1
|
Sen R, Millheim SL, Gordon TM, Millstone JE. Influence of Surface Chemistry on Metal Deposition Outcomes in Copper Selenide-Based Nanoheterostructure Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16473-16483. [PMID: 39067033 PMCID: PMC11308770 DOI: 10.1021/acs.langmuir.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The use of nanoparticle surface chemistry to direct metal deposition has been well-studied in the modification of metal nanoparticle substrates but is not yet well-established for metal chalcogenide particle substrates, although integration of these particles into nanoheterostructures is of high interest. In this report, we investigate the effect of Cu2-xSe surface chemistry on the morphology of metal deposition on these plasmonic semiconductor nanoparticles. Specifically, we functionalize Cu2-xSe nanoparticles with a suite of 12 different ligands and investigate how different aspects of the ligand structure do or do not impact the morphology and extent of subsequent metal deposition on the Cu2-xSe surface. Surprisingly, our results indicate that the morphology of the resulting metal deposits and the extent of metal deposition onto the existing Cu2-xSe particle substrate are indistinguishable for the majority of ligands tested. An exception to these findings is observed for particles functionalized by quaternary alkylammonium bromides, which exhibit statistically distinct metal deposition patterns compared to all other ligands tested. We hypothesize that this unique behavior is due to a cooperative binding mechanism of the quaternary alkylammonium bromides to the surface of copper selenide. Taken together, these results yield both new strategies for controlling postsynthetic modification of copper selenide nanoparticles and also reveal limitations of surface chemistry-based approaches for this system.
Collapse
Affiliation(s)
- Riti Sen
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shelby L. Millheim
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Tyler M. Gordon
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E. Millstone
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Tao QQ, Xu CH, Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence imaging of plasmon-induced electrochemical reactions at single nanocatalysts. Chem Commun (Camb) 2024; 60:2520-2523. [PMID: 38324194 DOI: 10.1039/d4cc00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
This study explores plasmon-induced electrochemical reactions on single nanoparticles using electrogenerated chemiluminescence microscopy (ECLM). Under laser irradiation, real-time screening showed lower plasmon-induced reaction efficiency for bimetallic Au@Pt nanoparticles compared to monometallic Au nanoparticles. ECLM offers a high-throughput imaging and precise quantitative approach for analyzing photo-electrochemical conversion at single nanoparticle level, valuable for both theoretical exploration and optimization of plasmonic nanocatalysts.
Collapse
Affiliation(s)
- Qian-Qian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
3
|
He MQ, Ai Y, Hu W, Guan L, Ding M, Liang Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: from Growth to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211915. [PMID: 36920232 DOI: 10.1002/adma.202211915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Eldridge BK, Gomrok S, Barr JW, Chaffin EA, Fielding L, Sachs C, Stickels K, Williams P, Wang Y. An Investigation on the Use of Au@SiO 2@Au Nanomatryoshkas as Gap-Enhanced Raman Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2893. [PMID: 37947737 PMCID: PMC10650036 DOI: 10.3390/nano13212893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Gap-enhanced Raman tags are a new type of optical probe that have wide applications in sensing and detection. A gap-enhanced Raman tag is prepared by embedding Raman molecules inside a gap between two plasmonic metals such as an Au core and Au shell. Even though placing Raman molecules beneath an Au shell seems counter-intuitive, it has been shown that such systems produce a stronger surface-enhanced Raman scattering response due to the strong electric field inside the gap. While the theoretical support of the stronger electric field inside the gap was provided in the literature, a comprehensive understanding of how the electric field inside the gap compares with that of the outer surface of the particle was not readily available. We investigated Au@SiO2@Au nanoparticles with diameters ranging from 35 nm to 70 nm with varying shell (2.5-10 nm) and gap (2.5-15 nm) thicknesses and obtained both far-field and near-field spectra. The extinction spectra from these particles always have two peaks. The low-energy peak redshifts with the decreasing shell thickness. However, when the gap thickness decreases, the low-energy peaks first blueshift and then redshift, producing a C-shape in the peak position. For every system we investigated, the near-field enhancement spectra were stronger inside the gap than on the outer surface of the nanoparticle. We find that a thin shell combined with a thin gap will produce the greatest near-field enhancement inside the gap. Our work fills the knowledge gap between the exciting potential applications of gap-enhanced Raman tags and the fundamental knowledge of enhancement provided by the gap.
Collapse
Affiliation(s)
- Brinton King Eldridge
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (B.K.E.); (S.G.)
