1
|
Zheng F, Li H, Yang J, Wang H, Qin G, Chen D, Sha J. A switchable and facile ionic diode modulated by polyethylene glycol. Chem Commun (Camb) 2024. [PMID: 39555625 DOI: 10.1039/d4cc05283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We introduce a switchable ionic diode modulated by PEG, enabling dynamic control of ion transport and reversible ion flow switching. This system achieves tunable current rectification over two orders of magnitude, simplifying fabrication and offering versatile, scalable solutions for high-performance ionic devices in energy harvesting, nanofluidics, and ionic circuits.
Collapse
Affiliation(s)
- Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - HongLuan Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Haiyan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Guangle Qin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Dapeng Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Heo D, Kim KJ, Kwon SJ. Superior Single-Entity Electrochemistry Performance of Capping Agent-Free Gold Nanoparticles Compared to Citrate-Capped Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1399. [PMID: 39269061 PMCID: PMC11397711 DOI: 10.3390/nano14171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
In observing the electrocatalytic current of nanoparticles (NPs) using single-entity electrochemistry (SEE), the surface state of the NPs significantly influences the SEE signal. This study investigates the influence of capping agents on the electrocatalytic properties of gold (Au) NPs using SEE. Two inner-sphere reactions, hydrazine oxidation and glucose oxidation, were chosen to explore the SEE characteristics of Au NPs based on the capping agent presence. The results revealed that "capping agent-free" Au NPs exhibited signal magnitudes and frequencies consistent with theoretical expectations, indicating superior stability and catalytic performance in electrolyte solutions. In contrast, citrate-capped Au NPs showed signals varying depending on the applied potential, with larger magnitudes and lower frequencies than expected, likely due to an aggregation of NPs. This study suggests that capping agents play a crucial role in the catalytic performance and stability of Au NPs in SEE. By demonstrating that minimizing capping agent presence can enhance effectiveness in SEE, it provides insights into the future applications of NPs, particularly highlighting their potential as nanocatalysts in energy conversion reactions and environmental applications.
Collapse
Affiliation(s)
- Dain Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Bai Y. Single-Nanoparticle Electrochemical Collision for Monitoring Self-Assembly of Thiol Molecules on Au Nanoparticles. BIOSENSORS 2024; 14:393. [PMID: 39194622 DOI: 10.3390/bios14080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A precise understanding of the self-assembly kinetics of small molecules on nanoparticles (NPs) can give greater control over the size and architecture of the functionalized NPs. Herein, a single-nanoparticle electrochemical collision (SNEC)-based method was developed to monitor the self-assembly processes of 6-mercapto-1-hexanol (6-MCH) and 1-hexanethiol (MCH) on Au NPs at the single-particle level, and to investigate the self-assembly kinetics exactly. Results showed that the self-assembly processes of both consisted of rapid adsorption and slow recombination. However, the adsorption rate of MCH was significantly lower than that of 6-MCH due to the poorer polarity. Also noteworthy is that the rapid adsorption of 6-MCH on Au NPs conformed to the Langmuir model of diffusion control. Hence, the proposed SNEC-based method could serve as a complementary method to research the self-assembly mechanism of functionalized NPs.
Collapse
Affiliation(s)
- Yiyan Bai
- Department of Chemistry, Yuncheng University, Yuncheng 044000, China
| |
Collapse
|
4
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024:e2400058. [PMID: 38644684 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
| |
Collapse
|
5
|
Chen S, He W, Li J, Xu D, Zhao R, Zhu L, Wu H, Xu F. Pulley Effect in the Capture of DNA Translocation through Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5799-5808. [PMID: 38501264 DOI: 10.1021/acs.langmuir.3c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nanopores are powerful single-molecule sensors for analyzing biomolecules such as DNA and proteins. Understanding the dynamics of DNA capture and translocation through nanopores is essential for optimizing their performance. In this study, we examine the effects of applied voltage and pore diameter on current blockage, translocation time, collision, and capture location by translocating λ-DNA through 5.7 and 16 nm solid-state nanopores. Ionic current changes are used to infer DNA conformations during translocation. We find that translocation time increases with pore diameter, which can be attributed to the decrease of the stall force. Linear and exponential decreases of collision frequency with voltage are observed in the 16 and 5.7 nm pores, respectively, indicating a free energy barrier in the small pore. Moreover, the results reveal a voltage-dependent bias in the capture location toward the DNA ends, which is explained by a "pulley effect" deforming the DNA as it approaches the pore. This study provides insights into the physics governing DNA capture and translocation, which can be useful for promoting single-file translocation to enhance nanopore sensing.
