1
|
Kramarenko A, Sharapa DI, Pidko EA, Studt F. Ab Initio Kinetics of Electrochemical Reactions Using the Computational Fc 0/Fc + Electrode. J Phys Chem A 2024; 128:9063-9070. [PMID: 39362650 PMCID: PMC11492257 DOI: 10.1021/acs.jpca.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024]
Abstract
The current state-of-the-art electron-transfer modeling primarily focuses on the kinetics of charge transfer between an electroactive species and an inert electrode. Experimental studies have revealed that the existing Butler-Volmer model fails to satisfactorily replicate experimental voltammetry results for both solution-based and surface-bound redox couples. Consequently, experimentalists lack an accurate tool for predicting electron-transfer kinetics. In response to this challenge, we developed a density functional theory-based approach for accurately predicting current peak potentials by using the Marcus-Hush model. Through extensive cyclic voltammetry simulations, we conducted a thorough exploration that offers valuable insights for conducting well-informed studies in the field of electrochemistry.
Collapse
Affiliation(s)
- Aleksandr
S. Kramarenko
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dmitry I. Sharapa
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2628 CN, The Netherlands
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
3
|
Tran B, Goldsmith BR. Theoretical Investigation of the Potential-Dependent CO Adsorption on Copper Electrodes. J Phys Chem Lett 2024; 15:6538-6543. [PMID: 38885201 DOI: 10.1021/acs.jpclett.4c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite the importance of CO adsorption in many electrocatalytic reaction mechanisms, there has been little investigation of the dependence of the free energy of CO adsorption on the applied potential. Herein, we report on the potential-dependent adsorption of CO on Cu electrodes using a grand-canonical density functional theory approach. We demonstrate that, within the working potential range of electrocatalytic CO2 reduction on Cu(111) and Cu(100), the CO adsorption strength can change by over 0.1 eV. Our analyses explain the potential dependence through an interfacial capacitance loss upon CO adsorption as well as orbital relaxation induced by the electrode potential. Via sensitivity analysis with respect to two electrolyte model parameters (solvent dielectric constant and Debye screening length), we find that the surface excess charge density is a useful descriptor of the CO adsorption free energy.
Collapse
Affiliation(s)
- Bolton Tran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Qian SJ, Cao H, Wang YG, Li J. Controlling the Selectivity of Electrocatalytic NO Reduction through pH and Potential Regulation on Single-Atom Catalysts. J Am Chem Soc 2024; 146:12530-12537. [PMID: 38664859 DOI: 10.1021/jacs.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Electrocatalytic nitrogen oxide reduction (NOxRR) emerges as an effective way to bring the disrupted nitrogen cycle back into balance. However, efficient and selective NOxRR is still challenging partly due to the complex reaction mechanism, which is influenced by experimental conditions such as pH and electrode potential. Here, we have studied the enzyme-inspired iron single-atom catalysts (Fe-N4-C) and identified that the selectivity roots in the first step of the nitric oxide reduction. Combining the constrained molecular dynamics (MD) simulations with the quasi-equilibrium approximation, the effects of electrode potential and pH on the reaction free energy were considered explicitly and predicted quantitatively. Systematic heat maps for selectivity between single-N and N-N-coupled products in a wide pH-potential space are further developed, which have reproduced the experimental observations of NOxRR. The approach presented in this study allows for a realistic simulation of the electrocatalytic interfaces and a quantitative evaluation of interfacial effects. Our results in this study provide valuable and straightforward guidance for selective NOx reduction toward desired products by precisely designing the experimental conditions.
Collapse
Affiliation(s)
- Sheng Jie Qian
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Zhang QM, Wang ZY, Zhang H, Liu XH, Zhang W, Zhao LB. Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning. Phys Chem Chem Phys 2024; 26:11037-11047. [PMID: 38526740 DOI: 10.1039/d4cp00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electrochemical CO2 transformation to fuels and chemicals is an effective strategy for conversion of renewable electric energy into storable chemical energy in combination with reducing green-house gas emission. Metal-nitrogen-carbon (M-N-C) single atom catalysts (SAC) have shown great potential in the electrochemical CO2 reduction reaction (CO2RR). However, exploring advanced SACs with simultaneously high catalytic activity and high product selectivity remains a great challenge. In this study, density functional theory (DFT) calculations are combined with machine learning (ML) for rapid and high-throughput screening of high performance CO reduction catalysts. Firstly, the electrochemical properties of 99 M-N-C SACs were calculated by DFT and used as a database. By using different machine learning models with simple features, the investigated SACs were expanded from 99 to 297. Through several effective indicators of catalyst stability, inhibition of the hydrogen evolution reaction, and CO adsorption strength, 33 SACs were finally selected. The catalytic activity and selectivity of the remaining 33 SACs were explored by micro-kinetic simulation based on Marcus theory. Among all the studied SACs, Mn-NC2, Pt-NC2, and Au-NC2 deliver the best catalytic performance and can be used as potential catalysts for CO2/CO conversion to hydrocarbons with high energy density. This effective screening method using a machine learning algorithm can promote the exploration of CO2RR catalysts and significantly reduce the simulation cost.
