1
|
Sousa BP, Lourenço TC, Anchieta CG, Nepel TCM, Filho RM, Da Silva JLF, Doubek G. Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO 2 Intermediate in Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306895. [PMID: 38607269 DOI: 10.1002/smll.202306895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Lithium-oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li-O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO-Li+-anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactiveO 2 - ${\rm O}_2^{-}$ . On charging, the presence of Li+ indicates the formation of a lithium-deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li-O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li-O2 system.
Collapse
Affiliation(s)
- Bianca P Sousa
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Tuanan C Lourenço
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, São Paulo, 13560-970, Brazil
| | - Chayene G Anchieta
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Thayane C M Nepel
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Rubens M Filho
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, São Paulo, 13560-970, Brazil
| | - Gustavo Doubek
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| |
Collapse
|
2
|
Song LN, Zheng LJ, Wang XX, Kong DC, Wang YF, Wang Y, Wu JY, Sun Y, Xu JJ. Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products. J Am Chem Soc 2024; 146:1305-1317. [PMID: 38169369 DOI: 10.1021/jacs.3c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.
Collapse
Affiliation(s)
- Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - De-Chen Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jia-Yi Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Jia S, Liu F, Xue J, Wang R, Huo H, Zhou J, Li L. Enhancing the Performance of Lithium-Oxygen Batteries with Quasi-Solid Polymer Electrolytes. ACS OMEGA 2023; 8:36710-36719. [PMID: 37841182 PMCID: PMC10568585 DOI: 10.1021/acsomega.3c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The quasi-solid electrolyte membranes (QSEs) are obtained by solidifying the precursor of unsaturated polyester and liquid electrolyte in a glass fiber. By modifying the ratio of tetraethylene glycol dimethyl ether, QSE with balanced ionic conductivity, flexibility, and electrochemical stability window is acquired, which is helpful for inhibiting the decomposition of electrolyte on the cathode surface. The QSE is beneficial to the interfacial reaction of Li+, electrons, and O2 in the quasi-solid lithium-oxygen battery (LOB), can reduce the crossover of oxygen to the anode, and extend the cycle life of LOBs to 317 cycles. Benefitting from the application of QSE, a more stable solid electrolyte interface layer can be constructed on the anode side, which can homogenize Li+ flux and facilitate uniform Li deposition. Lithium-oxygen pouch cell with in situ formed QSE2 works well when the cell is folded or a corner is cut off. Our results indicate that the QSE plays important roles in both the cathode and Li metal anode, which can be further improved with the in situ forming strategy.
Collapse
Affiliation(s)
- SiXin Jia
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - FengQuan Liu
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - JinXin Xue
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong Huo
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - JianJun Zhou
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Li
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Askins EJ, Zoric MR, Li M, Amine R, Amine K, Curtiss LA, Glusac KD. Triarylmethyl cation redox mediators enhance Li-O 2 battery discharge capacities. Nat Chem 2023; 15:1247-1254. [PMID: 37414882 DOI: 10.1038/s41557-023-01268-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
A major impediment to Li-O2 battery commercialization is the low discharge capacities resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated Li2O2 film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O2/Li2O2 discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Marija R Zoric
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rachid Amine
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Larry A Curtiss
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
5
|
Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X. Reversible Discharge Products in Li-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208925. [PMID: 36502282 DOI: 10.1002/adma.202208925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Lithium-air (Li-air) batteries stand out among the post-Li-ion batteries due to their high energy density, which has rapidly progressed in the past years. Regarding the fundamental mechanism of Li-air batteries that discharge products produced and decomposed during charging and recharging progress, the reversibility of products closely affects the battery performance. Along with the upsurge of the mainstream discharge products lithium peroxide, with devoted efforts to screening electrolytes, constructing high-efficiency cathodes, and optimizing anodes, much progress is made in the fundamental understanding and performance. However, the limited advancement is insufficient. In this case, the investigations of other discharge products, including lithium hydroxide, lithium superoxide, lithium oxide, and lithium carbonate, emerge and bring breakthroughs for the Li-air battery technologies. To deepen the understanding of the electrochemical reactions and conversions of discharge products in the battery, recent advances in the various discharge products, mainly focusing on the growth and decomposition mechanisms and the determining factors are systematically reviewed. The perspectives for Li-air batteries on the fundamental development of discharge products and future applications are also provided.
Collapse
Affiliation(s)
- Tong Liu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Siyuan Zhao
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jie Yu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Meng Ni
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
6
|
Wu Z, Tian Y, Chen H, Wang L, Qian S, Wu T, Zhang S, Lu J. Evolving aprotic Li-air batteries. Chem Soc Rev 2022; 51:8045-8101. [PMID: 36047454 DOI: 10.1039/d2cs00003b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Yuhui Tian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Hao Chen
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shangshu Qian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Prehal C, Mondal S, Lovicar L, Freunberger SA. Exclusive Solution Discharge in Li-O 2 Batteries? ACS ENERGY LETTERS 2022; 7:3112-3119. [PMID: 36120663 PMCID: PMC9469202 DOI: 10.1021/acsenergylett.2c01711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Capacity, rate performance, and cycle life of aprotic Li-O2 batteries critically depend on reversible electrodeposition of Li2O2. Current understanding states surface-adsorbed versus solvated LiO2 controls Li2O2 growth as surface film or as large particles. Herein, we show that Li2O2 forms across a wide range of electrolytes, carbons, and current densities as particles via solution-mediated LiO2 disproportionation, bringing into question the prevalence of any surface growth under practical conditions. We describe a unified O2 reduction mechanism, which can explain all found capacity relations and Li2O2 morphologies with exclusive solution discharge. Determining particle morphology and achievable capacities are species mobilities, true areal rate, and the degree of LiO2 association in solution. Capacity is conclusively limited by mass transport through the tortuous Li2O2 rather than electron transport through a passivating Li2O2 film. Provided that species mobilities and surface growth are high, high capacities are also achieved with weakly solvating electrolytes, which were previously considered prototypical for low capacity via surface growth.
