1
|
Fan QY, Liu YP, Zhu HX, Gong FQ, Wang Y, E W, Bao X, Tian ZQ, Cheng J. Entropy in catalyst dynamics under confinement. Chem Sci 2024; 15:d4sc05399k. [PMID: 39464620 PMCID: PMC11500834 DOI: 10.1039/d4sc05399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Entropy during the dynamic structural evolution of catalysts has a non-trivial influence on chemical reactions. Confinement significantly affects the catalyst dynamics and thus impacts the reactivity. However, a full understanding has not been clearly established. To investigate catalyst dynamics under confinement, we utilize the active learning scheme to effectively train machine learning potentials for computing free energies of catalytic reactions. The scheme enables us to compute the reaction free energies and entropies of O2 dissociation on Pt clusters with different sizes confined inside a carbon nanotube (CNT) at the timescale of tens of nanoseconds while keeping ab initio accuracy. We observe an entropic effect owing to liquid-to-solid phase transitions of clusters at finite temperatures. More importantly, the confinement effect enhances the structural dynamics of the cluster and leads to a lower melting temperature than those of the bare cluster and cluster outside the CNT, consequently facilitating the reaction to occur at lower temperatures and preventing the catalyst from forming unfavorable oxides. Our work reveals the important influence of confinement on structural dynamics, providing useful insight into entropy in dynamic catalysis.
Collapse
Affiliation(s)
- Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, Shanxi University Taiyuan 030006 China
| | - Yun-Pei Liu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao-Xuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Fu-Qiang Gong
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Weinan E
- Center for Machine Learning Research, School of Mathematical Sciences, Peking University Beijing 100871 China
- AI for Science Institute Beijing 100084 China
| | - Xinhe Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 China
| |
Collapse
|
2
|
Gong FQ, Liu YP, Wang Y, E W, Tian ZQ, Cheng J. Machine Learning Molecular Dynamics Shows Anomalous Entropic Effect on Catalysis through Surface Pre-melting of Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202405379. [PMID: 38639181 DOI: 10.1002/anie.202405379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.
Collapse
Affiliation(s)
- Fu-Qiang Gong
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Yun-Pei Liu
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Ye Wang
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Weinan E
- School of Mathematical Sciences, Peking University, Center for Machine Learning Research, Beijing, 100084, China
- AI for Science Institute, Beijing, 100080, China
| | - Zhong-Qun Tian
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
| | - Jun Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Velisoju VK, Cerrillo JL, Ahmad R, Mohamed HO, Attada Y, Cheng Q, Yao X, Zheng L, Shekhah O, Telalovic S, Narciso J, Cavallo L, Han Y, Eddaoudi M, Ramos-Fernández EV, Castaño P. Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO 2 hydrogenation catalyst. Nat Commun 2024; 15:2045. [PMID: 38448464 PMCID: PMC10918174 DOI: 10.1038/s41467-024-46388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yerrayya Attada
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), KAUST, Thuwal, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Korobov A. Frustrations of supported catalytic clusters under operando conditions predicted by a simple lattice model. Sci Rep 2022; 12:17020. [PMID: 36220887 PMCID: PMC9553940 DOI: 10.1038/s41598-022-21534-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
The energy landscape with a number of close minima separated by low barriers is a well-known issue in computational heterogeneous catalysis. In the framework of the emerging out-of-equilibrium material science, the navigation through such involved landscapes is associated with the functionality of materials. Current advancements in the cluster catalysis has brought and continues to bring essential nuances to the topic. One of them is the possibility of frustration of the catalytic centre under operando conditions. However, this conjecture is difficult to check either experimentally or theoretically. As a step in this direction, as-simple-as-possible lattice model is used to estimate how the supposed frustrations may couple with the elementary reaction and manifest themselves at the macroscopic scale.
Collapse
Affiliation(s)
- Alexander Korobov
- Materials Chemistry Department, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine.
| |
Collapse
|
5
|
Wang X, Wang H, Luo Q, Yang J. Structural and electro-catalytic properties of copper clusters: a study via deep learning and first principles . J Chem Phys 2022; 157:074304. [DOI: 10.1063/5.0100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the atomic structure of clusters has been a long-term challenge in theoretical calculations due to the high computational cost of density-functional theory (DFT). Deep learning potential (DP), as an alternative way, has been demonstrated to be able to conduct cluster simulations with close-to DFT accuracy but at a much lower computational cost. In this work, we update 34 structures of the 41 Cu clusters with atomic numbers ranging from 10 to 50 by combining global optimization and the DP model. The calculations show that the configuration of small Cu n clusters ( n = 10 −15) tends to be oblate and it gradually transforms into a cage-like configuration as the size increases ( n > 15). Based on the updated structures, their relative stability and electronic properties are extensively studied. Besides, we select 3 different clusters (Cu13, Cu38, and Cu49) to study their electrocatalytic ability of CO2 reduction. The simulation indicates that the main product is CO for these three clusters, while the selectivity of hydrocarbons is inhibited. This work is expected to clarify the ground-state structures and fundamental properties of Cu n clusters, and to guide experiments for the design of Cu-based catalysts.