Collapse
Affiliation(s)
- Qing-Meng Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Zhao-Yu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hao Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Xiao-Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Kim C, Govindarajan N, Hemenway S, Park J, Zoraster A, Kong CJ, Prabhakar RR, Varley JB, Jung HT, Hahn C, Ager JW. Importance of Site Diversity and Connectivity in Electrochemical CO Reduction on Cu. ACS Catal 2024; 14:3128-3138. [PMID: 38449526 PMCID: PMC10913037 DOI: 10.1021/acscatal.3c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Electrochemical CO2 reduction on Cu is a promising approach to produce value-added chemicals using renewable feedstocks, yet various Cu preparations have led to differences in activity and selectivity toward single and multicarbon products. Here, we find, surprisingly, that the effective catalytic activity toward ethylene improves when there is a larger fraction of less active sites acting as reservoirs of *CO on the surface of Cu nanoparticle electrocatalysts. In an adaptation of chemical transient kinetics to electrocatalysis, we measure the dynamic response of a gas diffusion electrode (GDE) cell when the feed gas is abruptly switched between Ar (inert) and CO. When switching from Ar to CO, CO reduction (COR) begins promptly, but when switching from CO to Ar, COR can be maintained for several seconds (delay time) despite the absence of the CO reactant in the gas phase. A three-site microkinetic model captures the observed dynamic behavior and shows that Cu catalysts exhibiting delay times have a less active *CO reservoir that exhibits fast diffusion to active sites. The observed delay times and the estimated *CO reservoir sizes are affected by catalyst preparation, applied potential, and microenvironment (electrolyte cation identity, electrolyte pH, and CO partial pressure). Notably, we estimate that the *CO reservoir surface coverage can be as high as 88 ± 7% on oxide-derived Cu (OD-Cu) at high overpotentials (-1.52 V vs SHE) and this increases in reservoir coverage coincide with increased turnover frequencies to ethylene. We also estimate that *CO can travel substantial distances (up to 10s of nm) prior to desorption or reaction. It appears that active C-C coupling sites by themselves do not control selectivity to C2+ products in electrochemical COR; the supply of CO to those sites is also a crucial factor. More generally, the overall activity of Cu electrocatalysts cannot be approximated from linear combinations of individual site activities. Future designs must consider the diversity of the catalyst network and account for intersite transportation pathways.
Collapse
Affiliation(s)
- Chansol Kim
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, South Korea
- Clean
Energy Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, South Korea
| | - Nitish Govindarajan
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Sydney Hemenway
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Junho Park
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Anya Zoraster
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biochemical Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Calton J. Kong
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Rajiv Ramanujam Prabhakar
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joel B. Varley
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Hee-Tae Jung
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, South Korea
| | - Christopher Hahn
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Joel W. Ager
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Yang X, Ding H, Li S, Zheng S, Li JF, Pan F. Cation-Induced Interfacial Hydrophobic Microenvironment Promotes the C-C Coupling in Electrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:5532-5542. [PMID: 38362877 DOI: 10.1021/jacs.3c13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.
Collapse
Affiliation(s)
- Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
- College of Energy, Xiamen University, Xiamen 361000, China
| | - Jian-Feng Li
- College of Energy, Xiamen University, Xiamen 361000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| |
Collapse
|
8
|
Guo T, Wang X, Xing X, Fu Z, Ma C, Bedane AH, Kong L. Enhancing effect of cobalt phthalocyanine dispersion on electrocatalytic reduction of CO 2 towards methanol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122755-122773. [PMID: 37978121 DOI: 10.1007/s11356-023-30883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
This paper focuses on enhancing the performance of electrocatalytic CO2 reduction reaction (CO2RR) by improving the dispersion of cobalt phthalocyanine (CoPc), especially for the methanol formation with multi-walled carbon nanotubes (CNTs) as a support. The promising CNTs-supported CoPc hybrid was prepared based on ball milling technique, and the surface morphology was characterized by means of those methods such as scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectra (XPS). Then, the synergistic effect of CNTs and ball milling on CO2RR performance was analyzed by those methods of cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), gas chromatography (GC), and proton nuclear magnetic resonance spectroscopy (1HNMR). Subsequently, the reduction mechanism of CO2 on ball-milled CoPc/CNTs was revealed based on the DFT calculations. The results showed that the electrocatalyst CoPc/CNTs hybrid prepared with sonication exhibited a conversion efficiency of CO2 above 60% at -1.0 V vs. RHE, accompanied by the Faradaic efficiencies of nearly 50% for CO and 10% for methanol, respectively. The addition of CNTs as the support improved the utilization efficiency of CoPc and reduced the transfer resistance of species and electrons. Then the ball-milling method further improved the dispersion of CoPc on CNTs, which resulted in the fact that the methanol efficiency was raised by 6% and partial current density was increased by nearly 433%. The better dispersion of CoPc on CNTs adjusted the reduction pathway of CO2 and resulted in the enhancement of methanol selectivity and catalytic activity of CO2. The probable pathway for methanol production was proposed as CO2 → *CO2- → *COOH → *CO → *CHO → *CH2O → *OCH3 → CH3OH. This suggests the significance of the ball-milling method during the preparation of better supported catalysts for CO2RR towards those high-valued products.
Collapse
Affiliation(s)
- Tianxiang Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| | - Xilai Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Xiaodong Xing
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Zhixiang Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Changxin Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Alemayehu Hailu Bedane
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Lingfeng Kong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| |
Collapse
|
9
|
Zhao H, Lv X, Wang Y. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303677. [PMID: 37749877 PMCID: PMC10646274 DOI: 10.1002/advs.202303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces, and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xinmao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yang‐Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
10
|
Jin B, Hu T, Yu K, Xu S. Constrained Hybrid Monte Carlo Sampling Made Simple for Chemical Reaction Simulations. J Chem Theory Comput 2023; 19:7343-7357. [PMID: 37793028 DOI: 10.1021/acs.jctc.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Most electrochemical reactions should be studied under a grand canonical ensemble condition with a constant potential and/or a constant pH value. Free energy profiles provide key insights into understanding the reaction mechanisms. However, many molecular dynamics (MD)-based theoretical studies for electrochemical reactions did not employ an exact grand canonical ensemble sampling scheme for the free energy calculations, partially due to the issues of discontinuous trajectories induced by the particle-number variations during MD simulations. An alternative statistical sampling approach, the Monte Carlo (MC) method, is naturally appropriate for the open-system simulations if we focus on the thermodynamic properties. An advanced MC scheme, the hybrid Monte Carlo (HMC) method, which can efficiently sample the configurations of a system with large degrees of freedom, however, has limitations in the constrained-sampling applications. In this work, we propose an adjusted constrained HMC method to compute free energy profiles using the thermodynamic integration (TI) method. The key idea of the method for handling the constraint in TI is to integrate the reaction coordinate and sample the rest degrees of freedom by two types of MC schemes, the HMC scheme and the Metropolis algorithm with unbiased trials (M(RT)2-UB). We test the proposed method on three different systems involving two kinds of reaction coordinates, which are the distance between two particles and the difference of particles' distances, and compare the results to those generated by the constrained M(RT)2-UB method serving as benchmarks. We show that our proposed method has the advantages of high sampling efficiency and convenience of implementation, and the accuracy is justified as well. In addition, we show in the third test system that the proposed constrained HMC method can be combined with the path integral method to consider the nuclear quantum effects, indicating a broader application scenario of the sampling method reported in this work.