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Saghar Gomrok
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (B.K.E.); (S.G.)
| | - James W. Barr
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Elise Anne Chaffin
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Lauren Fielding
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Christian Sachs
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Katie Stickels
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Paiton Williams
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA; (J.W.B.); (E.A.C.); (L.F.); (C.S.); (K.S.); (P.W.)
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (B.K.E.); (S.G.)
| |
Collapse
|
5
|
Kiani F, Bowman AR, Sabzehparvar M, Karaman CO, Sundararaman R, Tagliabue G. Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry. ACS ENERGY LETTERS 2023; 8:4242-4250. [PMID: 37854045 PMCID: PMC10580318 DOI: 10.1021/acsenergylett.3c01505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Harnessing nonequilibrium hot carriers from plasmonic metal nanostructures constitutes a vibrant research field with the potential to control photochemical reactions, particularly for solar fuel generation. However, a comprehensive understanding of the interplay of plasmonic hot-carrier-driven processes in metal/semiconducting heterostructures has remained elusive. In this work, we reveal the complex interdependence among plasmon excitation, hot-carrier generation, transport, and interfacial collection in plasmonic photocatalytic devices, uniquely determining the charge injection efficiency at the solid/liquid interface. Measuring the internal quantum efficiency of ultrathin (14-33 nm) single-crystalline plasmonic gold (Au) nanoantenna arrays on titanium dioxide substrates, we find that the performance of the device is limited by hot hole collection at the metal/electrolyte interface. Our solid- and liquid-state experimental approach, combined with ab initio simulations, demonstrates more efficient collection of high-energy d-band holes traveling in the [111] orientation, enhancing oxidation reactions on {111} surfaces. These findings establish new guidelines for optimizing plasmonic photocatalytic systems and optoelectronic devices.
Collapse
Affiliation(s)
- Fatemeh Kiani
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alan R. Bowman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milad Sabzehparvar
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Can O. Karaman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ravishankar Sundararaman
- Department
of Materials Science & Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Giulia Tagliabue
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Gao Z, Wildenborg A, Kocoj CA, Liu E, Sheofsky C, Rawashdeh A, Qu H, Guo P, Suh JY, Yang A. Low-Loss Plasmonics with Nanostructured Potassium and Sodium-Potassium Liquid Alloys. NANO LETTERS 2023; 23:7150-7156. [PMID: 37477493 DOI: 10.1021/acs.nanolett.3c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Alkali metals have low optical losses in the visible to near-infrared (NIR) compared with noble metals. However, their high reactivity prohibits the exploration of their optical properties. Recently sodium (Na) has been experimentally demonstrated as a low-loss plasmonic material. Here we report on a thermo-assisted nanoscale embossing (TANE) technique for fabricating plasmonic nanostructures from pure potassium (K) and NaK liquid alloys. We show high-quality-factor resonances from K as narrow as 15 nm in the NIR, which we attribute to the high material quality and low optical loss. We further demonstrate liquid Na-K plasmonics by exploiting the Na-K eutectic phase diagram. Our study expands the material library for alkali metal plasmonics and liquid plasmonics, potentially enabling a range of new material platforms for active metamaterials and photonic devices.