Collapse
Affiliation(s)
- Xiaoning Wang
- University of Science and Technology of China, China
| | | | | | - Jinlong Yang
- Dept.of Chem. Phys., University of Science and Technology of China, China
| |
Collapse
|
6
|
Fan QY, Liu JL, Gong FQ, Wang Y, Cheng J. Structural dynamics of Ru clusters during nitrogen dissociation in ammonia synthesis. Phys Chem Chem Phys 2022; 24:10820-10825. [PMID: 35482304 DOI: 10.1039/d2cp00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic evolution of catalyst structures greatly influences the reactivity, especially sub-nanometer clusters, exhibiting complex configurational fluctuation. In the present work, we study the structural dynamics of a Ru19 cluster during the dissociation of N2 and calculate the reaction free energies using ab initio molecular dynamics (AIMD). Our AIMD calculation predicts a peak-shaped reaction entropy curve due to the adsorption-induced phase transition of the Ru19 cluster. The low melting points of sub-nanometer clusters make it possible to activate N2 at low temperatures. This work demonstrates that the dynamic changes of cluster structures have a non-negligible effect on reaction free energy and offer an opportunity for achieving ammonia synthesis under mild conditions.
Collapse
Affiliation(s)
- Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jing-Li Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fu-Qiang Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
7
|
Sun JJ, Fan QY, Jin X, Liu JL, Liu TT, Ren B, Cheng J. Size-dependent phase transitions boost catalytic activity of sub-nanometer gold clusters. J Chem Phys 2022; 156:144304. [DOI: 10.1063/5.0084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The characterization and identification of the dynamics of cluster catalysis are crucial to unraveling the origin of catalytic activity. However, the dynamical catalytic effects during the reaction process remain unclear. Herein, we investigate the dynamic coupling effect of elementary reactions with the structural fluctuations of sub-nanometer Au clusters with different sizes using ab initio molecular dynamics and the free energy calculation method. It was found that the adsorption-induced solid-to-liquid phase transitions of the cluster catalysts give rise to abnormal entropy increase, facilitating the proceeding of reaction, and this phase transition catalysis exists in a range of clusters with different sizes. Moreover, clusters with different sizes show different transition temperatures, resulting in a non-trivial size effect. These results unveil the dynamic effect of catalysts and help understand cluster catalysis to design better catalysts rationally.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi-Yuan Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Li Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-Tong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Korpelin V, Kiljunen T, Melander MM, Caro MA, Kristoffersen HH, Mammen N, Apaja V, Honkala K. Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD: Anomalous Temperature Distributions from Commonly Used Thermostats. J Phys Chem Lett 2022; 13:2644-2652. [PMID: 35297635 PMCID: PMC8959310 DOI: 10.1021/acs.jpclett.2c00230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nosé-Hoover, Berendsen, and simple velocity-rescaling methods fail to provide a reliable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a "feature" of any particular code but are present in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726-740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nosé-Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics.
Collapse
Affiliation(s)
- Ville Korpelin
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Toni Kiljunen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Marko M. Melander
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Miguel A. Caro
- Department
of Electrical Engineering and Automation, Aalto University, FIN-02150 Espoo, Finland
| | | | - Nisha Mammen
- Department
of Physics,Nanoscience Center, University
of Jyväskylä, P.O. Box
35 (YN), FI-40014 Jyväskylä, Finland
| | - Vesa Apaja
- Department
of Physics,Nanoscience Center, University
of Jyväskylä, P.O. Box
35 (YN), FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| |
Collapse
|
9
|
Maneri AH, Singh CP, Kumar R, Maibam A, Krishnamurty S. Mapping the Finite-Temperature Behavior of Conformations to Their Potential Energy Barriers: Case Studies on Si 6B and Si 5B Clusters. ACS OMEGA 2022; 7:6167-6173. [PMID: 35224380 PMCID: PMC8867552 DOI: 10.1021/acsomega.1c06654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 05/17/2023]
Abstract
Dynamical simulations of molecules and materials have been the route to understand the rearrangement of atoms within them at different temperatures. Born-Oppenheimer molecular dynamical simulations have further helped to comprehend the reaction dynamics at various finite temperatures. We take a case study of Si6B and Si5B clusters and demonstrate that their finite-temperature behavior is rather mapped to the potential energy surface. The study further brings forth the fact that an accurate description of the dynamics is rather coupled with the accuracy of the method in defining the potential energy surface. A more precise potential energy surface generated through the coupled cluster method is finally used to identify the most accurate description of the potential energy surface and the interconnected finite-temperature behavior.
