1
|
Runge BR, Zadorozhnyi R, Quinn CM, Russell RW, Lu M, Antolínez S, Struppe J, Schwieters CD, Byeon IJL, Hadden-Perilla JA, Gronenborn AM, Polenova T. Integrating 19F Distance Restraints for Accurate Protein Structure Determination by Magic Angle Spinning NMR Spectroscopy. J Am Chem Soc 2024. [PMID: 39440810 DOI: 10.1021/jacs.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Traditional protein structure determination by magic angle spinning (MAS) solid-state NMR spectroscopy primarily relies on interatomic distances up to 8 Å, extracted from 13C-, 15N-, and 1H-based dipolar-based correlation experiments. Here, we show that 19F fast (60 kHz) MAS NMR spectroscopy can supply additional, longer distances. Using 4F-Trp,U-13C,15N crystalline Oscillatoria agardhii agglutinin (OAA), we demonstrate that judiciously designed 2D and 3D 19F-based dipolar correlation experiments such as (H)CF, (H)CHF, and FF can yield interatomic distances in the 8-16 Å range. Incorporation of fluorine-based restraints into structure calculation improved the precision of Trp side chain conformations as well as regions in the protein around the fluorine containing residues, with notable improvements observed for residues in proximity to the Trp pairs (W10/W17 and W77/W84) in the carbohydrate-binding loops, which lacked sufficient long-range 13C-13C distance restraints. Our work highlights the use of fluorine and 19F fast MAS NMR spectroscopy as a powerful structural biology tool.
Collapse
Affiliation(s)
- Brent R Runge
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin M Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Ryan W Russell
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Santiago Antolínez
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 12A, Bethesda, Maryland 20892, United States
| | - In-Ja L Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jodi A Hadden-Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Kraus J, Gupta R, Lu M, Gronenborn AM, Akke M, Polenova T. Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter. Chemphyschem 2020; 21:1436-1443. [PMID: 32363727 PMCID: PMC8080305 DOI: 10.1002/cphc.202000249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate 13 C and 15 N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for 15 N atoms. Here we compare experimentally determined backbone 13 Cα and 15 NH chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed 15 NH chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Department of Chemistry, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Goldbourt A. Structural characterization of bacteriophage viruses by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:192-210. [PMID: 31779880 DOI: 10.1016/j.pnmrs.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Magic-angle spinning (MAS) solid-state NMR has provided structural insights into various bacteriophage systems including filamentous, spherical, and tailed bacteriophage viruses. A variety of methodologies have been utilized including elementary two and three-dimensional assignment experiments, proton-detection techniques at fast spinning speeds, non-uniform sampling, structure determination protocols, conformational dynamics revealed by recoupling of anisotropic interactions, and enhancement by dynamic nuclear polarization. This review summarizes most of the studies performed during the last decade by MAS techniques and makes comparisons with prior knowledge obtained from static and solution NMR techniques. Chemical shifts for the capsids of the various systems are reported and analyzed, and DNA shifts are reported and discussed in the context of general high molecular-weight DNA molecules. Chemical shift and torsion angle prediction techniques are compared and applied to the various phage systems. The structures of the intact M13 filamentous bacteriophage and that of the Acinetobacter phage AP205 capsid, determined using MAS-based experimental data, are presented. Finally, filamentous phages, which are highly rigid systems, show interesting dynamics at the interface of the capsid and DNA, and their mutual electrostatic interactions are shown to be mediated by highly mobile positively charged residues. Novel results obtained from recoupling the chemical shift anisotropy of a single arginine in IKe phage, which is in contact with its DNA, further demonstrate this point. MAS NMR thus provides many new insights into phage structure, and on the other hand the richness, complexity and variety of bacteriophage systems provide opportunities for new NMR methodologies and technique developments.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
4
|
Guo C, Williams JC, Polenova T. Conformational Flexibility of p150 Glued(1-191) Subunit of Dynactin Assembled with Microtubules. Biophys J 2019; 117:938-949. [PMID: 31445682 DOI: 10.1016/j.bpj.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Microtubule (MT)-associated proteins perform diverse functions in cells. These functions are dependent on their interactions with MTs. Dynactin, a cofactor of dynein motor, assists the binding of dynein to various organelles and is crucial to the long-distance processivity of dynein-based complexes. The largest subunit of dynactin, the p150Glued, contains an N-terminus segment that is responsible for the MT-binding interactions and long-range processivity of dynactin. We employed solution and magic angle spinning NMR spectroscopy to characterize the structure and dynamics of the p150Glued N-terminal region, both free and in complex with polymerized MTs. This 191-residue region encompasses the cytoskeleton-associated protein glycine-rich domain, the basic domain, and serine/proline-rich (SP-rich) domain. We demonstrate that the basic and SP-rich domains are intrinsically disordered in solution and significantly enhance the binding affinity to MTs as these regions contain the second MT-binding site on the p150Glued subunit. The majority of the basic and SP-rich domains are predicted to be random coil, whereas the segments S111-I116, A124-R132, and K144-T146 in the basic domain contain short α-helical or β-sheet structures. These three segments possibly encompass the MT-binding site. Surprisingly, the protein retains a high degree of flexibility upon binding to MTs except for the regions that are directly involved in the binding interactions with MTs. This conformational flexibility may be essential for the biological functions of the p150Glued subunit.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
5
|
Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'. JOURNAL OF BIOMOLECULAR NMR 2019; 73:333-346. [PMID: 30847635 PMCID: PMC6693955 DOI: 10.1007/s10858-019-00233-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
We present a systematic investigation into the attainable accuracy and precision of protein structures determined by heteronuclear magic angle spinning solid-state NMR for a set of four proteins of varied size and secondary structure content. Structures were calculated using synthetically generated random sets of C-C distances up to 7 Å at different degrees of completeness. For single-domain proteins, 9-15 restraints per residue are sufficient to derive an accurate model structure, while maximum accuracy and precision are reached with over 15 restraints per residue. For multi-domain proteins and protein assemblies, additional information on domain orientations, quaternary structure and/or protein shape is needed. As demonstrated for the HIV-1 capsid protein assembly, this can be accomplished by integrating MAS NMR with cryoEM data. In all cases, inclusion of TALOS-derived backbone torsion angles improves the accuracy for small number of restraints, while no further increases are noted for restraint completeness above 40%. In contrast, inclusion of TALOS-derived torsion angle restraints consistently increases the precision of the structural ensemble at all degrees of distance restraint completeness.
