1
|
Joseph B. Protein-Protein Interaction and Conformational Change in the Alpha-Helical Membrane Transporter BtuCD-F in the Native Cellular Envelope. Chembiochem 2024:e202400858. [PMID: 39551706 DOI: 10.1002/cbic.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Alpha-helical membrane proteins perform numerous critical functions essential for the survival of living organisms. Traditionally, these proteins are extracted from membranes using detergent solubilization and reconstitution into liposomes or nanodiscs. However, these processes often obscure the effects of nanoconfinement and the native environment on the structure and conformational heterogeneity of the target protein. We demonstrate that pulsed dipolar electron spin resonance spectroscopy, combined with the Gd3+-nitroxide spin pair, enables the selective observation of the vitamin B12 importer BtuCD-F in its native cellular envelope. Despite the high levels of non-specific labeling in the envelope, this orthogonal approach combined with the long phase-memory time for the Gd3+ spin enables the observation of the target protein complex at a few micromolar concentrations with high resolution. In the native envelope, vitamin B12 induces a distinct conformational shift at the BtuCD-BtuF interface, which is not observed in the micelles. This approach offers a general strategy for investigating protein-protein and protein-ligand/drug interactions and conformational changes of the alpha-helical membrane proteins in their native envelope context.
Collapse
Affiliation(s)
- Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
2
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
3
|
Hasanbasri Z, Tessmer MH, Stoll S, Saxena S. Modeling of Cu(II)-based protein spin labels using rotamer libraries. Phys Chem Chem Phys 2024; 26:6806-6816. [PMID: 38324256 PMCID: PMC10883468 DOI: 10.1039/d3cp05951k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The bifunctional spin label double-histidine copper-(II) capped with nitrilotriacetate [dHis-Cu(II)-NTA], used in conjunction with electron paramagnetic resonance (EPR) methods can provide high-resolution distance data for investigating protein structure and backbone conformational diversity. Quantitative utilization of this data is limited due to a lack of rapid and accurate dHis-Cu(II)-NTA modeling methods that can be used to translate experimental data into modeling restraints. Here, we develop two dHis-Cu(II)-NTA rotamer libraries using a set of recently published molecular dynamics simulations and a semi-empirical meta-dynamics-based conformational ensemble sampling tool for use with the recently developed chiLife bifunctional spin label modeling method. The accuracy of both the libraries and the modeling method are tested by comparing model predictions to experimentally determined distance distributions. We show that this method is accurate with absolute deviation between the predicted and experimental modes between 0.0-1.2 Å with an average of 0.6 Å over the test data used. In doing so, we also validate the generality of the chiLife bifunctional label modeling method. Taken together, the increased structural resolution and modeling accuracy of dHis-Cu(II)-NTA over other spin labels promise improvements in the accuracy and resolution of protein models by EPR.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| |
Collapse
|
4
|
Ackermann K, Heubach CA, Schiemann O, Bode BE. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Distance Measurements at Low Nanomolar Concentrations: The Cu II-Trityl Case. J Phys Chem Lett 2024; 15:1455-1461. [PMID: 38294197 PMCID: PMC10860127 DOI: 10.1021/acs.jpclett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Recent sensitivity enhancements in pulse dipolar electron paramagnetic resonance spectroscopy (PDS) have afforded distance measurements at submicromolar spin concentrations. This development opens the path for new science as more biomolecular systems can be investigated at their respective physiological concentrations. Here, we demonstrate that the combination of orthogonal spin-labeling using CuII ions and trityl yields a >3-fold increase in sensitivity compared to that of the established CuII-nitroxide labeling strategy. Application of the recently developed variable-time relaxation-induced dipolar modulation enhancement (RIDME) method yields a further ∼2.5-fold increase compared to the commonly used constant-time RIDME. This overall increase in sensitivity of almost an order of magnitude makes distance measurements in the range of 3 nm with protein concentrations as low as 10 nM feasible, >2 times lower than the previously reported concentration. We expect that experiments at single-digit nanomolar concentrations are imminent, which have the potential to transform biological PDS applications.
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caspar A. Heubach
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
5
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
6
|
Pierro A, Tamburrini KC, Leguenno H, Gerbaud G, Etienne E, Guigliarelli B, Belle V, Zambelli B, Mileo E. In-cell investigation of the conformational landscape of the GTPase UreG by SDSL-EPR. iScience 2023; 26:107855. [PMID: 37766968 PMCID: PMC10520941 DOI: 10.1016/j.isci.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.