Collapse
Affiliation(s)
- Zhi Gao
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Aaron Wildenborg
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Eric Liu
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Caden Sheofsky
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Abdelsalam Rawashdeh
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Hongwei Qu
- Department of Electrical & Computer Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jae Yong Suh
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ankun Yang
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
7
|
Lee SA, Kuhs CT, Searles EK, Everitt HO, Landes CF, Link S. d-Band Hole Dynamics in Gold Nanoparticles Measured with Time-Resolved Emission Upconversion Microscopy. NANO LETTERS 2023; 23:3501-3506. [PMID: 37023287 DOI: 10.1021/acs.nanolett.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The performance of photocatalysts and photovoltaic devices can be enhanced by energetic charge carriers produced from plasmon decay, and the lifetime of these energetic carriers greatly affects overall efficiencies. Although hot electron lifetimes in plasmonic gold nanoparticles have been investigated, hot hole lifetimes have not been as thoroughly studied in plasmonic systems. Here, we demonstrate time-resolved emission upconversion microscopy and use it to resolve the lifetime and energy-dependent cooling of d-band holes formed in gold nanoparticles by plasmon excitation and by following plasmon decay into interband and then intraband electron-hole pairs.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T Kuhs
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Soleimani M, Pourfath M. A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO 2 conversion to chemicals. NANOSCALE 2023; 15:7051-7067. [PMID: 36974912 DOI: 10.1039/d3nr00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between plasmonic gold (Au) nanoparticles and the adsorbate is essential for photocatalytic and plasmonic applications. However, it is often challenging to identify a specific reaction mechanism in the ground state and to explore the optical properties in the excited states because of the complicated pathways of carriers. In this study, photocatalytic reduction of carbon dioxide (CO2) to C1 products (for example, CO and CH4) on the Au(111) nanoparticle (NP) surface was studied based on reaction pathway analysis, adsorbate reactivity, and its ability to stabilize or deactivate the surface. The calculated reaction Gibbs free energies and activation barriers revealed that the first step in CO reduction via a direct hydrogen transfer mechanism on Au(111) is the formation of formyl (*CHO) instead of hydroxymethylidyne (*COH). Furthermore, the size enhanced and symmetry sensitive optical responses of cuboctahedral Au(111) NPs on localized surface plasmon resonance (LSPR) were investigated by using time-dependent DFT (TDDFT) calculations. Although near field enhancement around cuboctahedral Au(111) NPs is only weakly dependent on the morphology of NPs, it was observed that corner sites stabilize *C-species to drive the CO2 reduction to CO. The density of active surface states interacting with the adsorbate states near the Fermi level gradually decreases from the (111) on-top site toward the corner site of the Au(111) NP-CO system, which strongly affects the molecule's binding on catalytic sites and, in particular, electronic excitation. Finally, the spatial distribution of the charge oscillations was determined as a guide for the fabrication of Au NPs with an optimal LSPR response.
Collapse
Affiliation(s)
- Maryam Soleimani
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
- Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
9
|
Bykov AY, Xie Y, Krasavin AV, Zayats AV. Broadband Transient Response and Wavelength-Tunable Photoacoustics in Plasmonic Hetero-nanoparticles. NANO LETTERS 2023; 23:2786-2791. [PMID: 36926927 PMCID: PMC10103169 DOI: 10.1021/acs.nanolett.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength. These observations not only expand the knowledge about the internal structure of composite plasmonic nanoparticles but also allow for an additional degree of freedom for controlling their nonlinear optical and mechanical properties.
Collapse
|
10
|
Chinnabathini VC, Dingenen F, Borah R, Abbas I, van der Tol J, Zarkua Z, D'Acapito F, Nguyen THT, Lievens P, Grandjean D, Verbruggen SW, Janssens E. Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications. NANOSCALE 2023; 15:6696-6708. [PMID: 36938628 DOI: 10.1039/d2nr07287d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.
Collapse
Affiliation(s)
- Vana Chinnappa Chinnabathini
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Imran Abbas
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Johan van der Tol
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Zviadi Zarkua
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | | | - Thi Hong Trang Nguyen
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| |
Collapse
|
11
|
Chi C, Ni M, Ding XL, Yang DR, Li J, Xia XH. Distinguishing the contributions of hot holes from interband and intraband transitions to the photoenhanced electrocatalytic oxidation reaction of ethanol. Sci Bull (Beijing) 2023; 68:477-480. [PMID: 36792423 DOI: 10.1016/j.scib.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Affiliation(s)
- Chen Chi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Miao Ni
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong-Rui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
13
|