Collapse
Affiliation(s)
- Bin Jin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Taiping Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science Institute, Beijing 100084, P. R. China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Shenzhen Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Theory and Technology for Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science Institute, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Osella S, Goddard III WA. CO 2 Reduction to Methane and Ethylene on a Single-Atom Catalyst: A Grand Canonical Quantum Mechanics Study. J Am Chem Soc 2023; 145:21319-21329. [PMID: 37729535 PMCID: PMC10557142 DOI: 10.1021/jacs.3c05650] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 09/22/2023]
Abstract
In recent years, two-dimensional metal-organic frameworks (2D MOF) have attracted great interest for their ease of synthesis and for their catalytic activities and semiconducting properties. The appeal of these materials is that they are layered and easily exfoliated to obtain a monolayer (or few layer) material with interesting optoelectronic properties. Moreover, they have great potential for CO2 reduction to obtain solar fuels with more than one carbon atom, such as ethylene and ethanol, in addition to methane and methanol. In this paper, we explore how a particular class of 2D MOF based on a phthalocyanine core provides the reactive center for the production of ethylene and ethanol. We examine the reaction mechanism using the new grand canonical potential kinetics (GCP-K) or grand canonical quantum mechanics (GC-QM) computational methodology, which obtains reaction rates at constant applied potential to compare directly with experimental results (rather than at constant electrons as in standard QM). We explain the reaction mechanism underlying the formation of methane and ethylene. Here, the key reaction step is direct coupling of CO into CHO, without the usual rate-determining CO-CO dimerization step observed on Cu metal surfaces. Indeed, the 2D MOF behaves like a single-atom catalyst.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical
and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, MC 139-74, Pasadena, California 91125, United States
| | - William A. Goddard III
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, MC 139-74, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Liu G, Trinh QT, Wang H, Wu S, Arce-Ramos JM, Sullivan MB, Kraft M, Ager JW, Zhang J, Xu R. Selective and Stable CO 2 Electroreduction to CH 4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301379. [PMID: 37300346 DOI: 10.1002/smll.202301379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Quang Thang Trinh
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, Queensland, 4111, Australia
| | - Haojing Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyang Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Juan Manuel Arce-Ramos
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Michael B Sullivan
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore (BEARS), 1 Create Way, Singapore, 138602, Singapore
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
14
|
Ou L, You W, Jin J, Chen Y. Theoretical understanding of the effect of specifically adsorbed halide anions on Cu-catalyzed CO 2 electroreduction activity and product selectivity. Phys Chem Chem Phys 2023; 25:23977-23987. [PMID: 37644839 DOI: 10.1039/d3cp01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Initial CO2 electroreduction into CO and its subsequent electroreduction pathways were selected to study the effect of specifically adsorbed halide anions X- (X = F, Cl, Br, I) on CO2 electroreduction activity and product selectivity at Cu(111)/H2O interfaces via DFT calculations. The calculated results show that the presence of halide anions can exert a notable effect on the CO2 adsorption characteristics and that chemically adsorbed CO2 molecules can be formed. Furthermore, the halide-anion-modified Cu(111)/H2O interfaces could significantly enhance the initial CO2 electroreduction into CO activity, which is regarded as the rate-determining step during CO2 electroreduction at clean Cu(111)/H2O interfaces. Analysis of the initial CO2 electroreduction and Volmer reaction pathways showed that the halide-anion-modified Cu(111)/H2O interfaces could suppress the HER and thus improve the CO2 electroreduction activity and product selectivity. It is speculated that the enhanced initial CO2 electroreduction activity at the F--, Cl--, Br--, and I--modified Cu(111)/H2O interfaces may originate from the decreased work functions and anion radical ·CO2- formations. Simultaneously, we concluded that dimer OCCO formations in the presence of halide anions were more favorable than CHO during CO electroreduction according to the order of I- > Br- > Cl- > F- and could result in the production of C2 product, suggesting an improved CO2 electroreduction product selectivity. The present analyses of electronic structure may explain the more favorable OCCO formations in the order of I- > Br- > Cl- > F-. The present understanding of this effect will provide an improved scientific guideline for the control of CO2 electroreduction pathways and design of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Lihui Ou
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| | - Wanli You
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| | - Junling Jin
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| | - Yuandao Chen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| |
Collapse
|
15
|
Wang Y, Li B, Xue B, Libretto N, Xie Z, Shen H, Wang C, Raciti D, Marinkovic N, Zong H, Xie W, Li Z, Zhou G, Vitek J, Chen JG, Miller J, Wang G, Wang C. CO electroreduction on single-atom copper. SCIENCE ADVANCES 2023; 9:eade3557. [PMID: 37494432 DOI: 10.1126/sciadv.ade3557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+ hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+ products.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bin Xue
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Nicole Libretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Canhui Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Han Zong
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wenjun Xie
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziyuan Li
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeff Vitek
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Jeffery Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Qu J, Cao X, Gao L, Li J, Li L, Xie Y, Zhao Y, Zhang J, Wu M, Liu H. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering. NANO-MICRO LETTERS 2023; 15:178. [PMID: 37433948 PMCID: PMC10336000 DOI: 10.1007/s40820-023-01146-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C-C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C-C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.
