
24
|
Tiwari SV, Siddiqui S, Seijas JA, Vazquez-Tato MP, Sarkate AP, Lokwani DK, Nikalje APG. Microwave-Assisted Facile Synthesis, Anticancer Evaluation and Docking Study of N-((5-(Substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) Benzamide Derivatives. Molecules 2017; 22:molecules22060995. [PMID: 28617341 PMCID: PMC6152631 DOI: 10.3390/molecules22060995] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
In the present work, 12 novel Schiff’s bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel 7(a–l) N-((5-(substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) benzamide was carried out under microwave irradiation. Structures of the synthesized compounds were confirmed by IR, NMR, mass spectral study and elemental analysis. All the synthesized hybrids were evaluated for their in vitro anticancer activity against a panel of four human cancer cell lines, viz. SK-MEL-2 (melanoma), HL-60 (leukemia), HeLa (cervical cancer), MCF-7 (breast cancer) and normal breast epithelial cell (MCF-10A) using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. Most of the synthesized compounds exhibited promising anticancer activity, showed comparable GI50 values comparable to that of the standard drug Adriamycin. The compounds 7k, 7l, 7b, and 7a were found to be the most promising anticancer agents in this study. A molecular docking study was performed to predict the probable mechanism of action and computational study of the synthesized compounds 7(a–l) was performed to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, by using QikProp v3.5 (Schrödinger LLC). The results showed the good oral drug-like behavior of the synthesized compounds 7(a–l).
Collapse
Affiliation(s)
- Shailee V Tiwari
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Bagh, Maharashtra, Aurangabad 431001, India.
| | - Sumaiya Siddiqui
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Bagh, Maharashtra, Aurangabad 431001, India.
| | - Julio A Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain.
| | - M Pilar Vazquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain.
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Maharashtra, Aurangabad 431004, India.
| | - Deepak K Lokwani
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Bagh, Maharashtra, Aurangabad 431001, India.
| | - Anna Pratima G Nikalje
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Bagh, Maharashtra, Aurangabad 431001, India.
| |
Collapse
|
25
|
Matwijczuk A, Kluczyk D, Górecki A, Niewiadomy A, Gagoś M. Spectroscopic Studies of Fluorescence Effects in Bioactive 4-(5-Heptyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol and 4-(5-Methyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol Molecules Induced by pH Changes in Aqueous Solutions. J Fluoresc 2017; 27:1201-1212. [PMID: 28247069 PMCID: PMC5487764 DOI: 10.1007/s10895-017-2053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/19/2017] [Indexed: 01/27/2023]
Abstract
This paper presents the results of stationary fluorescence spectroscopy and time-resolved spectroscopy analyses of two 1,3,4-thiadiazole analogues, i.e. 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C7) in an aqueous medium containing different concentrations of hydrogen ions. An interesting dual florescence effect was observed when both compounds were dissolved in aqueous solutions at pH below 7 for C1 and 7.5 for C7. In turn, for C1 and C7 dissolved in water at pH higher than the physiological value (mentioned above), single fluorescence was only noted. Based on previous results of investigations of the selected 1,3,4-thiadiazole compounds, it was noted that the presented effects were associated with both conformational changes in the analysed molecules and charge transfer (CT) effects, which were influenced by the aggregation factor. However, in the case of C1 and C7, the dual fluorescence effects were visible in a higher energetic region (different than that observed in the 1,3,4-thiadiazoles studied previously). Measurements of the fluorescence lifetimes in a medium characterised by different concentrations of hydrogen ions revealed clear lengthening of the excited-state lifetime in a pH range at which dual fluorescence effects can be observed. An important finding of the investigations presented in this article is the fact that the spectroscopic effects observed not only are interesting from the cognitive point of view but also can help in development of an appropriate theoretical model of molecular interactions responsible for the dual fluorescence effects in the analysed 1,3,4-thiadiazoles. Furthermore, the study will clarify a broad range of biological and pharmaceutical applications of these compounds, which are more frequently used in clinical therapies. Graphical Abstract Upper left corner - C7 molecule at high pH, right upper corner - fluorescence emission spectrum for C7 dissolved in H2O at high pH (7-12) - single fluorescence. Bottom left corner - C7 molecule at low pH (1-7), lower right corner - fluorescence emission spectrum for C7 dissolved in water at low pH - two fluorescence emissions. The circles indicate the group related to dissociation of molecules at low and high pH and the additional long circles indicate C1 or a molecule with a shorter acyl chain.
Collapse
Affiliation(s)
- Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Dariusz Kluczyk
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland.,Department of Chemistry, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland.
| |
Collapse
|
26
|
Matwijczuk A, Karcz D, Walkowiak R, Furso J, Gładyszewska B, Wybraniec S, Niewiadomy A, Karwasz GP, Gagoś M. Effect of Solvent Polarizability on the Keto/Enol Equilibrium of Selected Bioactive Molecules from the 1,3,4-Thiadiazole Group with a 2,4-Hydroxyphenyl Function. J Phys Chem A 2017; 121:1402-1411. [DOI: 10.1021/acs.jpca.6b08707] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arkadiusz Matwijczuk
- Department
of Biophysics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Dariusz Karcz
- Department
of Analytical Chemistry (C1), Faculty of Chemical Engineering and
Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Radosław Walkowiak
- Department
of Biophysics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Justyna Furso
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Bożena Gładyszewska
- Department
of Physics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Sławomir Wybraniec
- Department
of Analytical Chemistry (C1), Faculty of Chemical Engineering and
Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
- Department
of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grzegorz P. Karwasz
- Aleksander
Jabłoński Institute of Physics, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Mariusz Gagoś
- Department
of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|