Swaminathan S, Bera JK, Chandra M. Simultaneous Harvesting of Multiple Hot Holes via Visible-Light Excitation of Plasmonic Gold Nanospheres for Selective Oxidative Bond Scission of Olefins to Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202215933. [PMID: 36524790 DOI: 10.1002/anie.202215933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Using visible photoexcitation of gold nanospheres we successfully demonstrate the simultaneous harvesting of plasmon-induced multiple hot holes in the complete oxidative scission of the C=C bond in styrene at room temperature to selectively form benzaldehyde and formaldehyde, which is a reaction that requires activation of multiple substrates. Our results reveal that, while extraction of hot holes becomes efficient for interband excitation, harvesting of multiple hot holes from the excited Au nanospheres becomes prevalent only beyond a threshold light intensity. We show that the alkene oxidation proceeded via a sequence of two consecutive elementary steps; namely, a binding step and a cyclic oxometallate transition state as the rate-determining step. This demonstration of plasmon-excitation-mediated harvesting of multiple hot holes without the use of an extra hole transport media opens exciting possibilities, notably for difficult catalytic transformations involving multielectron oxidation processes.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jitendra K Bera
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
14
|
Wang R, Du N, Jin L, Chen W, Ma Z, Zhang T, Xu J, Zhang W, Wang X, Li M. Hyaluronic Acid Modified Au@SiO2@Au Nanoparticles for Photothermal Therapy of Genitourinary Tumors. Polymers (Basel) 2022; 14:polym14214772. [PMID: 36365766 PMCID: PMC9654671 DOI: 10.3390/polym14214772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Bladder cancer and prostate cancer are the most common malignant tumors of the genitourinary system. Conventional strategies still face great challenges of high recurrence rate and severe trauma. Therefore, minimally invasive photothermal therapy (PTT) has been extensively explored to address these challenges. Herein, fluorescent Au nanoparticles (NPs) were first prepared using glutathione as template, which were then capped with SiO2 shell to improve the biocompatibility. Next, Au nanoclusters were deposited on the NPs surface to obtain Au@SiO2@Au NPs for photothermal conversion. The gaps between Au nanoparticles on their surface could enhance their photothermal conversion efficiency. Finally, hyaluronic acid (HA), which targets cancer cells overexpressing CD44 receptors, was attached on the NPs surface via 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) chemistry to improve the accumulation of NPs in tumor tissues. Photothermal experiments showed that NPs with an average size of 37.5 nm have a high photothermal conversion efficiency (47.6%) and excellent photostability, thus exhibiting potential application as a PTT agent. The temperature of the NPs (100 μg·mL−1) could rapidly increase to 38.5 °C within 200 s and reach the peak of 57.6 °C with the laser power density of 1.5 W·cm−2 and irradiation time of 600 s. In vivo and in vitro PTT experiments showed that the NPs have high biocompatibility and excellent targeted photothermal ablation capability of cancer cells. Both bladder and prostate tumors disappeared at 15 and 18 d post-treatment with HA-Au@SiO2@Au NPs, respectively, and did not recur. In summary, HA-Au@SiO2@Au NPs can be used a powerful PTT agent for minimally invasive treatment of genitourinary tumors.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Nan Du
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wufei Chen
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhuangxuan Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Tianyu Zhang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Jie Xu
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (W.Z.); (X.W.); (M.L.)
| |
Collapse
|
15
|
Salavati-fard T, Wang B. Plasmon-Assisted Direct Interfacial Charge Transfer Enables Molecular Photodissociation on Metal Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taha Salavati-fard
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Bin Wang
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| |
Collapse
|
16
|
Growing Gold Nanostars on SiO2 Nanoparticles: Easily Accessible, NIR Active Core–Shell Nanostructures from PVP/DMF Reduction. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new synthesis strategy towards gold-coated silica nanoparticles is presented. The method provides an efficient, reliable and facile-coating process of well-defined star-shaped shell structures, characterized by UV-Vis, TEM, PXRD, DLS and zeta-potential measurements. A marked red shift of the Au-based plasmonic band to the region of the first biological window is observed offering great potential for future research of biological applications.
Collapse
|
17
|
Contreras E, Nixon R, Litts C, Zhang W, Alcorn FM, Jain PK. Plasmon-Assisted Ammonia Electrosynthesis. J Am Chem Soc 2022; 144:10743-10751. [PMID: 35671395 DOI: 10.1021/jacs.2c01272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ammonia is a promising liquid-phase carrier for the storage, transport, and deployment of carbon-free energy. However, the realization of an ammonia economy is predicated on the availability of green methods for the production of ammonia powered by electricity from renewable sources or by solar energy. Here, we demonstrate the synthesis of ammonium from nitrate powered by a synergistic combination of electricity and light. We use an electrocatalyst composed of gold nanoparticles, which have dual attributes of electrochemical nitrate reduction activity and visible-light-harvesting ability due to their localized surface plasmon resonances. Plasmonic excitation of the electrocatalyst induces ammonium synthesis with up to a 15× boost in activity relative to conventional electrocatalysis. We devise a strategy to account for the effect of photothermal heating of the electrode surface, which allows the observed enhancement to be attributed to non-thermal effects such as energetic carriers and charged interfaces induced by plasmonic excitation. The synergy between electrochemical activation and plasmonic activation is the most optimal at a potential close to the onset of nitrate reduction. Plasmon-assisted electrochemistry presents an opportunity for conventional limits of electrocatalytic conversion to be surpassed due to non-equilibrium conditions generated by plasmonic excitation.