Collapse
Affiliation(s)
- Christian Prehal
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Soumyadip Mondal
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ludek Lovicar
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Stefan A. Freunberger
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
8
|
Xiong Q, Li C, Li Z, Liang Y, Li J, Yan J, Huang G, Zhang X. Hydrogen-Bond-Assisted Solution Discharge in Aprotic Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110416. [PMID: 35363905 DOI: 10.1002/adma.202110416] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Surface discharge mechanism induced cathode passivation is a critical challenge that blocks the full liberation of the ultrahigh theoretical energy density in aprotic Li-O2 batteries. Herein, a facile and universal concept of hydrogen-bond-assisted solvation is proposed to trigger the solution discharge process for averting the shortcomings associated with surface discharge. 2,5-Di-tert-butylhydroquinone (DBHQ), an antioxidant with hydroxyl groups, is introduced as an exemplary soluble catalyst to promote solution discharge by hydrogen-bond-assisted solvation of O2 - and Li2 O2 (OH···O). Thus, a Li-O2 battery with 50 × 10-3 m DBHQ delivers an extraordinary discharge capacity of 18 945 mAh g-1 (i.e., 9.47 mAh cm-2 ), even surpassing the capacity endowed by the state-of-the-art reduction mediator of 2,5-di-tert-butyl-1,4-benzoquinone. Besides, an ultrahigh Li2 O2 yield of 97.1% is also achieved due to the depressed reactivity of the reduced oxygen-containing species (O2 - , LiO2 , and Li2 O2 ) by the solvating and antioxidative abilities of DBHQ. Consequently, the Li-O2 battery with DBHQ exhibits excellent cycling lifetime and rate capability. Furthermore, the generalizability of this approach of hydrogen-bond-assisted solution discharge is verified by other soluble catalysts that contain OH or NH groups, with implications that could bring Li-O2 batteries one step closer to being a viable technology.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chaole Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ziwei Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yulong Liang
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianchen Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Junmin Yan
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Xiong Q, Huang G, Yu Y, Li CL, Li JC, Yan JM, Zhang XB. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O 2 Batteries. Angew Chem Int Ed Engl 2022; 61:e202116635. [PMID: 35274415 DOI: 10.1002/anie.202116635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/07/2022]
Abstract
The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chao-Le Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jian-Chen Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jun-Min Yan
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
10
|
Xiong Q, Huang G, Yu Y, Li C, Li J, Yan J, Zhang X. Soluble and Perfluorinated Polyelectrolyte for Safe and High‐Performance Li−O
2
Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chao‐Le Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jian‐Chen Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Jun‐Min Yan
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
11
|
Xia Q, Li D, Zhao L, Wang J, Long Y, Han X, Zhou Z, Liu Y, Zhang Y, Li Y, Adam AAA, Chou S. Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li-O 2 batteries. Chem Sci 2022; 13:2841-2856. [PMID: 35382475 PMCID: PMC8905958 DOI: 10.1039/d1sc05781b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Developing efficient energy storage and conversion applications is vital to address fossil energy depletion and global warming. Li-O2 batteries are one of the most promising devices because of their ultra-high energy density. To overcome their practical difficulties including low specific capacities, high overpotentials, limited rate capability and poor cycle stability, an intensive search for highly efficient electrocatalysts has been performed. Recently, it has been reported that heterostructured catalysts exhibit significantly enhanced activities toward the oxygen reduction reaction and oxygen evolution reaction, and their excellent performance is not only related to the catalyst materials themselves but also the special hetero-interfaces. Herein, an overview focused on the electrocatalytic functions of heterostructured catalysts for non-aqueous Li-O2 batteries is presented by summarizing recent research progress. Reduction mechanisms of Li-O2 batteries are first introduced, followed by a detailed discussion on the typical performance enhancement mechanisms of the heterostructured catalysts with different phases and heterointerfaces, and the various heterostructured catalysts applied in Li-O2 batteries are also intensively discussed. Finally, the existing problems and development perspectives on the heterostructure applications are presented.
Collapse
Affiliation(s)
- Qing Xia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Lanling Zhao
- School of Physics, Shandong University Jinan 250100 China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Abulgasim Ahmed Abbaker Adam
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| |
Collapse
|
12
|
Nava M, Zhang S, Pastore KS, Feng X, Lancaster KM, Nocera DG, Cummins CC. Lithium superoxide encapsulated in a benzoquinone anion matrix. Proc Natl Acad Sci U S A 2021; 118:e2019392118. [PMID: 34903644 PMCID: PMC8713792 DOI: 10.1073/pnas.2019392118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Lithium peroxide is the crucial storage material in lithium-air batteries. Understanding the redox properties of this salt is paramount toward improving the performance of this class of batteries. Lithium peroxide, upon exposure to p-benzoquinone (p-C6H4O2) vapor, develops a deep blue color. This blue powder can be formally described as [Li2O2][Formula: see text] [LiO2][Formula: see text] {Li[p-C6H4O2]}0.7, though spectroscopic characterization indicates a more nuanced structural speciation. Infrared, Raman, electron paramagnetic resonance, diffuse-reflectance ultraviolet-visible and X-ray absorption spectroscopy reveal that the lithium salt of the benzoquinone radical anion forms on the surface of the lithium peroxide, indicating the occurrence of electron and lithium ion transfer in the solid state. As a result, obligate lithium superoxide is formed and encapsulated in a shell of Li[p-C6H4O2] with a core of Li2O2 Lithium superoxide has been proposed as a critical intermediate in the charge/discharge cycle of Li-air batteries, but has yet to be isolated, owing to instability. The results reported herein provide a snapshot of lithium peroxide/superoxide chemistry in the solid state with redox mediation.