Collapse
Affiliation(s)
- Asma H. Maneri
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research, CSIR-Human
Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Gaziabad 201002, Uttar
Pradesh, India
| | - Chandrodai Pratap Singh
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research, CSIR-Human
Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Gaziabad 201002, Uttar
Pradesh, India
| | - Ravi Kumar
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research, CSIR-Human
Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Gaziabad 201002, Uttar
Pradesh, India
| | - Ashakiran Maibam
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research, CSIR-Human
Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Gaziabad 201002, Uttar
Pradesh, India
| | - Sailaja Krishnamurty
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research, CSIR-Human
Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Gaziabad 201002, Uttar
Pradesh, India
- ,
| |
Collapse
|
10
|
Fan QY, Wang Y, Cheng J. Size-Sensitive Dynamic Catalysis of Subnanometer Cu Clusters in CO 2 Dissociation. J Phys Chem Lett 2021; 12:3891-3897. [PMID: 33856802 DOI: 10.1021/acs.jpclett.1c00506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Small cluster catalysts are highly size-dependent and exhibit complex structural dynamic effects during catalytic reactions. Understanding their structural dynamics is of great importance in tuning the catalytic performances of small clusters that widely exist in supported catalysts. However, very little is known about the size dependence of the dynamic effect of small clusters. In this work, we systematically study the free energies and barriers of catalytic dissociation of CO2 at different temperatures on dynamical Cu clusters with different sizes by ab initio molecular dynamics. The reaction shows an abnormal entropic effect on Cu clusters, and more interestingly, it shows size sensitivity. On the Cu7 cluster, the entropy curve shows a reverse peak shape with increasing temperature, and it is surprising to find that it has a complex pulse shape on the Cu19 cluster. The detailed analysis shows that such temperature dependences can be attributable to the nontrivial behaviors of adsorption-induced phase transitions of the subnanometer Cu clusters during the dissociation of CO2. Our work not only demonstrates the complexity of the temperature dependence of the surface reaction on cluster sizes but also provides useful insight into the phase transition catalysis of dynamic clusters.
Collapse
Affiliation(s)
- Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Chakraborty S, Mukherjee S. Role of Small Moiety of a Large Ligand: Tyrosine Templated Copper Nanoclusters. J Phys Chem Lett 2021; 12:3266-3273. [PMID: 33764772 DOI: 10.1021/acs.jpclett.1c00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To explore the underlying formation mechanism of luminescent metal nanoclusters (NCs) using a small moiety such as amino acids (outside the milieu of a protein environment) as templates, herein we report blue-emitting copper nanoclusters (CuNCs) using l-tyrosine (l-Tyr) as a capping agent as well as a reducing agent. We also demonstrate the effect of an in situ fibrillation of Tyr on the luminescence and structural properties of NCs. Fluorescence studies along with microscopic imaging revealed the rapid formation of a dityrosine (di-Tyr) moiety in an alkaline medium followed by an aggregated "Tamarix dioica leaf"-like fibrillar pattern along with CuNCs. Our present investigation delineates the role played by π-π interactions in the formation of the fibrillar structures. We substantiated the fundamentals of using a small molecule of a large ligand that can serve as a template and also show how these NCs once formed destroy the fibrils of di-Tyr as a function of time.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
12
|
Zhang XG, Zhang L, Feng S, Qin H, Wu DY, Zhao Y. Light Driven Mechanism of Carbon Dioxide Reduction Reaction to Carbon Monoxide on Gold Nanoparticles: A Theoretical Prediction. J Phys Chem Lett 2021; 12:1125-1130. [PMID: 33475366 DOI: 10.1021/acs.jpclett.0c03694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insightful understanding of the light driven CO2 reduction reaction (CO2RR) mechanism on gold nanoparticles is one of the important issues in the plasmon mediated photocatalytic study. Herein, time-dependent density functional theory and reduced two-state model are adopted to investigate the photoinduced charge transfer in interfaces. According to the excitation energy and orbital coupling, the light driven mechanism of CO2RR on gold nanoparticles can be described as follows: the light induces electron excitation and then transfers to the physisorbed CO2, and CO2 can relax to a bent structure adsorbed on gold nanoparticles, and the adsorbed C-O bonds are dissociated finally. Moreover, our calculated results demonstrate that the s, p, and d electron excitations of gold nanoparticles are the major contribution for the CO2 adsorption and the C-O dissociation process, respectively. This work would promote the understanding of the light driven electron transfer and photocatalytic CO2RR on the noble metal.
Collapse
Affiliation(s)
- Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lei Zhang
- Dawning Information Industry (Beijing) Corp., Ltd., Beijing 100193, China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haimei Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|