Collapse
Affiliation(s)
- Enrique Contreras
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rachel Nixon
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chloe Litts
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenxin Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Francis M Alcorn
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Devasenathipathy R, Wang JZ, Xiao YH, Rani KK, Lin JD, Zhang YM, Zhan C, Zhou JZ, Wu DY, Tian ZQ. Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes. J Am Chem Soc 2022; 144:3821-3832. [PMID: 35199991 DOI: 10.1021/jacs.1c10447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Surface plasmon resonance (SPR) bridges photonics and photoelectrochemistry by providing an effective interaction between absorption and confinement of light to surface electrons of plasmonic metal nanostructures (PMNs). SPR enhances the Raman intensity enormously in surface-enhanced Raman spectroscopy (SERS) and leads to the plasmon-mediated chemical reaction on the surface of nanostructured metal electrodes. To observe variations in chemical reactivity and selectivity, we studied the SPR photoelectrochemical reactions of para-aminobenzoic acid (PABA) on nanostructured gold electrodes. The head-to-tail coupling product "4-[(4-imino-2,5-cyclohexadien-1-ylidene)amino]benzoic acid (ICBA)" and the head-to-head coupling product p,p'-azodibenzoate (ADBA) were obtained from PABA adsorbed on PMN-modified gold electrodes. In particular, under acidic and neutral conditions, ICBA was obtained as the main product, and ADBA was obtained as the minor product. At the same time, under basic conditions, ADBA was obtained as the major product, and ICBA was obtained as the minor product. We have also provided sufficient evidence for the oxidation of the tail-to-tail coupling reaction product that occurred in a nonaqueous medium rather than in an aqueous medium. The above finding was validated by the cyclic voltammetry, SERS, and theoretical calculation results of possible reaction intermediates, namely, 4-aminophenlylenediamine, 4-hydroxyphenlylenediamine, and benzidine. The theoretical adsorption model and experimental results indicated that PABA has been adsorbed as para-aminobenzoate on the gold cluster in a bidentate configuration. This work offers a new view toward the modulation of selective surface catalytic coupling reactions on PMN, which benefits the hot carrier transfer efficiency at photoelectrochemical interfaces.
Collapse
Affiliation(s)
- Rajkumar Devasenathipathy
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jia-Zheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Karuppasamy Kohila Rani
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-De Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yi-Miao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Lee SA, Ostovar B, Landes CF, Link S. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods. J Chem Phys 2022; 156:064702. [DOI: 10.1063/5.0078621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stephen A. Lee
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephan Link
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
20
|
Saha S, Yang J, Masouleh SSM, Botton G, Soleymani L. Hot hole direct photoelectrochemistry of Au NPs: Interband versus Intraband hot carriers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Younis MR, An R, Wang Y, He G, Gurram B, Wang S, Lin J, Ye D, Huang P, Xia XH. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS 2 Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS APPLIED BIO MATERIALS 2022; 5:747-760. [PMID: 35040617 DOI: 10.1021/acsabm.1c01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Benefiting from its strong cytotoxic features, singlet oxygen (1O2) has garnered considerable research attention in photodynamic therapy (PDT) and thus, plenty of inorganic PDT agents have been recently developed. However, inorganic PDT agents consisting of metal/semiconductor hybrids are surprisingly rare, bearing very low 1O2 quantum yield, and their in vivo PDT applications remain elusive. Herein, we provide an unprecedented report that the Au/MoS2 hybrid under plasmon resonant excitation can sensitize 1O2 generation with a quantum yield of about 0.22, which is much higher than that of the reported hybrid-based photosensitizers (PSs). This significant enhancement in 1O2 quantum yield is attributed to the hot-electron injection from plasmonic AuNPs to MoS2 NSs due to the matched energy levels. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and spin labeling verifies the plasmonic generation of hot charge carriers and reactive oxygen species such as superoxide and 1O2. This plasmonic PDT agent shows a remarkable photodynamic bacterial inactivation in vitro and anti-cancer therapeutic ability both in vitro and in vivo, which is solely attributed to high 1O2 generation rather than the plasmonic photothermal effect. Hence, plasmonic Au/MoS2 with enhanced 1O2 quantum yield and appreciable in vivo cancer plasmonic PDT performance holds great promise as an inorganic PS to treat near-surface tumors. As a first demonstration of how metal localized surface plasmon resonance could enhance 1O2 generation, the present study opens up promising opportunities for enhancing 1O2 quantum yield of hybrid-based PSs, leading to achieving a high therapeutic index in plasmon PDT.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Joshi G, Mir AQ, Layek A, Ali A, Aziz ST, Khatua S, Dutta A. Plasmon-Based Small-Molecule Activation: A New Dawn in the Field of Solar-Driven Chemical Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gayatri Joshi
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arkaprava Layek
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Afsar Ali
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sk. Tarik Aziz
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Saumyakanti Khatua
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
23
|
Wang Y, Liang Y, Sheng H, Wang J, Wang J, He S, Guan M, Chen Y, Lu G. Monitoring the Thiol/Thiophenol Molecule-Modulated Plasmon-Mediated Silver Oxidation with Dark-Field Optical Microscopy. Chemistry 2021; 28:e202103709. [PMID: 34812569 DOI: 10.1002/chem.202103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Abstract
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Yaoli Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Shunhao He
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
24
|
Zhang Y, Guo W, Zhang Y, Wei WD. Plasmonic Photoelectrochemistry: In View of Hot Carriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006654. [PMID: 33977588 DOI: 10.1002/adma.202006654] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot-carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole-transfer dynamics and electron-transfer dynamics. This review summarizes a comprehensive understanding of both hot-hole and hot-electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.