Collapse
Affiliation(s)
- Shulan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Wen He
- Analysis and Testing Center, Nanchang Hangkong University, Nanchang 330063, China
| | - Jun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Derong Xu
- Jiangxi Institute of Translational Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Libo Zhu
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Hongwen Wu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Jiangxi Hospital, Nanchang 330006, China
| |
Collapse
|
6
|
Zhang X, Dai Y, Sun J, Shen J, Lin M, Xia F. Solid-State Nanopore/Nanochannel Sensors with Enhanced Selectivity through Pore-in Modification. Anal Chem 2024; 96:2277-2285. [PMID: 38285919 DOI: 10.1021/acs.analchem.3c05228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity. The selectivity of solid-state nanopores and nanochannels can be enhanced by modifying channel charge, varying pore size, incorporating specific chemical functionality, and adjusting operating (or solution) conditions. This Perspective highlights pore-in modification strategies for enhancing the selectivity of solid-state nanopore/nanochannel sensors by summarizing the articles published in the last 10 years. The future development prospects and challenges of pore-in modification in solid-state nanopore and nanochannel sensors are discussed. This Perspective helps readers better understand nanopore sensing technology, especially the importance of detection selectivity. We believe that solid-state nanopore/nanochannel sensors will soon enter our homes after various challenges.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Zhang X, Dou H, Chen X, Lin M, Dai Y, Xia F. Solid-State Nanopore Sensors with Enhanced Sensitivity through Nucleic Acid Amplification. Anal Chem 2023; 95:17153-17161. [PMID: 37966312 DOI: 10.1021/acs.analchem.3c03806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solid-state nanopores have wide applications in DNA sequencing, energy conversion and storage, seawater desalination, sensors, and reactors due to their high stability, controllable geometry, and a variety of pore-forming materials. Solid-state nanopore sensors can be used for qualitative and quantitative analyses of ions, small molecules, proteins, and nucleic acids. The combination of nucleic acid amplification and solid-state nanopores to achieve trace detection of analytes is gradually attracting attention. This review outlines nucleic acid amplification strategies for enhancing the sensitivity of solid-state nanopore sensors by summarizing the articles published in the past 10 years. The future development prospects and challenges of nucleic acid amplification in solid-state nanopore sensors are discussed. This review helps readers better understand the field of solid-state nanopore sensors. We believe that solid-state nanopore sensors will break through the bottleneck of traditional detection and become a powerful single-molecule detection platform.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huimin Dou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaorui Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
9
|
Liu Y, Wang X, Campolo G, Teng X, Ying L, Edel JB, Ivanov AP. Single-Molecule Detection of α-Synuclein Oligomers in Parkinson's Disease Patients Using Nanopores. ACS NANO 2023; 17:22999-23009. [PMID: 37947369 PMCID: PMC10690843 DOI: 10.1021/acsnano.3c08456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation in the brain has been significantly implicated in Parkinson's disease (PD). Beyond the brain, oligomers of α-Synuclein are also found in cerebrospinal fluid (CSF) and blood, where the analysis of these aggregates may provide diagnostic routes and enable a better understanding of disease mechanisms. However, detecting α-Syn in CSF and blood is challenging due to its heterogeneous protein size and shape, and low abundance in clinical samples. Nanopore technology offers a promising route for the detection of single proteins in solution; however, the method often lacks the necessary selectivity in complex biofluids, where multiple background biomolecules are present. We address these limitations by developing a strategy that combines nanopore-based sensing with molecular carriers that can specifically capture α-Syn oligomers with sizes of less than 20 nm. We demonstrate that α-Synuclein oligomers can be detected directly in clinical samples, with minimal sample processing, by their ion current characteristics and successfully utilize this technology to differentiate cohorts of PD patients from healthy controls. The measurements indicate that detecting α-Syn oligomers present in CSF may potentially provide valuable insights into the progression and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Yaxian Liu
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiaoyi Wang
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Giulia Campolo
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| |
Collapse
|
10
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
12
|
Qiao Y, Hu JJ, Hu Y, Duan C, Jiang W, Ma Q, Hong Y, Huang WH, Xia F, Lou X. Detection of Unfolded Cellular Proteins Using Nanochannel Arrays with Probe-Functionalized Outer Surfaces. Angew Chem Int Ed Engl 2023; 62:e202309671. [PMID: 37672359 DOI: 10.1002/anie.202309671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.
Collapse
Affiliation(s)
- Yujuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wei Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
14
|
Dinh TD, Park K, Hwang S. Variable Nanoelectrode at the Air/Water Interface by Hydrogel-Integrated Atomic Force Microscopy Electrochemical Platform. Anal Chem 2023. [PMID: 37468162 DOI: 10.1021/acs.analchem.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A nanoelectrode with a controllable area was developed using commercial atomic force microscopy and a hydrogel. Although tremendous advantages of small electrodes from micrometer scale down to nanometer scale have been previously reported for a wide range of applications, precise and high-throughput fabrication remains an obstacle. In this work, the set-point feedback current in a modified scanning ionic conductance microscopy system controlled the formation of electrodes with a nanometer-sized area by contact between the boron-doped diamond (BDD) tip and the agarose hydrogel. The modulation of the electroactive area of the BDD-coated nanoelectrode in the hydrogel was successively investigated by the finite element method and cyclic voltammetry with the use of a redox-contained hydrogel. Moreover, this nanoelectrode enables the simultaneous imaging of both the topography and electrochemical activity of a polymeric microparticle embedded in a hydrogel.