Collapse
Affiliation(s)
- Matthew Nava
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Shiyu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Katharine S Pastore
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Xiaowen Feng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307;
| |
Collapse
|
13
|
Ji Y, Yin ZW, Yang Z, Deng YP, Chen H, Lin C, Yang L, Yang K, Zhang M, Xiao Q, Li JT, Chen Z, Sun SG, Pan F. From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance. Chem Soc Rev 2021; 50:10743-10763. [PMID: 34605826 DOI: 10.1039/d1cs00629k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the bulk and interfacial behaviors during the operation of batteries (e.g., Li-ion, Na-ion, Li-O2 batteries, etc.) is of great significance for the continuing improvement of the performance. Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to this end, as it enables in situ investigation into various phenomena, including ion insertion/deinsertion within electrodes, solid nucleation from the electrolyte, interphasial formation/evolution and solid-liquid coordination. As such, EQCM analysis helps to decipher the underlying mechanisms both in the bulk and at the interface. This tutorial review will present the recent progress in mechanistic studies of batteries achieved by the EQCM technology. The fundamentals and unique capability of EQCM are first discussed and compared with other techniques, and then the combination of EQCM with other in situ techniques is also covered. In addition, the recent studies utilizing EQCM technologies in revealing phenomena and mechanisms of various batteries are reviewed. Perspectives regarding the future application of EQCM in battery studies are given at the end.
Collapse
Affiliation(s)
- Yuchen Ji
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zu-Wei Yin
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, USA
| | - Ya-Ping Deng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Cong Lin
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Luyi Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Mingjian Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Qiangfeng Xiao
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Jun-Tao Li
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
14
|
|
15
|
Lu YT, Neale AR, Hu CC, Hardwick LJ. Trapped interfacial redox introduces reversibility in the oxygen reduction reaction in a non-aqueous Ca 2+ electrolyte. Chem Sci 2021; 12:8909-8919. [PMID: 34257892 PMCID: PMC8246276 DOI: 10.1039/d0sc06991d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/28/2021] [Indexed: 01/14/2023] Open
Abstract
Electrochemical investigations of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been conducted in a Ca2+-containing dimethyl sulfoxide electrolyte. While the ORR appears irreversible, the introduction of a tetrabutylammonium perchlorate (TBAClO4) co-salt in excess concentrations results in the gradual appearance of a quasi-reversible OER process. Combining the results of systematic cyclic voltammetry investigations, the degree of reversibility depends on the ion pair competition between Ca2+ and TBA+ cations to interact with generated superoxide (O2 -). When TBA+ is in larger concentrations, and large reductive overpotentials are applied, a quasi-reversible OER peak emerges with repeated cycling (characteristic of formulations without Ca2+ cations). In situ Raman microscopy and rotating ring-disc electrode (RRDE) experiments revealed more about the nature of species formed at the electrode surface and indicated the progressive evolution of a charge storage mechanism based upon trapped interfacial redox. The first electrochemical step involves generation of O2 -, followed primarily by partial passivation of the surface by Ca x O y product formation (the dominant initial reaction). Once this product matrix develops, the subsequent formation of TBA+--O2 - is contained within the Ca x O y product interlayer at the electrode surface and, consequently, undergoes a facile oxidation reaction to regenerate O2.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 300044 Taiwan
| | - Alex R Neale
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 300044 Taiwan
| | - Laurence J Hardwick
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
16
|
Didar BR, Yashina L, Groß A. First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24984-24994. [PMID: 34009936 DOI: 10.1021/acsami.1c05863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Li-air batteries are a promising alternative to Li-ion batteries as they theoretically provide the highest possible specific energy density. Mainly, Li2O2 (lithium peroxide) and to a lesser extent, Li2O (lithium oxide) are assumed to be the discharge products of these batteries formed with the soluble LiO2 (lithium superoxide) considered to be an intermediate product. Bulk Li2O2 is an electronic insulator, and the precipitation of this compound on the cathode is thought to be the main limiting factor in achieving high capacities in lithium-oxygen cells. For the most promising electrolytes including solvents with high donor numbers, microscopy observations frequently reveal crystallite morphologies of Li2O2 compounds, rather than uniform layers covering the electrode surface. The precise morphologies of Li2O and Li2O2 particles, and their effect and their extent of contact with the electrode, which may all affect the capacity and rechargeability, however, remain largely undetermined. Here, we address the stability of various Li2O and Li2O2 surfaces and consequently, their crystallite morphologies using density functional theory calculations and ab initio thermodynamics. In contrast to previous studies, we also consider high-index surface terminations, which exhibit surprisingly low surface energies. We carefully analyze the reasons for the stability of these high-index surfaces, which also prominently influence the equilibrium shape of the particles, at least for Li2O2, and discuss the consequences for the observed morphology of the reaction products.