Collapse
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ketty Concetta Tamburrini
- Aix Marseille Univ, CNRS, AFMB, 13009 Marseille, France
- INRAE, Aix Marseille Univ, BBF, 13009 Marseille, France
| | - Hugo Leguenno
- Aix Marseille Univ, CNRS, IMM, Microscopy Core Facility, 13009 Marseille, France
| | | | | | | | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | | |
Collapse
|
7
|
Mandato A, Hasanbasri Z, Saxena S. Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations. J Phys Chem Lett 2023; 14:8909-8915. [PMID: 37768093 PMCID: PMC10577775 DOI: 10.1021/acs.jpclett.3c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Recently, there have been remarkable improvements in pulsed ESR sensitivity, paving the way for broader applicability of ESR in the measurement of biological distance constraints, for instance, at physiological concentrations and in more complex systems. Nevertheless, submicromolar distance measurements with the commonly used nitroxide spin label take multiple days. Therefore, there remains a need for rapid and reliable methods of measuring distances between spins at nanomolar concentrations. In this work, we demonstrate the power of double quantum coherence (DQC) experiments at Q-band frequencies. With the help of short and intense pulses, we showcase DQC signals on nitroxide-labeled proteins with modulation depths close to 100%. We show that the deep dipolar modulations aid in the resolution of bimodal distance distributions. Finally, we establish that distance measurements with protein concentrations as low as 25 nM are feasible. This limit is approximately 4-fold lower than previously possible. We anticipate that nanomolar concentration measurements will lead to further advancements in the use of ESR, especially in cellular contexts.
Collapse
Affiliation(s)
- Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Teucher M, Kucher S, Timachi MH, Wilson CB, Śmiłowicz D, Stoll R, Metzler-Nolte N, Sherwin MS, Han S, Bordignon E. Spectroscopically Orthogonal Spin Labels in Structural Biology at Physiological Temperatures. J Phys Chem B 2023; 127:6668-6674. [PMID: 37490415 PMCID: PMC10405217 DOI: 10.1021/acs.jpcb.3c04497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.
Collapse
Affiliation(s)
- Markus Teucher
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Svetlana Kucher
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
- Department
of Physical Chemistry, University of Geneva, Genève 1211, Switzerland
| | - M. Hadi Timachi
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - C. Blake Wilson
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Dariusz Śmiłowicz
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Raphael Stoll
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Nils Metzler-Nolte
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Mark S. Sherwin
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Songi Han
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Enrica Bordignon
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
- Department
of Physical Chemistry, University of Geneva, Genève 1211, Switzerland
| |
Collapse
|
9
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. J Am Chem Soc 2023; 145:14608-14620. [PMID: 37364003 PMCID: PMC10440187 DOI: 10.1021/jacs.3c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
10
|
Wort JL, Ackermann K, Giannoulis A, Bode BE. Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107460. [PMID: 37167826 DOI: 10.1016/j.jmr.2023.107460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Pulse dipolar EPR spectroscopy (PDS) measurements are an important complementary tool in structural biology and are increasingly applied to macromolecular assemblies implicated in human health and disease at physiological concentrations. This requires ever higher sensitivity, and recent advances have driven PDS measurements into the mid-nanomolar concentration regime, though optimization and acquisition of such measurements remains experimentally demanding and time expensive. One important consideration is that constant-time acquisition represents a hard limit for measurement sensitivity, depending on the maximum measured distance. Determining this distance a priori has been facilitated by machine-learning structure prediction (AlphaFold2 and RoseTTAFold) but is often confounded by non-representative behaviour in frozen solution that may mandate multiple rounds of optimization and acquisition. Herein, we endeavour to simultaneously enhance sensitivity and streamline PDS measurement optimization to one-step by benchmarking a variable-time acquisition RIDME experiment applied to CuII-nitroxide and CuII-CuII model systems. Results demonstrate marked sensitivity improvements of both 5- and 6-pulse variable-time RIDME of between 2- and 5-fold over the constant-time analogues.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland.