Collapse
Affiliation(s)
- Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Li Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiayi Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuhan Xie
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, ON, M5S 1A4, Canada.
| | - Minghong Wu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hao Liu
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
17
|
Beamer AW, Buss JA. Synthesis, Structural Characterization, and CO 2 Reactivity of a Constitutionally Analogous Series of Tricopper Mono-, Di-, and Trihydrides. J Am Chem Soc 2023. [PMID: 37276588 DOI: 10.1021/jacs.3c04170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of hydrides at heterogeneous copper surfaces results in dramatic structural and reactivity changes, yet the morphologies of these materials and their respective roles in catalysis are not well understood. Of particular interest is the reactivity of heterogeneous copper hydrides with carbon dioxide (CO2), an early mechanistic branching point in the CO2 reduction reaction. Herein, we report the synthesis, characterization, and reactivity of tricopper compounds supported by a facially biased, chelating tris(carbene) ligand scaffold. This sterically bulky environment affords access to an isolable series of tricopper hydrides: [LCu3H]2+ (4), [LCu3H2]+ (3), and LCu3H3 (6). Single-crystal X-ray diffraction and solution NMR spectroscopy studies reveal both geometric flexibility within the Cu3 core and fluxionality of hydride ligands across the Cu3 cluster, providing both atomically precise experimental analogues of static surface species and emulating dynamic ligand behavior proposed for surfaces. Electronic structure calculations serve as a predictor of hydricity, which was likewise benchmarked experimentally via both protonolysis and hydride abstraction reactions. Increased hydride number (and commensurately lower cluster charge) results in more hydridic complexes, with a thermodynamic hydricity range spanning >30 kcal/mol. These thermochemical studies serve as an accurate predictor of CO2 reactivity. Together, this Cu3Hx series exhibits the structure/reactivity relationships proposed for catalytically active copper surfaces, validating the application of carefully designed molecular clusters toward elucidating mechanisms in surface science.
Collapse
Affiliation(s)
- Andrew W Beamer
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joshua A Buss
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Zhu HL, Zhang L, Shui M, Li ZY, Ma JJ, Zheng YQ. A Novel Manner of Anchoring Cobalt Phthalocyanine on Edge-Defected Carbon for Highly Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023; 14:3844-3852. [PMID: 37067200 DOI: 10.1021/acs.jpclett.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cobalt phthalocyanine anchored on carbon material has attracted an enormous amount of attention due to its superior performance in electrocatalytic CO2 reduction. However, the interaction between cobalt phthalocyanine and the carbon substrate remains problematic, and the role of intrinsic carbon defects is unfortunately ignored in the anchoring of cobalt phthalocyanine on carbon. Herein, new interactions between the bridging N atoms of cobalt phthalocyanine and the edge defects of carbon have been discovered, which result in a novel model of anchoring of cobalt phthalocyanine on ketjen black carbon. Such anchored cobalt phthalocyanine has been found to be responsible for superior catalysis for electrochemical reduction of CO2 to CO with high selectivity and low overpotential.
Collapse
Affiliation(s)
- Hong-Lin Zhu
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Li Zhang
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Miao Shui
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Zhong-Yi Li
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jing-Jing Ma
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yue-Qing Zheng
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
19
|
Okatenko V, Loiudice A, Newton MA, Stoian DC, Blokhina A, Chen AN, Rossi K, Buonsanti R. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO 2 Reduction Reaction. J Am Chem Soc 2023; 145:5370-5383. [PMID: 36847799 DOI: 10.1021/jacs.2c13437] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anastasia Blokhina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
20
|
Zhang XG, Zhao Y, Chen S, Xing SM, Dong JC, Li JF. Electrolyte effect for carbon dioxide reduction reaction on copper electrode interface: A DFT prediction. J Chem Phys 2023; 158:094704. [PMID: 36889978 DOI: 10.1063/5.0139463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
An insightful understanding of the interaction between the electrolyte and reaction intermediate and how promotion reaction occurs of electrolyte is challenging in the electrocatalysis reaction. Herein, theoretical calculations are used to investigate the reaction mechanism of CO2 reduction reaction to CO with different electrolytes at the Cu(111) surface. By analyzing the charge distribution of the chemisorbed CO2 (CO2 δ-) formation process, we find that the charge transfer is from metal electrode transfer to CO2 and the hydrogen bond interaction between electrolytes and CO2 δ- not only plays a key role in the stabilization of CO2 δ- structure but also reduces the formation energy of *COOH. In addition, the characteristic vibration frequency of intermediates in different electrolyte solutions shows that H2O is a component of HCO3 -, promoting CO2 adsorption and reduction. Our results provide essential insights into the role of electrolyte solutions in interface electrochemistry reactions and help understand the catalysis process at the molecular level.