Collapse
Affiliation(s)
- Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Yunlu Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
25
|
Liu D, Xue C. Plasmonic Coupling Architectures for Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005738. [PMID: 33891777 DOI: 10.1002/adma.202005738] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic photocatalysis is a promising approach for solar energy transformation. Comparing with isolated metal nanoparticles, the plasmonic coupling architectures can provide further strengthened local electromagnetic field and boosted light-harvesting capability through optimal control over the composition, spacing, and orientation of individual nanocomponents. As such, when integrated with semiconductor photocatalysts, the coupled metal nanostructures can dramatically promote exciton generation and separation through plasmonic-coupling-driven charge/energy transfer toward superior photocatalytic efficiencies. Herein, the principles of the plasmonic coupling effect are presented and recent progress on the construction of plasmonic coupling architectures and their integration with semiconductors for enhanced photocatalytic reactions is summarized. In addition, the remaining challenges as to the rational design and utilization of plasmon coupling structures are elaborated, and some prospects to inspire new opportunities on the future development of plasmonic coupling structures for efficient and sustainable light-driven reactions are raised.
Collapse
Affiliation(s)
- Dong Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Li T, Jiang W, Liu Y, Jia R, Shi L, Huang L. Localized surface plasmon resonance induced assembly of bimetal nanochains. J Colloid Interface Sci 2021; 607:1888-1897. [PMID: 34695738 DOI: 10.1016/j.jcis.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
Bimetal nanochains (NCs) are attracting increasing attention in the fields of catalysis and electrocatalysis due to the synergistic effects in electronic and optical properties, but the fabrication of bimetal NCs remains challenging. Here, we report a general strategy named "nucleation in the irradiation then growth in the dark" for the preparation of Au/M (second metal) NCs. In the irradiation stage, the localized surface plasmon resonance (LSPR) effect of Au NPs is excited to overcome the nucleation energy barrier for the deposition of second metals (Pt, Ag and Pd). In the followed dark process, the preferential growth of second metals on the existed nucleus leads to the formation of nanochain rather than the core/shell nanostructure. In the model reaction of electrocatalytic hydrogen evolution, the optimized Au/Pt NCs showed much better performance compared with the commercial Pt/C.
Collapse
Affiliation(s)
- Ting Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wentao Jiang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yidan Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Rongrong Jia
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
27
|
Kopyra J, Wierzbicka P, Tulwin A, Thiam G, Bald I, Rabilloud F, Abdoul-Carime H. Experimental and Theoretical Studies of Dissociative Electron Attachment to Metabolites Oxaloacetic and Citric Acids. Int J Mol Sci 2021; 22:ijms22147676. [PMID: 34299296 PMCID: PMC8303309 DOI: 10.3390/ijms22147676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this contribution the dissociative electron attachment to metabolites found in aerobic organisms, namely oxaloacetic and citric acids, was studied both experimentally by means of a crossed-beam setup and theoretically through density functional theory calculations. Prominent negative ion resonances from both compounds are observed peaking below 0.5 eV resulting in intense formation of fragment anions associated with a decomposition of the carboxyl groups. In addition, resonances at higher energies (3-9 eV) are observed exclusively from the decomposition of the oxaloacetic acid. These fragments are generated with considerably smaller intensities. The striking findings of our calculations indicate the different mechanism by which the near 0 eV electron is trapped by the precursor molecule to form the transitory negative ion prior to dissociation. For the oxaloacetic acid, the transitory anion arises from the capture of the electron directly into some valence states, while, for the citric acid, dipole- or multipole-bound states mediate the transition into the valence states. What is also of high importance is that both compounds while undergoing DEA reactions generate highly reactive neutral species that can lead to severe cell damage in a biological environment.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (P.W.); (A.T.)