Collapse
Affiliation(s)
| | - Lada Yashina
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
17
|
Dai W, Liu Y, Wang M, Lin M, Lian X, Luo Y, Yang J, Chen W. Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19915-19926. [PMID: 33881825 DOI: 10.1021/acsami.0c23125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-oxygen batteries with ultrahigh energy densities have drawn considerable attention as next-generation energy storage devices. However, their practical applications are challenged by sluggish reaction kinetics aimed at the formation/decomposition of discharge products on battery cathodes. Developing effective catalysts and understanding the fundamental catalytic mechanism are vital to improve the electrochemical performance of lithium-oxygen batteries. Here, uniformly dispersed ruthenium nanoparticles anchored on nitrogen-doped reduced graphene oxide are prepared by using an in situ pyrolysis procedure as a bifunctional catalyst for lithium-oxygen batteries. The abundance of ruthenium active sites and strong ruthenium-support interaction enable a feasible discharge product formation/decomposition route by modulating the surface adsorption of lithium superoxide intermediates and the nucleation and growth of lithium peroxide species. Benefiting from these merits, the electrode provides a drastically increased discharge capacity (17,074 mA h g-1), a decreased charge overpotential (0.51 V), and a long-term cyclability (100 cycles at 100 mA g-1). Our observations reveal the significance of the dispersion and coordination of metal catalysts, shedding light on the rational design of efficient catalysts for future lithium-oxygen batteries.
Collapse
Affiliation(s)
- Wenrui Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Yuan Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Meng Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Ming Lin
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), Innovis, 138634, Singapore
| | - Xu Lian
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Yani Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jinlin Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| |
Collapse
|
18
|
Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat Chem 2021; 13:465-471. [PMID: 33723377 DOI: 10.1038/s41557-021-00643-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Aprotic alkali metal-O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.
Collapse
|
19
|
In situ small-angle X-ray scattering reveals solution phase discharge of Li-O 2 batteries with weakly solvating electrolytes. Proc Natl Acad Sci U S A 2021; 118:2021893118. [PMID: 33785597 DOI: 10.1073/pnas.2021893118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrodepositing insulating lithium peroxide (Li2O2) is the key process during discharge of aprotic Li-O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and dissolved lithium superoxide governs whether Li2O2 grows as a conformal surface film or larger particles, leading to low or high capacities, respectively. However, better understanding governing factors for Li2O2 packing density and capacity requires structural sensitive in situ metrologies. Here, we establish in situ small- and wide-angle X-ray scattering (SAXS/WAXS) as a suitable method to record the Li2O2 phase evolution with atomic to submicrometer resolution during cycling a custom-built in situ Li-O2 cell. Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative structural information from complex multiphase systems. Surprisingly, we find that features are absent that would point at a Li2O2 surface film formed via two consecutive electron transfers, even in poorly solvating electrolytes thought to be prototypical for surface growth. All scattering data can be modeled by stacks of thin Li2O2 platelets potentially forming large toroidal particles. Li2O2 solution growth is further justified by rotating ring-disk electrode measurements and electron microscopy. Higher discharge overpotentials lead to smaller Li2O2 particles, but there is no transition to an electronically passivating, conformal Li2O2 coating. Hence, mass transport of reactive species rather than electronic transport through a Li2O2 film limits the discharge capacity. Provided that species mobilities and carbon surface areas are high, this allows for high discharge capacities even in weakly solvating electrolytes. The currently accepted Li-O2 reaction mechanism ought to be reconsidered.
Collapse
|
20
|
Galloway TA, Attard G, Hardwick LJ. An electrochemical investigation of oxygen adsorption on Pt single crystal electrodes in a non-aqueous Li+ electrolyte. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
21
|
Hase Y, Nishioka K, Komori Y, Kusumoto T, Seki J, Kamiya K, Nakanishi S. Synergistic Effect of Binary Electrolyte on Enhancement of the Energy Density in Li-O 2 Batteries. J Phys Chem Lett 2020; 11:7657-7663. [PMID: 32830981 DOI: 10.1021/acs.jpclett.0c01877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enhancement of the discharge capacity of lithium-oxygen batteries (LOBs) while maintaining a high cell voltage is an important challenge to overcome to achieve an ideal energy density. Both the cell voltage and discharge capacity of an LOB could be controlled by employing a binary solvent electrolyte composed of dimethyl sulfoxide (DMSO) and acetonitrile (MeCN), whereby an energy density 3.2 times higher than that of the 100 vol % DMSO electrolyte was obtained with an electrolyte containing 50 vol % of DMSO. The difference in the solvent species that preferentially solvates Li+ and that which controls the adsorption-desorption equilibrium of the discharge reaction intermediate, LiO2, on the cathode/electrolyte interface provides these unique properties of the binary solvent electrolyte. Combined spectroscopic and electrochemical analysis have revealed that the solvated complex of Li+ and the environment of the cathode/electrolyte interface were the determinants of the cell voltage and discharge capacity, respectively.
Collapse
Affiliation(s)
- Yoko Hase
- Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kiho Nishioka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yasuhiro Komori
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Kusumoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Juntaro Seki
- Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kazuhide Kamiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuji Nakanishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
22
|
Xiong Q, Huang G, Zhang XB. High-Capacity and Stable Li-O 2 Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angew Chem Int Ed Engl 2020; 59:19311-19319. [PMID: 32692471 DOI: 10.1002/anie.202009064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/08/2022]
Abstract
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).
Collapse
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Gang Huang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
23
|
Xiong Q, Huang G, Zhang X. High‐Capacity and Stable Li‐O
2
Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Gang Huang
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
24
|
Yi X, Liu X, Zhang P, Dou R, Wen Z, Zhou W. Computational Insights into Li xO y Formation, Nucleation, and Adsorption on Carbon Nanotube Electrodes in Nonaqueous Li-O 2 Batteries. J Phys Chem Lett 2020; 11:2195-2202. [PMID: 31951140 DOI: 10.1021/acs.jpclett.9b03757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent theoretical and experimental studies have shown that the formation of Li2O2, the main discharge product of nonaqueous Li-O2 batteries, is a complex multistep reaction process. The formation, nucleation, and adsorption of LixOy (x and y = 0, 1, and 2) and (Li2O2)n clusters with n = 1-4 on the surface of carbon nanotubes (CNTs) were investigated by periodic density functional theory calculation. The results showed that both Li2O2 and Li2O on CNT electrodes are preferentially generated by lithiation reaction rather than disproportionation reaction. The free energy profiles demonstrate that the discharge potentials of 2.54 and 1.29 V are the threshold values of spontaneous nucleation of (Li2O2)2 and (Li2O)2 on a CNT surface, respectively. The electronic structure indicates that Li2O2 is a p-type semiconductor, while Li2O exhibits the properties of an insulator. Interestingly, once Li2O2 molecules condense into large clusters, they will be repelled away from the CNT surface and continue to grow into large-sized Li2O2. Our results provide insights into the full understanding of the electrochemical reaction mechanism and product formation processes of lithium oxides in the cathodes of Li-O2 batteries.