Collapse
Affiliation(s)
- Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Si Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ming Xing
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Zheng S, Liang X, Pan J, Hu K, Li S, Pan F. Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO 2 Reduction on a Ni 2P Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianhui Liang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjie Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
22
|
Surface charge as activity descriptors for electrochemical CO 2 reduction to multi-carbon products on organic-functionalised Cu. Nat Commun 2023; 14:335. [PMID: 36670095 PMCID: PMC9860078 DOI: 10.1038/s41467-023-35912-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Intensive research in electrochemical CO2 reduction reaction has resulted in the discovery of numerous high-performance catalysts selective to multi-carbon products, with most of these catalysts still being purely transition metal based. Herein, we present high and stable multi-carbon products selectivity of up to 76.6% across a wide potential range of 1 V on histidine-functionalised Cu. In-situ Raman and density functional theory calculations revealed alternative reaction pathways that involve direct interactions between adsorbed histidine and CO2 reduction intermediates at more cathodic potentials. Strikingly, we found that the yield of multi-carbon products is closely correlated to the surface charge on the catalyst surface, quantified by a pulsed voltammetry-based technique which proved reliable even at very cathodic potentials. We ascribe the surface charge to the population density of adsorbed species on the catalyst surface, which may be exploited as a powerful tool to explain CO2 reduction activity and as a proxy for future catalyst discovery, including organic-inorganic hybrids.
Collapse
|
23
|
Shao F, Xia Z, You F, Wong JK, Low QH, Xiao H, Yeo BS. Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces. Angew Chem Int Ed Engl 2023; 62:e202214210. [PMID: 36369647 DOI: 10.1002/anie.202214210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
We have employed in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) calculations to study the CO reduction reaction (CORR) on Cu single-crystal surfaces under various conditions. Coadsorbed and structure-/potential-dependent surface species, including *CO, Cu-Oad , and Cu-OHad , were identified using electrochemical spectroscopy and isotope labeling. The relative abundance of *OH follows a "volcano" trend with applied potentials in aqueous solutions, which is yet absent in absolute alcoholic solutions. Combined with DFT calculations, we propose that the surface H2 O can serve as a strong proton donor for the first protonation step in both the C1 and C2 pathways of CORR at various applied potentials in alkaline electrolytes, leaving adsorbed *OH on the surface. This work provides fresh insights into the initial protonation steps and identity of key interfacial intermediates formed during CORR on Cu surfaces.
Collapse
Affiliation(s)
- Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Futian You
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jun Kit Wong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Qi Hang Low
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Boon Siang Yeo
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
24
|
Jana A, Snyder SW, Crumlin EJ, Qian J. Integrated carbon capture and conversion: A review on C 2+ product mechanisms and mechanism-guided strategies. Front Chem 2023; 11:1135829. [PMID: 36874072 PMCID: PMC9978511 DOI: 10.3389/fchem.2023.1135829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
The need to reduce atmospheric CO2 concentrations necessitates CO2 capture technologies for conversion into stable products or long-term storage. A single pot solution that simultaneously captures and converts CO2 could minimize additional costs and energy demands associated with CO2 transport, compression, and transient storage. While a variety of reduction products exist, currently, only conversion to C2+ products including ethanol and ethylene are economically advantageous. Cu-based catalysts have the best-known performance for CO2 electroreduction to C2+ products. Metal Organic Frameworks (MOFs) are touted for their carbon capture capacity. Thus, integrated Cu-based MOFs could be an ideal candidate for the one-pot capture and conversion. In this paper, we review Cu-based MOFs and MOF derivatives that have been used to synthesize C2+ products with the objective of understanding the mechanisms that enable synergistic capture and conversion. Furthermore, we discuss strategies based on the mechanistic insights that can be used to further enhance production. Finally, we discuss some of the challenges hindering widespread use of Cu-based MOFs and MOF derivatives along with possible solutions to overcome the challenges.
Collapse
Affiliation(s)
- Asmita Jana
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Seth W Snyder
- Energy & Environment S&T, Idaho National Laboratory, Idaho Falls, ID, United States
| | - Ethan J Crumlin
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jin Qian
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
25
|
Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis. Nat Catal 2022. [DOI: 10.1038/s41929-022-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
27
|
Sun M, Staykov A, Yamauchi M. Understanding the Roles of Hydroxide in CO 2 Electroreduction on a Cu Electrode for Achieving Variable Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mingxu Sun
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-Nets), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miho Yamauchi
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-Nets), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
28
|
Zhao Q, Martirez JMP, Carter EA. Electrochemical Hydrogenation of CO on Cu(100): Insights from Accurate Multiconfigurational Wavefunction Methods. J Phys Chem Lett 2022; 13:10282-10290. [PMID: 36305601 DOI: 10.1021/acs.jpclett.2c02444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Copper (Cu) remains the most efficacious electrocatalyst for electrochemical CO2 reduction (CO2R). Its activity and selectivity are highly facet-dependent. We recently examined the commonly proposed rate-limiting CO hydrogenation step on Cu(111) via embedded correlated wavefunction (ECW) theory and demonstrated that only this higher-level theory yields predictions consistent with potential-dependent experimental kinetics. Here, to understand the differing activities of Cu(111) and Cu(100) in catalyzing CO2R, we explore CO hydrogenation on Cu(100) using ECW theory. We predict that the preferred pathway involves the reduction of adsorbed CO (*CO) to *COH via proton-coupled electron transfer (PCET) at working potentials, although *CHO also may form with a kinetically accessible but higher barrier. In contrast, our earlier work on Cu(111) concluded that *COH and *CHO formation via PCET are equally feasible. This work illustrates one possible origin of the facet dependence of CO2R mechanisms and products on Cu electrodes and sheds light on how the selectivity of CO2R electrocatalysts can be controlled by the surface morphology.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
29
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Xi C, Zheng F, Gao G, Song Z, Zhang B, Dong C, Du XW, Wang LW. Ion Solvation Free Energy Calculation Based on Ab Initio Molecular Dynamics Using a Hybrid Solvent Model. J Chem Theory Comput 2022; 18:6878-6891. [PMID: 36253911 DOI: 10.1021/acs.jctc.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free energy calculation of small molecules or ion species in aqueous solvent is one of the most important problems in electrochemistry study. Although there are many previous approaches to calculate such free energies, they are based on ab initio methods and suffer from various limitations and approximations. In the current work, we developed a hybrid approach based on ab initio molecular dynamics (AIMD) simulations to calculate the ion solvation energy. In this approach, a small water cluster surrounding the central ion is used, and implicit solvent model is applied outside the water cluster. A dynamic potential well is used during AIMD to keep the water cluster together. Quasi-harmonic approximation is used to calculate the entropy contribution, while the total energy average is used to calculate the enthalpy term. The obtained solvation voltages of the bulk metal agree with experiments within 0.3 eV, and the simulation results for the solvation energies of gaseous ions are close to the experimental observations. Besides the free energies, radial pair distribution functions and coordination numbers of hydrated cations are also obtained. The remaining challenges of this method are also discussed.