- Correspondence: (J.K.); (I.B.)
| | - Paulina Wierzbicka
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (P.W.); (A.T.)
| | - Adrian Tulwin
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (P.W.); (A.T.)
| | - Guillaume Thiam
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69622 Villeurbanne, France; (G.T.); (F.R.)
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Correspondence: (J.K.); (I.B.)
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69622 Villeurbanne, France; (G.T.); (F.R.)
| | - Hassan Abdoul-Carime
- Institut de Physique des 2 Infinis, Université Lyon 1, Université de Lyon, CNRS/IN2P3, UMR5822, F-69003 Lyon, France;
| |
Collapse
|
28
|
Saha S, Victorious A, Soleymani L. Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Swaminathan S, Rao VG, Bera JK, Chandra M. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C-N Bond Forming Reaction of Amines. Angew Chem Int Ed Engl 2021; 60:12532-12538. [PMID: 33734534 DOI: 10.1002/anie.202101639] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Indexed: 11/09/2022]
Abstract
Here, we demonstrate the simultaneous utilization of both the hot carriers (electrons and holes) in the photocatalytic transformation of benzylamine to N-benzylidenebenzylamine and the scope of reaction has also been successfully demonstrated with catalytic oxidation of 4-methoxybenzylamine. The wavelength-dependent excitation of AuNP allows us to tune the potential energy of charge carriers relative to the redox potential of the reactants which leads to energetically favorable product formation on the nanoparticle surface. We capture the formation of reaction intermediates and products by using in situ Raman spectroscopy, complemented by NMR spectroscopy and GC-MS. Based on the experimental substantiations, a plausible reaction mechanism has been proposed.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
30
|
Swaminathan S, Rao VG, Bera JK, Chandra M. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C−N Bond Forming Reaction of Amines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Swathi Swaminathan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Vishal Govind Rao
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Jitendra K. Bera
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Manabendra Chandra
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
31
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
32
|
Plasmon Induced Photocatalysts for Light-Driven Nanomotors. MICROMACHINES 2021; 12:mi12050577. [PMID: 34069654 PMCID: PMC8161131 DOI: 10.3390/mi12050577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
Micro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices. On the other hand, Plasmonic nanoparticles (NPs) and their photocatalytic activity have shown great potential for photochemistry reactions. Here we review several photocatalyst nanosystems, with a special emphasis in Plasmon induced photocatalytic reactions, as a novel proposal to be explored by the MNMs community in order to extend the light-driven motion of MNMs harnessing the visible and near-infrared (NIR) light spectrum.