Collapse
Affiliation(s)
- Xiaoping Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xunliang Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Ruifeng Dou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhi Wen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenning Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
25
|
Hou C, Han J, Liu P, Huang G, Chen M. Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O 2 Batteries: Cell Performances and Operando STEM Observations. NANO LETTERS 2020; 20:2183-2190. [PMID: 32078329 DOI: 10.1021/acs.nanolett.0c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sluggish cathodic kinetics and lower energy efficiency, associated with solid and insulating discharge products of Li2O2, are the key factors that prevent the practical implementation of Li-O2 batteries (LOBs). Here we demonstrate that the combination of the solid catalyst (RuO2) and soluble redox mediator tetrathiafulvalene (TTF) exhibits a synergetic effect in improving the cathodic kinetics and energy efficiency of LOBs by reducing both charge and discharge overpotentials. Operando electron microscopy observations and electrochemical measurements reveal that RuO2 not only exhibits bifunctional catalysis for Li-O2 reactions but also benefits the catalytic efficiency of TTF. Meanwhile, TTF plays an important role in activating the Li2O2 passivated RuO2 catalysts and in helping RuO2 effectively oxidize the discharge products during charging. The synergetic effect of solid and liquid catalysts, beyond traditional bifunctional catalysis, obviously increases the cathodic kinetics and round-trip energy efficiency of LOBs.
Collapse
Affiliation(s)
- Chen Hou
- Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jiuhui Han
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai 980-8578, Japan
| | - Pan Liu
- Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gang Huang
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Mingwei Chen
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Tsou YH, Chuang YY, Chen JS. Effect of surface bonding of FePC with electrospun carbon nanofiber on electrocatalytic performance for aprotic Li-O2 batteries. J Colloid Interface Sci 2020; 562:213-223. [DOI: 10.1016/j.jcis.2019.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
|
27
|
Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem Rev 2020; 120:6558-6625. [PMID: 32090540 DOI: 10.1021/acs.chemrev.9b00545] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonaqueous lithium-air batteries have garnered considerable research interest over the past decade due to their extremely high theoretical energy densities and potentially low cost. Significant advances have been achieved both in the mechanistic understanding of the cell reactions and in the development of effective strategies to help realize a practical energy storage device. By drawing attention to reports published mainly within the past 8 years, this review provides an updated mechanistic picture of the lithium peroxide based cell reactions and highlights key remaining challenges, including those due to the parasitic processes occurring at the reaction product-electrolyte, product-cathode, electrolyte-cathode, and electrolyte-anode interfaces. We introduce the fundamental principles and critically evaluate the effectiveness of the different strategies that have been proposed to mitigate the various issues of this chemistry, which include the use of solid catalysts, redox mediators, solvating additives for oxygen reaction intermediates, gas separation membranes, etc. Recently established cell chemistries based on the superoxide, hydroxide, and oxide phases are also summarized and discussed.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China.,Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - J Padmanabhan Vivek
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Evan Wenbo Zhao
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jiang Lei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
| | - Nuria Garcia-Araez
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Clare P Grey
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
28
|
Zakharchenko TK, Sergeev AV, D Bashkirov A, Neklyudova P, Cervellino A, Itkis DM, Yashina LV. Homogeneous nucleation of Li 2O 2 under Li-O 2 battery discharge. NANOSCALE 2020; 12:4591-4601. [PMID: 32043506 DOI: 10.1039/c9nr08493b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of high-energy lithium-oxygen batteries has significantly slowed by numerous challenges including capacity limitations due to electrode surface passivation by the discharge product Li2O2. Since the passivation rate and intensity are dependent on the deposit morphology, herein, we focus on the mechanisms governing Li2O2 formation within the porous cathode. We report evidence of homogeneous nucleation of Li2O2 crystallites and their further assembly in bulk of the electrolyte solution in DMSO, which possesses a high donor number. After careful estimation of the superoxide ion concentration distribution within a phenomenological model, it was found that the high stability of superoxide ions formed during the ORR towards disproportionation and sufficient diffusivity of (0.5-1.2) × 10-6 cm2 s-1 enabled Li2O2 nucleation and crystallization not only at the surface but also in the electrolyte, and the reaction zone spread throughout the internal space of the porous electrode. High initial supersaturation promoted the homogeneous nucleation of Li2O2 nanoplates, which instantly assembled into mesocrystals also in the solution bulk. These results were supported by operando SAXS/WAXS and morphology observations. Thus, although homogeneous nucleation is not dominant, it is important for achieving a high capacity in Li-O2 batteries.