Collapse
Affiliation(s)
- Cong Xi
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.,Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Fan Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Guoping Gao
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Zhigang Song
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Buyu Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Cunku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Lin-Wang Wang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
31
|
Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat Commun 2022; 13:5471. [PMID: 36115872 PMCID: PMC9482648 DOI: 10.1038/s41467-022-33258-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractElectrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals.
Collapse
|
32
|
Abstract
Facing greenhouse effects and the rapid exhaustion of fossil fuel, CO2 electrochemical reduction presents a promising method of environmental protection and energy transformation. Low onset potential, large current density, high faradaic efficiency (FE), and long-time stability are required for industrial production, due to economic costs and energy consumption. This minireview showcases the recent progress in catalyst design and engineering technology in CO2 reduction reaction (CO2RR) on copper based-catalysts. We focus on strategies optimizing the performance of copper-based catalysts, such as single-atom catalysts, doping, surface modification, crystal facet engineering, etc., and reactor design including gas diffusion layer, membrane electrode assembly, etc., in enhancing target electroreduction products including methane, methanol, ethylene, and C2+ oxygenates. The determination of the correlation and the developed technology might be helpful for future applications in the industry.
Collapse
|
33
|
Tayyebi E, Höskuldsson ÁB, Wark A, Atrak N, Comer BM, Medford AJ, Skúlason E. Perspectives on the Competition between the Electrochemical Water and N 2 Oxidation on a TiO 2(110) Electrode. J Phys Chem Lett 2022; 13:6123-6129. [PMID: 35759374 DOI: 10.1021/acs.jpclett.2c00769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen oxidation reaction (NOR) has recently drawn attention due to promising experimental and theoretical results. It provides an alternative, environmentally friendly route to directly synthesize nitrate from N2(g). There is to date a limited number of investigations focused on the electrochemical NOR. Herein, we present a detailed computational study on the kinetics of both the NOR and the competing oxygen evolution reaction (OER) on the TiO2(110) electrode under ambient conditions. The use of grand canonical density functional theory in combination with the linearized Poisson-Boltzmann equation allows a continuous tuning of the explicitly applied electrical potential. We find that the OER may either promote or suppress the NOR on TiO2(110) depending on reaction conditions. The detailed atomistic insights provided on the mechanisms of these competing processes make possible further developments toward a direct electrochemical NOR process.
Collapse
Affiliation(s)
- Ebrahim Tayyebi
- Science Institute, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | | | - André Wark
- Science Institute, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Narges Atrak
- Science Institute, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Benjamin M Comer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Andrew James Medford
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Egill Skúlason
- Science Institute, University of Iceland, VR-III, 107 Reykjavík, Iceland
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, 107 Reykjavík, Iceland
| |
Collapse
|
34
|
Zhu HL, Chen HY, Han YX, Zhao ZH, Liao PQ, Chen XM. A Porous π-π Stacking Framework with Dicopper(I) Sites and Adjacent Proton Relays for Electroreduction of CO 2 to C 2+ Products. J Am Chem Soc 2022; 144:13319-13326. [PMID: 35776438 DOI: 10.1021/jacs.2c04670] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystalline porous materials sustained by supramolecular interactions (e.g., π-π stacking interactions) are a type of molecular crystals showing considerable stability, but their applications are rarely reported due to the high difficulty of their construction. Herein, a stable π-π stacking framework formed by a trinuclear copper(I) compound [Cu3(HBtz)3(Btz)Cl2] (CuBtz, HBtz = benzotriazole) with pyrazolate-bridged dicopper(I) sites is reported and employed for electrochemical CO2 reduction, showing an impressive performance of 73.7 ± 2.8% Faradaic efficiency for C2+ products [i.e., ethylene (44%), ethanol (21%), acetate (4.7%), and propanol (4%)] with a current density of 7.9 mA cm-2 at the potential of -1.3 V versus RHE in an H-type cell and a Faradic efficiency (61.6%) of C2+ products with a current density of ≈1 A cm-2 and a reaction rate of 5639 μmol m-2 s-1 at the potential of -1.6 V versus RHE in a flow cell device, representing an impressive performance reported to date. In-situ infrared spectroscopy, density functional theory calculations, and control experiments revealed that the uncoordinated nitrogen atoms of benzotriazolates in the immediate vicinity can act as proton relays and cooperate with the dicopper(I) site to promote the hydrogenation process of the *CO intermediate and the C-C coupling, resulting in the highly selective electroreduction of CO2 to C2+ products.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui-Ying Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Xuan Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Wang Y, Chen E, Tang J. Insight on Reaction Pathways of Photocatalytic CO 2 Conversion. ACS Catal 2022; 12:7300-7316. [PMID: 35747201 PMCID: PMC9207809 DOI: 10.1021/acscatal.2c01012] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Indexed: 11/28/2022]
Abstract
![]()
Photocatalytic CO2 conversion to value-added chemicals
is a promising solution to mitigate the current energy and environmental
issues but is a challenging process. The main obstacles include the
inertness of CO2 molecule, the sluggish multi-electron
process, the unfavorable thermodynamics, and the selectivity control
to preferable products. Furthermore, the lack of fundamental understanding
of the reaction pathways accounts for the very moderate performance
in the field. Therefore, in this Perspective, we attempt to discuss
the possible reaction mechanisms toward all C1 and C2 value-added products, taking into account the experimental
evidence and theoretical calculation on the surface adsorption, proton
and electron transfer, and products desorption. Finally, the remaining
challenges in the field, including mechanistic understanding, reactor
design, economic consideration, and potential solutions, are critically
discussed by us.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany
| | - Enqi Chen
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
36
|
Li C, Liu X, Xu F, Wu D, Xu H, Fan G. High-throughput screening of dual-atom doped PC6 electrocatalysts for efficient CO2 electrochemical reduction to CH4 by breaking scaling relations. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
He M, Chang X, Chao TH, Li C, Goddard WA, Cheng MJ, Xu B, Lu Q. Selective Enhancement of Methane Formation in Electrochemical CO 2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming He
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tzu-Hsuan Chao
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Liu W, Wang Z, Chen Z, Luo J, Li S, Wang L. Algorithm advances and applications of time‐dependent first‐principles simulations for ultrafast dynamics. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen‐Hao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
| | - Zhang‐Hui Chen
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Jun‐Wei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Shu‐Shen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Lin‐Wang Wang
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
39
|
Gao Q, Pillai HS, Huang Y, Liu S, Mu Q, Han X, Yan Z, Zhou H, He Q, Xin H, Zhu H. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat Commun 2022; 13:2338. [PMID: 35487883 PMCID: PMC9054787 DOI: 10.1038/s41467-022-29926-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Hemanth Somarajan Pillai
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Yang Huang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Shikai Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Qingmin Mu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore.