| |
Collapse
|
11
|
Rogers CJ, Bogdanov A, Seal M, Thornton ME, Su XC, Natrajan LS, Goldfarb D, Bowen AM. Frequency swept pulses for the enhanced resolution of ENDOR spectra detecting on higher spin transitions of Gd(III). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107447. [PMID: 37119743 DOI: 10.1016/j.jmr.2023.107447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/29/2023]
Abstract
Half-Integer High Spin (HIHS) systems with zero-field splitting (ZFS) parameters below 1 GHz are generally dominated by the spin |─1/2>→|+1/2 > central transition (CT). Accordingly, most pulsed Electron Paramagnetic Resonance (EPR) experiments are performed at this position for maximum sensitivity. However, in certain cases it can be desirable to detect higher spin transitions away from the CT in such systems. Here, we describe the use of frequency swept Wideband, Uniform Rate, Smooth Truncation (WURST) pulses for transferring spin population from the CT, and other transitions, of Gd(III) to the neighbouring higher spin transition |─3/2>→|─1/2 > at Q- and W-band frequencies. Specifically, we demonstrate this approach to enhance the sensitivity of 1H Mims Electron-Nuclear Double Resonance (ENDOR) measurements on two model Gd(III) aryl substituted 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) complexes, focusing on transitions other than the CT. We show that an enhancement factor greater than 2 is obtained for both complexes at Q- and W-band frequencies by the application of two polarising pulses prior to the ENDOR sequence. This is in agreement with simulations of the spin dynamics of the system during WURST pulse excitation. The technique demonstrated here should allow more sensitive experiments to be measured away from the CT at higher operating temperatures, and be combined with any relevant pulse sequence.
Collapse
Affiliation(s)
- Ciarán J Rogers
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew E Thornton
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China
| | - Louise S Natrajan
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Alice M Bowen
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
13
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525763. [PMID: 36747808 PMCID: PMC9901033 DOI: 10.1101/2023.01.26.525763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification. TOC
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Equal contributors
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
- Equal contributors
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
14
|
Pierro A, Drescher M. Dance with spins: site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy directly inside cells. Chem Commun (Camb) 2023; 59:1274-1284. [PMID: 36633152 PMCID: PMC9890500 DOI: 10.1039/d2cc05907j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Depicting how biomolecules move and interact within their physiological environment is one of the hottest topics of structural biology. This Feature Article gives an overview of the most recent advances in Site-directed Spin Labeling coupled to Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) to study biomolecules in living cells. The high sensitivity, the virtual absence of background, and the versatility of spin-labeling strategies make this approach one of the most promising techniques for the study of biomolecules in physiologically relevant environments. After presenting the milestones achieved in this field, we present a summary of the future goals and ambitions of this community.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, University of Konstanz, and Konstanz Research School Chemical Biology, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Malte Drescher
- Department of Chemistry, University of Konstanz, and Konstanz Research School Chemical Biology, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
15
|
Pierro A, Bonucci A, Normanno D, Ansaldi M, Pilet E, Ouari O, Guigliarelli B, Etienne E, Gerbaud G, Magalon A, Belle V, Mileo E. Probing the Structural Dynamics of a Bacterial Chaperone in Its Native Environment by Nitroxide‐Based EPR Spectroscopy. Chemistry 2022; 28:e202202249. [DOI: 10.1002/chem.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
- Department of Chemistry University of Konstanz, and Konstanz Research School Chemical Biology 78457 Konstanz Germany
| | - Alessio Bonucci
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Davide Normanno
- Aix Marseille Univ CNRS, Inserm Institut Paoli-Calmettes, CRCM Centre de Recherche en Cancérologie de Marseille 13273 Marseille France
- Univ Montpellier CNRS, IGH Institut de Génétique Humaine 34396 Montpellier France
| | - Mireille Ansaldi
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Eric Pilet
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ CNRS, ICR Institut de Chimie Radicalaire 13397 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Emilien Etienne
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Guillaume Gerbaud
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Axel Magalon
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| |
Collapse
|
16
|
Protein delivery to living cells by thermal stimulation for biophysical investigation. Sci Rep 2022; 12:17190. [PMID: 36229511 PMCID: PMC9561116 DOI: 10.1038/s41598-022-21103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Studying biomolecules in their native environment represents the ideal sample condition for structural biology investigations. Here we present a novel protocol which allows to delivery proteins into eukaryotic cells through a mild thermal stimulation. The data presented herein show the efficacy of this approach for delivering proteins in the intracellular environment of mammalian cells reaching a concentration range suitable for successfully applying biophysical methods, such as double electron electron resonance (DEER) measurements for characterising protein conformations.