Collapse
Affiliation(s)
- Thanh Duc Dinh
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
15
|
Zhang X, Lin M, Dai Y, Xia F. Stochastic Sensing of Dynamic Interactions and Chemical Reactions with Nanopores/Nanochannels. Anal Chem 2023. [PMID: 37413795 DOI: 10.1021/acs.analchem.3c00543] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nanopore sensing technology is an emerging analysis method with the advantages of simple operation, high sensitivity, fast output and being label free, and it is widely used in protein analysis, gene sequencing, biomarker detection, and other fields. The confined space of the nanopore provides a place for dynamic interactions and chemical reactions between substances. The use of nanopore sensing technology to track these processes in real time is helpful to understand the interaction/reaction mechanism at the single-molecule level. According to nanopore materials, we summarize the development of biological nanopores and solid-state nanopores/nanochannels in the stochastic sensing of dynamic interactions and chemical reactions. The goal of this paper is to stimulate the interest of researchers and promote the development of this field.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
17
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
18
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
19
|
Kanokkanchana K, Tschulik K. Electronic Circuit Simulations as a Tool to Understand Distorted Signals in Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:10120-10125. [PMID: 36269854 PMCID: PMC9639197 DOI: 10.1021/acs.jpclett.2c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical analysis relies on precise measurement of electrical signals, yet the distortions caused by potentiostat circuitry and filtering are rarely addressed. Elucidation of these effects is essential for gaining insights behind sensitive low-current and short-duration electrochemical signals, e.g., in single-entity electrochemistry. We present a simulation approach utilizing the Electrical Simulation Program with Integrated Circuit Emphasis (SPICE), which is extensively used in electronic circuit simulations. As a proof-of-concept, we develop a universal electrical circuit model for single nanoparticle impact experiments, incorporating potentiostat and electronic filter circuitry. Considering these alterations, the experimentally observed transients of silver nanoparticle oxidation were consistently shorter and differently shaped than those predicted by established models. This reveals the existence of additional processes, e.g., migration, partial or asymmetric oxidation. These results highlight the SPICE approach's ability to provide valuable insights into processes occurring during single-entity electrochemistry, which can be applied to various electrochemical experiments, where signal distortions are inevitable.
Collapse
Affiliation(s)
- Kannasoot Kanokkanchana
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry,
ZEMOS 1.45, Ruhr University Bochum, Universitätsstraße 150, D-44780Bochum, Germany
| | - Kristina Tschulik
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry,
ZEMOS 1.45, Ruhr University Bochum, Universitätsstraße 150, D-44780Bochum, Germany
- Max-Planck-Institut
für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf40237, Germany
| |
Collapse
|
20
|
Dematties D, Wen C, Zhang SL. A Generalized Transformer-Based Pulse Detection Algorithm. ACS Sens 2022; 7:2710-2720. [PMID: 36039873 PMCID: PMC9513795 DOI: 10.1021/acssensors.2c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pulse-like signals are ubiquitous in the field of single molecule analysis, e.g., electrical or optical pulses caused by analyte translocations in nanopores. The primary challenge in processing pulse-like signals is to capture the pulses in noisy backgrounds, but current methods are subjectively based on a user-defined threshold for pulse recognition. Here, we propose a generalized machine-learning based method, named pulse detection transformer (PETR), for pulse detection. PETR determines the start and end time points of individual pulses, thereby singling out pulse segments in a time-sequential trace. It is objective without needing to specify any threshold. It provides a generalized interface for downstream algorithms for specific application scenarios. PETR is validated using both simulated and experimental nanopore translocation data. It returns a competitive performance in detecting pulses through assessing them with several standard metrics. Finally, the generalization nature of the PETR output is demonstrated using two representative algorithms for feature extraction.
Collapse
Affiliation(s)
- Dario Dematties
- Northwestern
Argonne Institute of Science and Engineering, Northwestern University, 2205 Tech Drive Suite 1-160, Evanston, 60208 Illinois, United States,Mathematics
and Computer Science Division, Argonne National
Laboratory, 9700 S. Cass
Avenue, Lemont, 60439 Illinois, United States
| | - Chenyu Wen
- NanoDynamicsLab,
Laboratory of Biophysics, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands,Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Shi-Li Zhang
- Department
of Electrical Engineering, Uppsala University, Lägerhyddsvägen 1,
752 37, SE-751 03 Uppsala, Sweden,
| |
Collapse
|
21
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|