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA.
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd., Blacksburg, VA, 24061, USA.
| |
Collapse
|
40
|
Shen H, Wang Y, Chakraborty T, Zhou G, Wang C, Fu X, Wang Y, Zhang J, Li C, Xu F, Cao L, Mueller T, Wang C. Asymmetrical C–C Coupling for Electroreduction of CO on Bimetallic Cu–Pd Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yunzhe Wang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tanmoy Chakraborty
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Canhui Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jinyi Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chenyang Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liang Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tim Mueller
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Ralph O’Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
41
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
42
|
Xie W, Reid G, Hu P. Discovery of a New Solvent Co-Catalyzed Mechanism in Heterogeneous Catalysis: A First-Principles Study with Molecular Dynamics on Acetaldehyde Hydrogenation on Birnessite. JACS AU 2022; 2:328-334. [PMID: 35252983 PMCID: PMC8889551 DOI: 10.1021/jacsau.1c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 06/14/2023]
Abstract
Heterogenous hydrogenation reactions are essential in a wide range of chemical industries. In this work, we find that the hydrogenation of acetaldehyde on birnessite cannot occur through the traditional mechanisms due to the strong adsorption of the aldehyde and hydrogen on the surface, using first-principles calculations. We discover that this reaction can occur feasibly via a solvent-cocatalyzed mechanism with molecular hydrogen in the liquid phase: a methanol solvent or a similar solvent is required for the reaction. Free energy calculations shows that the methanol solvent preferentially fills the oxygen vacancies of the catalyst surface and spontaneously dissociates on the surface, in which the resulting hydroxyl group then acts as the coordination site for the carbonyl bond and allows the reaction to proceed without adsorption of the reactants on the surface. The reasons this new mechanism is more favorable over the traditional mechanisms in the literature are scrutinized and discussed. The new mechanism may be followed in many other systems.
Collapse
|
43
|
Yu P, Sun Q, Liu Y, Ma B, Yang H, Xie M, Cheng T. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7972-7979. [PMID: 35129322 DOI: 10.1021/acsami.1c22610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium metal batteries (LMBs) hold great promise in facilitating high-energy batteries due to their merits such as high specific capacity, low reduction potential, and so forth. However, the realizations of practical LMBs are hindered by severe problems such as undesirable dendrite growth, poor Coulombic efficiency, and so forth. A recently proposed fluorinated electrolyte based on 1 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in designed fluorinated 1,4-dimethoxybutane (FDMB) solvent has attracted significant attention because of its excellent electrochemical performance that origins from its superior physical and chemical properties, especially its unique ability in forming a robust, stable solid electrolyte interphase (SEI). However, the detailed structure and reaction mechanism of the SEI formation in such a novel electrolyte remains unclear. In this work, we carry out a hybrid ab initio and reactive molecular dynamics (HAIR) simulation to investigate the elementary reactions that regulate the formation of the primitive SEI, paying special attention to the process that involves FDMB, the fluorinated solvent. HAIR simulation reveals that both FSI- anion and FDMB provide F that is adequate to form a uniformed LiF layer that resembles the inorganic inner layer (IIL) of the SEI. N and S radicals from the FSI- anion, which do not deposit on the electrode interface to form lithium-containing inorganic substances, promote the polymerization reaction of unsaturated carbon chains produced by FDMB defluorination, forming the organic outer layer (OOL) of the SEI. The combination of the LiF-rich IIL and polymer-rich organic OOL explains the superior performance of the FDMB-based electrolyte in the device. The detailed reaction mechanism and SEI observed in this work provide insights into the atomic scale for the rational design of F-rich electrolytes in the near future.