Collapse
|
17
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Ackermann K, Wort JL, Bode BE. Pulse dipolar EPR for determining nanomolar binding affinities. Chem Commun (Camb) 2022; 58:8790-8793. [PMID: 35837993 PMCID: PMC9350988 DOI: 10.1039/d2cc02360a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein interaction studies often require very low concentrations and highly sensitive biophysical methods. Here, we demonstrate that pulse dipolar electron paramagnetic resonance spectroscopy allows measuring dissociation constants in the nanomolar range. This approach is appealing for concentration-limited biomolecular systems and medium-to-high-affinity binding studies, demonstrated here at 50 nanomolar protein concentration. CuII-nitroxide RIDME measurements at 100 nM protein concentration allow reliable extraction of dissociation constants and distances, while measurements at 50 nM protein concentration allow reliable extraction of dissociation constants only.![]()
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| | - Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| |
Collapse
|
19
|
Goldfarb D. Exploring protein conformations in vitro and in cell with EPR distance measurements. Curr Opin Struct Biol 2022; 75:102398. [PMID: 35667279 DOI: 10.1016/j.sbi.2022.102398] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022]
Abstract
The electron-electron double resonance (DEER) method, which provides distance distributions between two spin labels, attached site specifically to biomolecules (proteins and nucleic acids), is currently a well-recognized biophysical tool in structural biology. The most commonly used spin labels are based on nitroxide stable radicals, conjugated to the proteins primarily via native or engineered cysteine residues. However, in recent years, new spin labels, along with different labeling chemistries, have been introduced, driven in part by the desire to study structural and dynamical properties of biomolecules in their native environment, the cell. This mini-review focuses on these new spin labels, which allow for DEER on orthogonal spin labels, and on the state of the art methods for in-cell DEER distance measurements.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
20
|
Keeley J, Choudhury T, Galazzo L, Bordignon E, Feintuch A, Goldfarb D, Russell H, Taylor MJ, Lovett JE, Eggeling A, Fábregas Ibáñez L, Keller K, Yulikov M, Jeschke G, Kuprov I. Neural networks in pulsed dipolar spectroscopy: A practical guide. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107186. [PMID: 35344921 DOI: 10.1016/j.jmr.2022.107186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
This is a methodological guide to the use of deep neural networks in the processing of pulsed dipolar spectroscopy (PDS) data encountered in structural biology, organic photovoltaics, photosynthesis research, and other domains featuring long-lived radical pairs and paramagnetic metal ions. PDS uses distance dependence of magnetic dipolar interactions; measuring a single well-defined distance is straightforward, but extracting distance distributions is a hard and mathematically ill-posed problem requiring careful regularisation and background fitting. Neural networks do this exceptionally well, but their "robust black box" reputation hides the complexity of their design and training - particularly when the training dataset is effectively infinite. The objective of this paper is to give insight into training against simulated databases, to discuss network architecture choices, to describe options for handling DEER (double electron-electron resonance) and RIDME (relaxation-induced dipolar modulation enhancement) experiments, and to provide a practical data processing flowchart.
Collapse
Affiliation(s)
- Jake Keeley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tajwar Choudhury
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hannah Russell
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Michael J Taylor
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Andrea Eggeling
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Katharina Keller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
21
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
22
|
Bertran A, Barbon A, Bowen AM, Di Valentin M. Light-induced pulsed dipolar EPR spectroscopy for distance and orientation analysis. Methods Enzymol 2022; 666:171-231. [PMID: 35465920 DOI: 10.1016/bs.mie.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alice M Bowen
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
23
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Tracking protein domain movements by EPR distance determination and multilateration. Methods Enzymol 2022; 666:121-144. [DOI: 10.1016/bs.mie.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Timofeev IO, Politanskaya LV, Tretyakov EV, Polienko YF, Tormyshev VM, Bagryanskaya E, Krumkacheva OA, Fedin MV. Fullerene-based triplet spin labels: methodology aspects for pulsed dipolar EPR spectroscopy. Phys Chem Chem Phys 2022; 24:4475-4484. [DOI: 10.1039/d1cp05545c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for Pulsed Dipolar Electron Paramagnetic Resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown...