Collapse
Affiliation(s)
- Tatiana K Zakharchenko
- N.N. Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu B, Yang J, Duan H, Liu X, Shui J. Cathode Local Curvature Affects Lithium Peroxide Growth in Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35264-35269. [PMID: 31486631 DOI: 10.1021/acsami.9b12849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth of lithium peroxide (Li2O2) in cathodes determines the performance of lithium-oxygen batteries (LOBs). The factor affecting the Li2O2 growth position is of great importance. Here, three hollow carbon spheres with diameters of 200 nm, 500 nm, and 2 μm, corresponding to different curvatures of 10, 4, and 1, respectively, are prepared as LOB cathodes. It is found that the larger the curvature, the more difficult it is for Li2O2 to grow inside the hollow sphere. Increasing the discharge current density can promote the growth of Li2O2 onto a highly curved concave substrate. Therefore, to maximize the battery performance, the applied current density and the local curvature of the porous cathode need to match to optimize the pore space utilization and meanwhile to enhance the interface charge transfer between Li2O2 and electrode. The revealed relationship among the local curvature of the porous electrode, Li2O2 deposition position, and battery performance is valuable to the topography design of the LOB cathode.
Collapse
Affiliation(s)
- Biao Liu
- School of Materials Science and Engineering , Beihang University , No. 37 Xueyuan Road , Beijing 100083 , China
| | - Jiarui Yang
- School of Materials Science and Engineering , Beihang University , No. 37 Xueyuan Road , Beijing 100083 , China
| | - Huiping Duan
- School of Materials Science and Engineering , Beihang University , No. 37 Xueyuan Road , Beijing 100083 , China
| | - Xiaofang Liu
- School of Materials Science and Engineering , Beihang University , No. 37 Xueyuan Road , Beijing 100083 , China
| | - Jianglan Shui
- School of Materials Science and Engineering , Beihang University , No. 37 Xueyuan Road , Beijing 100083 , China
| |
Collapse
|
30
|
Virwani K, Ansari Y, Nguyen K, Moreno-Ortiz FJA, Kim J, Giammona MJ, Kim HC, La YH. In situ AFM visualization of Li-O 2 battery discharge products during redox cycling in an atmospherically controlled sample cell. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:930-940. [PMID: 31165020 PMCID: PMC6541370 DOI: 10.3762/bjnano.10.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The in situ observation of electrochemical reactions is challenging due to a constantly changing electrode surface under highly sensitive conditions. This study reports the development of an in situ atomic force microscopy (AFM) technique for electrochemical systems, including the design, fabrication, and successful performance of a sealed AFM cell operating in a controlled atmosphere. Documentation of reversible physical processes on the cathode surface was performed on the example of a highly reactive lithium-oxygen battery system at different water concentrations in the solvent. The AFM data collected during the discharge-recharge cycles correlated well with the simultaneously recorded electrochemical data. We were able to capture the formation of discharge products from correlated electrical and topographical channels and measure the impact of the presence of water. The cell design permitted acquisition of electrochemical impedance spectroscopy, contributing information about electrical double layers under the system's controlled environment. This characterization method can be applied to a wide range of reactive surfaces undergoing transformations under carefully controlled conditions.
Collapse
Affiliation(s)
- Kumar Virwani
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Younes Ansari
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Khanh Nguyen
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | | | - Jangwoo Kim
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | | | - Ho-Cheol Kim
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Young-Hye La
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| |
Collapse
|
31
|
Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804587. [PMID: 30767276 DOI: 10.1002/adma.201804587] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
The aprotic lithium-oxygen (Li-O2 ) battery has excited huge interest due to it having the highest theoretical energy density among the different types of rechargeable battery. The facile achievement of a practical Li-O2 battery has been proven unrealistic, however. The most significant barrier to progress is the limited understanding of the reaction processes occurring in the battery, especially during the charging process on the positive electrode. Thus, understanding the charging mechanism is of crucial importance to enhance the Li-O2 battery performance and lifetime. Here, recent progress in understanding the electrochemistry and chemistry related to charging in Li-O2 batteries is reviewed along with the strategies to address the issues that exist in the charging process at the present stage. The properties of Li2 O2 and the mechanisms of Li2 O2 oxidation to O2 on charge are discussed comprehensively, as are the accompanied parasitic chemistries, which are considered as the underlying issues hindering the reversibility of Li-O2 batteries. Based on the detailed discussion of the charging mechanism, innovative strategies for addressing the issues for the charging process are discussed in detail. This review has profound implications for both a better understanding of charging chemistry and the development of reliable rechargeable Li-O2 batteries in the future.
Collapse
Affiliation(s)
- Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
32
|
Hase Y, Komori Y, Kusumoto T, Harada T, Seki J, Shiga T, Kamiya K, Nakanishi S. Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygene batteries. Nat Commun 2019; 10:596. [PMID: 30723201 PMCID: PMC6363801 DOI: 10.1038/s41467-019-08536-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
In non-aqueous lithium-oxygen batteries, the one-electron reduction of oxygen and subsequent lithium oxide formation both occur during discharge. This lithium oxide can be converted to insulating lithium peroxide via two different pathways: a second reduction at the cathode surface or disproportionation in solution. The latter process is known to be advantageous with regard to increasing the discharge capacity and is promoted by a high donor number electrolyte because of the stability of lithium oxide in media of this type. Herein, we report that the cathodic oxygen reduction reaction during discharge typically exhibits negative differential resistance. Importantly, the magnitude of negative differential resistance, which varies with the system component, and the position of the cathode potential relative to the negative differential resistance determined the reaction pathway and the discharge capacity. This result implies that the stability of lithium oxide on the cathode also contributes to the determination of the reaction pathway.
Collapse
Affiliation(s)
- Yoko Hase
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Yasuhiro Komori
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takayoshi Kusumoto
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takashi Harada
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Juntaro Seki
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Tohru Shiga
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
33
|
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019; 48:72-133. [DOI: 10.1039/c8cs00324f] [Citation(s) in RCA: 978] [Impact Index Per Article: 195.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a comprehensive review of MXene materials and their energy-related applications.