Collapse
Affiliation(s)
- Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Matthew P Fritz
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Rai RK, Angelis AD, Greenwood A, Opella SJ, Cotten ML. Metal-ion Binding to Host Defense Peptide Piscidin 3 Observed in Phospholipid Bilayers by Magic Angle Spinning Solid-state NMR. Chemphyschem 2019; 20:295-301. [PMID: 30471190 PMCID: PMC6494093 DOI: 10.1002/cphc.201800855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass. Prior studies showed that P3 is less active than its homolog piscidin 1 (P1) against planktonic bacteria. However, P3 has the advantage of being less toxic to mammalian cells and more active on biofilms and persister cells. Both P1 and P3 cross bacterial membranes and co-localize with intracellular DNA but P3 is more condensing to DNA while P1 is more membrane active. Recently, we showed that both peptides coordinate Cu2+ through an amino-terminal copper and nickel (ATCUN) motif. We also demonstrated that the bactericidal effects of P3 are linked to its ability to form radicals that nick DNA in the presence of Cu2+ . Since metal binding and membrane crossing by P3 is biologically important, we apply in this study solid-state NMR spectroscopy to uniformly 13 C-15 N-labeled peptide samples to structurally characterize the ATCUN motif of P3 bound to bilayers and coordinated to Ni2+ and Cu2+ . These experiments are supplemented with density functional theory calculations. Taken together, these studies refine the arrangement of not only the backbone but also side chain atoms of an AMP simultaneously bound to metal ions and phospholipid bilayers.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Anna De Angelis
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Alexander Greenwood
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Myriam L. Cotten
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| |
Collapse
|
7
|
Fritz M, Quinn CM, Wang M, Hou G, Lu X, Koharudin LMI, Struppe J, Case DA, Polenova T, Gronenborn AM. Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys Chem Chem Phys 2018; 20:9543-9553. [PMID: 29577158 PMCID: PMC5892194 DOI: 10.1039/c8cp00647d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical shifts are highly sensitive probes of local conformation and overall structure. Both isotropic shifts and chemical shift tensors are readily accessible from NMR experiments but their quantum mechanical calculations remain challenging. In this work, we report and compare accurately measured and calculated 15NH and 13Cα chemical shift tensors in proteins, using the microcrystalline agglutinin from Oscillatoria agardhii (OAA). Experimental 13Cα and 15NH chemical tensors were obtained by solid-state NMR spectroscopy, employing tailored recoupling sequences, and for their quantum mechanics/molecular mechanics (QM/MM) calculations different sets of functionals were evaluated. We show that 13Cα chemical shift tensors are primarily determined by backbone dihedral angles and dynamics, while 15NH tensors mainly depend on local electrostatic contributions from solvation and hydrogen bonding. In addition, the influence of including crystallographic waters, the molecular mechanics geometry optimization protocol, and the level of theory on the accuracy of the calculated chemical shift tensors is discussed. Specifically, the power of QM/MM calculations in accurately predicting the unusually upfield shifted 1HN G26 and G93 resonances is highlighted. Our integrated approach is expected to benefit structure refinement of proteins and protein assemblies.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Leonardus M. I. Koharudin
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8087, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
8
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
9
|
Kraus J, Gupta R, Yehl J, Lu M, Case DA, Gronenborn AM, Akke M, Polenova T. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. J Phys Chem B 2018; 122:2931-2939. [PMID: 29498857 DOI: 10.1021/acs.jpcb.8b00853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15NH. Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13Cα, while larger scatter is observed for 15NH chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jenna Yehl
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|