Collapse
Affiliation(s)
- Peiping Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Qintao Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yue Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Bingyun Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Miao Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Recent progress in electrochemical reduction of CO2 into formate and C2 compounds. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial Electrolyte Effects on Electrocatalytic CO 2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| | - Ming Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Xiaoli Zhao
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Shiyong Mou
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Fan Dong
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| |
Collapse
|
46
|
Wei Z, Göltl F, Sautet P. Diffusion Barriers for Carbon Monoxide on the Cu(001) Surface Using Many-Body Perturbation Theory and Various Density Functionals. J Chem Theory Comput 2021; 17:7862-7872. [PMID: 34812624 DOI: 10.1021/acs.jctc.1c00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
First-principles calculations play a key role in understanding the interactions of molecules with transition-metal surfaces and the energy profiles for catalytic reactions. However, many of the commonly used density functionals are not able to correctly predict the surface energy as well as the adsorption site preference for a key molecule such as CO, and it is not clear to what extent this shortcoming influences the prediction of reaction or diffusion pathways. Here, we report calculations of carbon monoxide diffusion on the Cu(001) surface along the [100] and [110] pathways, as well as the surface energy of Cu(001), and CO-adsorption energy and compare the performance of the Perdew-Burke-Ernzerhof (PBE), PBE + D2, PBE + D3, RPBE, Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), HSE06 density functionals, and the random phase approximation (RPA), a post-Hartree-Fock method based on many-body perturbation theory. We critically evaluate the performance of these methods and find that RPA appears to be the only method giving correct site preference, overall barrier, adsorption enthalpy, and surface energy. For all of the other methods, at least one of these properties is not correctly captured. These results imply that many density functional theory (DFT)-based methods lead to qualitative and quantitative errors in describing CO interaction with transition-metal surfaces, which significantly impacts the description of diffusion pathways. It is well conceivable that similar effects exist when surface reactions of CO-related species are considered. We expect that the methodology presented here will be used to get more detailed insights into reaction pathways for CO conversion on transition-metal surfaces in general and Cu in particular, which will allow us to better understand the catalytic and electrocatalytic reactions involving CO-related species.
Collapse
Affiliation(s)
- Ziyang Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Florian Göltl
- Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
47
|
Zhu S, Delmo EP, Li T, Qin X, Tian J, Zhang L, Shao M. Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO 2 Electrochemical Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005484. [PMID: 33899277 DOI: 10.1002/adma.202005484] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical CO2 reduction has been recognized as a promising solution in tackling energy- and environment-related challenges of human society. In the past few years, the rapid development of advanced electrocatalysts has significantly improved the efficiency of this reaction and accelerated the practical applications of this technology. Herein, representative catalyst structures and composition engineering strategies in regulating the CO2 reduction selectivity and activity toward various products including carbon monoxide, formate, methane, methanol, ethylene, and ethanol are summarized. An overview of in situ/operando characterizations and advanced computational modeling in deepening the understanding of the reaction mechanisms and accelerating catalyst design are also provided. To conclude, future challenges and opportunities in this research field are discussed.
Collapse
Affiliation(s)
- Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xueping Qin
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jian Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Lili Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Jiangsu Key Laboratory for Chemistry of Low-Dimension Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Li J, Stenlid JH, Ludwig T, Lamoureux PS, Abild-Pedersen F. Modeling Potential-Dependent Electrochemical Activation Barriers: Revisiting the Alkaline Hydrogen Evolution Reaction. J Am Chem Soc 2021; 143:19341-19355. [PMID: 34752077 DOI: 10.1021/jacs.1c07276] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate theoretical simulation of electrochemical activation barriers is key to understanding electrocatalysis and guides the design of more efficient catalysts. Providing a detailed picture of proton transfer processes encounters several challenges: the constant potential requirement during charge transfer, the different time scales involved in the processes, and the thermal fluctuation of the solvent. Hence, it is prohibitively expensive computationally to apply density functional theory (DFT) calculations in modeling the potential-dependent activation barrier at the electrode-solvent interface, and the results are dubious. To address these challenges, we have developed an analytical approach based on charge conservation and decoupled potential energy surfaces to compute charge transfer barriers. The method makes it possible to simulate an electrochemical process at different potentials and explicitly include thermal fluctuations of the solvent at the electrode-solvent interface. We use the Pt-catalyzed alkaline hydrogen evolution reaction (HER) as our benchmark reaction, and we model the microkinetics of HER with consideration of the spatial fluctuations between the metal surface and the first solvent layer at room temperature. The distribution of water-metal distances has a large effect on the barriers of the charge transfer processes, and an accurate account of the statistical fluctuation in the reaction network leads to a several orders of magnitude increase in HER current as compared to transfer from a static solvent. The trends of the different reaction mechanisms in HER were successfully simulated with our model, and the theoretical I-V curves obtained are in good qualitative agreement with experimental results.
Collapse
Affiliation(s)
- Jiang Li
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Thomas Ludwig
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Philomena Schlexer Lamoureux
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
50
|
Wang Y, Liu J, Zheng G. Designing Copper-Based Catalysts for Efficient Carbon Dioxide Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005798. [PMID: 33913569 DOI: 10.1002/adma.202005798] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Indexed: 06/12/2023]
Abstract
The electroreduction of carbon dioxide (CO2 ) has been emerging as a high- potential approach for CO2 utilization using renewables. When copper (Cu) based catalysts are used, this platform can produce multi-carbon (C2+ ) fuels and chemicals with almost net-zero emission, contributing to the closure of the anthropogenic carbon cycle. Nonetheless, the rational design and development of Cu-based catalysts are critical toward the realization of highly selective and efficient CO2 electroreduction. In this review, first the latest advances in Cu-catalyzed CO2 electroreduction in the product selectivity and electrocatalytic activity are briefly summarized. Then, recent theoretical and mechanistic studies of CO2 electroreduction on Cu-based catalysts are investigated, which serve as programs to design catalysts. Strategies for devising Cu catalysts that aim at promoting different key elementary steps for hydrocarbon and C2+ oxygenates production are further summarized. Moreover, challenges in understanding the mechanism, operando investigation of Cu catalysts and reactions, and systems' influences are also presented. Finally, the future prospects of CO2 electroreduction are discussed.
Collapse
Affiliation(s)
- Yuhang Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junlang Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|