Collapse
Affiliation(s)
- Jinbo Pang
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
| | - Rafael G. Mendes
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Alicja Bachmatiuk
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Liang Zhao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Huy Q. Ta
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Thomas Gemming
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Crystal Materials
| | - Zhongfan Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Mark H. Rummeli
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| |
Collapse
|
34
|
Lee JS, Lee C, Lee JY, Ryu J, Ryu WH. Polyoxometalate as a Nature-Inspired Bifunctional Catalyst for Lithium–Oxygen Batteries. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-Seo Lee
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Cheolmin Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jae-Yun Lee
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Won-Hee Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
35
|
Zhang P, Zhang S, He M, Lang J, Ren A, Xu S, Yan X. Realizing the Embedded Growth of Large Li 2O 2 Aggregations by Matching Different Metal Oxides for High-Capacity and High-Rate Lithium Oxygen Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700172. [PMID: 29201611 PMCID: PMC5700630 DOI: 10.1002/advs.201700172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Indexed: 05/03/2023]
Abstract
Large Li2O2 aggregations can produce high-capacity of lithium oxygen (Li-O2) batteries, but the larger ones usually lead to less-efficient contact between Li2O2 and electrode materials. Herein, a hierarchical cathode architecture based on different discharge characteristics of α-MnO2 and Co3O4 is constructed, which can enable the embedded growth of large Li2O2 aggregations to solve this problem. Through experimental observations and first-principle calculations, it is found that α-MnO2 nanorod tends to form uniform Li2O2 particles due to its preferential Li+ adsorption and similar LiO2 adsorption energies of different crystal faces, whereas Co3O4 nanosheet tends to simultaneously generate Li2O2 film and Li2O2 nanosheets due to its preferential O2 adsorption and different LiO2 adsorption energies of varied crystal faces. Thus, the composite cathode architecture in which Co3O4 nanosheets are grown on α-MnO2 nanorods can exhibit extraordinary synergetic effects, i.e., α-MnO2 nanorods provide the initial nucleation sites for Li2O2 deposition while Co3O4 nanosheets provide dissolved LiO2 to promote the subsequent growth of Li2O2. Consequently, the composite cathode achieves the embedded growth of large Li2O2 aggregations and thus exhibits significantly improved specific capacity, rate capability, and cyclic stability compared with the single metal oxide electrode.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Clean Energy Chemistry and MaterialsState Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100039P. R. China
| | - Shoufeng Zhang
- State Key Laboratory of Theoretical and Computational ChemistryJilin UniversityJilin130023P. R. China
| | - Mu He
- University of Chinese Academy of SciencesBeijing100039P. R. China
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| | - Junwei Lang
- Laboratory of Clean Energy Chemistry and MaterialsState Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| | - Aimin Ren
- State Key Laboratory of Theoretical and Computational ChemistryJilin UniversityJilin130023P. R. China
| | - Shan Xu
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| | - Xingbin Yan
- Laboratory of Clean Energy Chemistry and MaterialsState Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| |
Collapse
|
36
|
Lyu Z, Zhou Y, Dai W, Cui X, Lai M, Wang L, Huo F, Huang W, Hu Z, Chen W. Recent advances in understanding of the mechanism and control of Li2O2formation in aprotic Li–O2batteries. Chem Soc Rev 2017; 46:6046-6072. [DOI: 10.1039/c7cs00255f] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review systematically summarizes the recent advances in the mechanism studies and control strategies of Li2O2formation in aprotic Li–O2batteries.
Collapse
Affiliation(s)
- Zhiyang Lyu
- National University of Singapore (Suzhou) Research Institute
- Suzhou
- China
- Department of Chemistry
- National University of Singapore
| | - Yin Zhou
- National University of Singapore (Suzhou) Research Institute
- Suzhou
- China
- Department of Chemistry
- National University of Singapore
| | - Wenrui Dai
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Xinhang Cui
- Department of Physics
- National University of Singapore
- Singapore
| | - Min Lai
- School of Physics and Optoelectronic Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210044
- China
| | - Li Wang
- Department of Physics
- Nanchang University
- Nanchang 330031
- China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Chen
- National University of Singapore (Suzhou) Research Institute
- Suzhou
- China
- Department of Chemistry
- National University of Singapore
| |
Collapse
|
37
|
Liu T, Kim G, Casford MTL, Grey CP. Mechanistic Insights into the Challenges of Cycling a Nonaqueous Na-O 2 Battery. J Phys Chem Lett 2016; 7:4841-4846. [PMID: 27934035 DOI: 10.1021/acs.jpclett.6b02267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Superoxide-based nonaqueous metal-oxygen batteries have received considerable research attention as they exhibit high energy densities and round-trip efficiencies. The cycling performance, however, is still poor. Here we study the cycling characteristic of a Na-O2 battery using solid-state nuclear magnetic resonance, Raman spectroscopy, and scanning electron microscopy. We find that the poor cycling performance is primarily caused by the considerable side reactions stemming from the chemical aggressiveness of NaO2 as both a solid-phase and dissolved species in the electrolyte. The side reaction products cover electrode surfaces and hinder electron transfer across the electrode-electrolyte interface, being a major reason for cell failure. In addition, the available electrode surface and porosity change considerably during cell discharging and charging, affecting the diffusion of soluble species (superoxide and water) and resulting in inhomogeneous reactions across the electrode. This study provides insights into the challenges associated with achieving long-lived superoxide-based metal-O2 batteries.