Collapse
|
26
|
Kugele A, Ketter S, Silkenath B, Wittmann V, Joseph B, Drescher M. In situ EPR spectroscopy of a bacterial membrane transporter using an expanded genetic code. Chem Commun (Camb) 2021; 57:12980-12983. [PMID: 34792069 PMCID: PMC8640571 DOI: 10.1039/d1cc04612h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
The membrane transporter BtuB is site-directedly spin labelled on the surface of living Escherichia coli via Diels-Alder click chemistry of the genetically encoded amino acid SCO-L-lysine. The previously introduced photoactivatable nitroxide PaNDA prevents off-target labelling, is used for distance measurements, and the temporally shifted activation of the nitroxide allows for advanced experimental setups. This study describes significant evolution of Diels-Alder-mediated spin labelling on cellular surfaces and opens up new vistas for the the study of membrane proteins.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Sophie Ketter
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Bjarne Silkenath
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Benesh Joseph
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
27
|
Ovcherenko SS, Chinak OA, Chechushkov AV, Dobrynin SA, Kirilyuk IA, Krumkacheva OA, Richter VA, Bagryanskaya EG. Uptake of Cell-Penetrating Peptide RL2 by Human Lung Cancer Cells: Monitoring by Electron Paramagnetic Resonance and Confocal Laser Scanning Microscopy. Molecules 2021; 26:5442. [PMID: 34576913 PMCID: PMC8470091 DOI: 10.3390/molecules26185442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
RL2 is a recombinant analogue of a human κ-casein fragment, capable of penetrating cells and inducing apoptosis of cancer cells with no toxicity to normal cells. The exact mechanism of RL2 penetration into cells remains unknown. In this study, we investigated the mechanism of RL2 penetration into human lung cancer A549 cells by a combination of electron paramagnetic resonance (EPR) spectroscopy and confocal laser scanning microscopy. EPR spectra of A549 cells incubated with RL2 (sRL2) spin-labeled by a highly stable 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl radical were found to contain three components, with their contributions changing with time. The combined EPR and confocal-microscopy data allowed us to assign these three forms of sRL2 to the spin-labeled protein sticking to the membrane of the cell and endosomes, to the spin-labeled protein in the cell interior, and to spin labeled short peptides formed in the cell because of protein digestion. EPR spectroscopy enabled us to follow the kinetics of transformations between different forms of the spin-labeled protein at a minimal spin concentration (3-16 μM) in the cell. The prospects of applications of spin-labeled cell-penetrating peptides to EPR imaging, DNP, and magnetic resonance imaging are discussed, as is possible research on an intrinsically disordered protein in the cell by pulsed dipolar EPR spectroscopy.
Collapse
Affiliation(s)
- Sergey S. Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | - Olga A. Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Anton V. Chechushkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Sergey A. Dobrynin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | | | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| |
Collapse
|
28
|
Ackermann K, Wort JL, Bode BE. Nanomolar Pulse Dipolar EPR Spectroscopy in Proteins: Cu II-Cu II and Nitroxide-Nitroxide Cases. J Phys Chem B 2021; 125:5358-5364. [PMID: 33998795 PMCID: PMC7611071 DOI: 10.1021/acs.jpcb.1c03666] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of ever more complex biomolecular assemblies implicated in human health and disease is facilitated by a suite of complementary biophysical methods. Pulse dipolar electron paramagnetic resonance spectroscopy (PDS) is a powerful tool that provides highly precise geometric constraints in frozen solutions; however, the drive toward PDS at physiologically relevant sub-μM concentrations is limited by the currently achievable concentration sensitivity. Recently, PDS using a combination of nitroxide- and CuII-based spin labels allowed measuring a 500 nM concentration of a model protein. Using commercial instrumentation and spin labels, we demonstrate CuII-CuII and nitroxide-nitroxide PDS measurements at protein concentrations below previous examples reaching 500 and 100 nM, respectively. These results demonstrate the general feasibility of sub-μM PDS measurements at short to intermediate distances (∼1.5 to 3.5 nm), and are of particular relevance for applications where the achievable concentration is limiting.
Collapse
|