Collapse
Affiliation(s)
- Tao Liu
- Chemistry Department, University of Cambridge , Lensfield Road, Cambridge, United Kingdom CB2 1EW
| | - Gunwoo Kim
- Chemistry Department, University of Cambridge , Lensfield Road, Cambridge, United Kingdom CB2 1EW
- Cambridge Graphene Centre, University of Cambridge , Cambridge, United Kingdom CB3 0FA
| | - Mike T L Casford
- Chemistry Department, University of Cambridge , Lensfield Road, Cambridge, United Kingdom CB2 1EW
| | - Clare P Grey
- Chemistry Department, University of Cambridge , Lensfield Road, Cambridge, United Kingdom CB2 1EW
| |
Collapse
|
38
|
Yang HK, Chin CC, Chen JS. The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries. NANOMATERIALS 2016; 6:nano6110203. [PMID: 28335331 PMCID: PMC5245737 DOI: 10.3390/nano6110203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
Abstract
The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant (kf) for the production of superoxide radical (O₂•-) and the propylene carbonate (PC)-electrolyte decomposition rate constant (k) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂•- and produces a faster PC-electrolyte decomposition rate.
Collapse
Affiliation(s)
- Hong-Kai Yang
- Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 81148, Taiwan.
| | - Chih-Chun Chin
- Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 81148, Taiwan.
| | - Jenn-Shing Chen
- Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 81148, Taiwan.
| |
Collapse
|
39
|
Carboni M, Marrani AG, Spezia R, Brutti S. 1,2-Dimethoxyethane Degradation Thermodynamics in Li−O2
Redox Environments. Chemistry 2016; 22:17188-17203. [DOI: 10.1002/chem.201602375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Marco Carboni
- Dipartimento di Chimica; Sapienza Università di Roma; P.le Aldo Moro 5 00185 Roma Italia
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica; Sapienza Università di Roma; P.le Aldo Moro 5 00185 Roma Italia
| | - Riccardo Spezia
- LAMBE, CEA, CNRS; Université Paris Saclay; 91025 Evry France
- LAMBE; Université d'Evry; Bvd. F.Mitterrand 91025 Evry France
| | - Sergio Brutti
- CNR-ISC, U.O.S. Sapienza; Piazzale A. Moro 5 00185 Roma Italia
- Dipartimento di Scienze; Università della Basilicata; V.le Ateneo Lucano 10 85100 Potenza Italia
| |
Collapse
|
40
|
Kwabi DG, Batcho TP, Feng S, Giordano L, Thompson CV, Shao-Horn Y. The effect of water on discharge product growth and chemistry in Li-O2 batteries. Phys Chem Chem Phys 2016; 18:24944-53. [PMID: 27560806 DOI: 10.1039/c6cp03695c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding what controls Li-O2 battery discharge product chemistry and morphology is key to enabling its practical deployment as a low-cost, high-specific-energy energy conversion technology. Several studies have recently shown that the addition of substantial quantities (hundreds to thousands ppm) of water and weak acids to dimethoxyethane (DME)-based electrolytes can significantly increase Li-O2 battery discharge capacity, without substantially changing the discharge product chemistry, which remains Li2O2. The exact mechanisms behind these device-level improvements, however, are not yet understood. In this study, we show that the presence of water in a DME-based electrolyte decreases the rate of Li2O2 nucleation on the electrode surface during Li-O2 battery discharge, using potentiostatic electrochemical measurements, and direct, ex situ observations of Li2O2 particles. We also show that adding water to an acetonitrile (MeCN)-based electrolyte results in LiOH upon discharge, as opposed to only Li2O2. Using first principles calculations, we propose that this change in discharge product chemistry is attributable to increased proton availability, as shown by a lower pKa for water in MeCN than in DME. This study combines kinetic and morphological analyses with first principles calculations, and elucidates relationships among electrolyte composition, discharge product chemistry and growth mechanisms for the rational design of efficient metal-air batteries.
Collapse
Affiliation(s)
- David G Kwabi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Zhang Y, Cui Q, Zhang X, McKee WC, Xu Y, Ling S, Li H, Zhong G, Yang Y, Peng Z. Amorphous Li2O2: Chemical Synthesis and Electrochemical Properties. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yelong Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
- University of Chinese Academy of Science; Beijing 100049 China
| | - Qinghua Cui
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| | - Xinmin Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| | - William C. McKee
- Department of Chemical Engineering; Louisiana State University; Baton Rouge LA 70803 USA
| | - Ye Xu
- Department of Chemical Engineering; Louisiana State University; Baton Rouge LA 70803 USA
| | - Shigang Ling
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Hong Li
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Guiming Zhong
- State Key Lab of Physical Chemistry of Solid Surfaces and College of Chemistry & Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yong Yang
- State Key Lab of Physical Chemistry of Solid Surfaces and College of Chemistry & Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| |
Collapse
|
42
|
Zhang Y, Cui Q, Zhang X, McKee WC, Xu Y, Ling S, Li H, Zhong G, Yang Y, Peng Z. Amorphous Li2O2: Chemical Synthesis and Electrochemical Properties. Angew Chem Int Ed Engl 2016; 55:10717-21. [DOI: 10.1002/anie.201605228] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yelong Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
- University of Chinese Academy of Science; Beijing 100049 China
| | - Qinghua Cui
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| | - Xinmin Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| | - William C. McKee
- Department of Chemical Engineering; Louisiana State University; Baton Rouge LA 70803 USA
| | - Ye Xu
- Department of Chemical Engineering; Louisiana State University; Baton Rouge LA 70803 USA
| | - Shigang Ling
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Hong Li
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Guiming Zhong
- State Key Lab of Physical Chemistry of Solid Surfaces and College of Chemistry & Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yong Yang
- State Key Lab of Physical Chemistry of Solid Surfaces and College of Chemistry & Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin 130022 China
| |
Collapse
|