Collapse
|
33
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021; 60:12560-12568. [DOI: 10.1002/anie.202102893] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
34
|
Graf M, Vonbun-Feldbauer GB, Koper MTM. Direct and Broadband Plasmonic Charge Transfer to Enhance Water Oxidation on a Gold Electrode. ACS NANO 2021; 15:3188-3200. [PMID: 33496564 DOI: 10.1021/acsnano.0c09776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic photocatalysis via hot charge carriers suffers from their short lifetime compared with the sluggish kinetics of most reactions. To increase lifetime, adsorbates on the surface of a plasmonic metal may create preferential states for electrons to be excited from. We demonstrate this effect with O adsorbates on a nanoporous gold electrode. Nanoporous gold is used to obtain a broadband optical response, to increase the obtained photocurrent, and to provide a SERS-active substrate. Only with adsorbates present, we observe significant photocurrents. Illumination also increases the adsorbate coverage above its dark potential-dependent equilibrium, as derived from a two-laser in situ SERS approach. Density functional theory calculations confirm the appearance of excitable states below the Fermi level. The photocurrent enhancement and broadband characteristics reveal the potential of the plasmonic approach to improve the efficiency of photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Matthias Graf
- Institute for Materials Research, Helmholtz Center Geesthacht, D-21502 Geesthacht, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 CD Leiden, The Netherlands
| | | | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, 2333 CD Leiden, The Netherlands
| |
Collapse
|
35
|
Zhang XG, Zhang L, Feng S, Qin H, Wu DY, Zhao Y. Light Driven Mechanism of Carbon Dioxide Reduction Reaction to Carbon Monoxide on Gold Nanoparticles: A Theoretical Prediction. J Phys Chem Lett 2021; 12:1125-1130. [PMID: 33475366 DOI: 10.1021/acs.jpclett.0c03694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insightful understanding of the light driven CO2 reduction reaction (CO2RR) mechanism on gold nanoparticles is one of the important issues in the plasmon mediated photocatalytic study. Herein, time-dependent density functional theory and reduced two-state model are adopted to investigate the photoinduced charge transfer in interfaces. According to the excitation energy and orbital coupling, the light driven mechanism of CO2RR on gold nanoparticles can be described as follows: the light induces electron excitation and then transfers to the physisorbed CO2, and CO2 can relax to a bent structure adsorbed on gold nanoparticles, and the adsorbed C-O bonds are dissociated finally. Moreover, our calculated results demonstrate that the s, p, and d electron excitations of gold nanoparticles are the major contribution for the CO2 adsorption and the C-O dissociation process, respectively. This work would promote the understanding of the light driven electron transfer and photocatalytic CO2RR on the noble metal.
Collapse
Affiliation(s)
- Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lei Zhang
- Dawning Information Industry (Beijing) Corp., Ltd., Beijing 100193, China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haimei Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
Devasenathipathy R, Rani KK, Liu J, Wu DY, Tian ZQ. Plasmon mediated photoelectrochemical transformations: The example of para-aminothiophenol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Devaraj V, Lee JM, Adhikari S, Kim M, Lee D, Oh JW. A single bottom facet outperforms random multifacets in a nanoparticle-on-metallic-mirror system. NANOSCALE 2020; 12:22452-22461. [PMID: 33079124 DOI: 10.1039/d0nr07188a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Highly efficient nanoparticle-on-metallic-mirror (NPOM) systems with a large gap size exhibiting good plasmonic enhancement are desirable for numerous practical applications. Careful, explicit design optimization strategies are required for preparing NPOMs and it is especially important in utilizing spherical nanoparticles. In this work, a new design blueprint for evaluating the role of random facets in spherical nanoparticles was investigated in detail to realize optimal NPOMs. We found that a precise single facet positioned at the nanoparticle's cavity outperformed multiple random facets due to the gap mode contribution. Differences and changes in the plasmonic modes were interpreted with the help of three-dimensional surface charge density mappings. A high-performance, single, bottom-faceted NPOM device with a large gap size (example 20 nm) was realized having 80-50% facet design, resulting in excellent gap mode enhancement. We succeeded in fabricating single bottom-faceted NPOMs (the non-facet region had a smooth spherical surface) with a large-scale unidirectionality (2 cm × 1.5 cm). Simulations and experimental characterizations of these components displayed excellent agreement. Our highly efficient NPOM design with a large gap size(s) enables interesting practical applications in the field of quantum emitters, energy devices, fuel generation and plasmon chemistry.
Collapse
Affiliation(s)
- Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Liu J, Cai ZY, Sun WX, Wang JZ, Shen XR, Zhan C, Devasenathipathy R, Zhou JZ, Wu DY, Mao BW, Tian ZQ. Plasmonic Hot Electron-Mediated Hydrodehalogenation Kinetics on Nanostructured Ag Electrodes. J Am Chem Soc 2020; 142:17489-17498. [PMID: 32941020 DOI: 10.1021/jacs.0c07027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An attractive field of plasmon-mediated chemical reactions (PMCRs) is developing rapidly, but there is still incomplete understanding of how to control the kinetics of such a reaction related to hot carriers. Here, we chose 8-bromoadenine (8BrAd) as a probe molecule of hot electrons to investigate the influence of the electrode potential, laser wavelength, and power on the PMCR kinetics on silver nanoparticle-modified silver electrodes. Plasmonic hot electron-mediated cleavage of the C-Br bond in 8BrAd has been investigated by combining in situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations. The experimental and theoretical results reveal that the energy position of plasmon relaxation-generated hot electrons can be modulated conveniently by applied potentials and laser light. This allows the proposal of a mechanism of modulating the matching energy of the hot electron of plasmon relaxation to promote the efficiency of PMCRs in electrochemical interfaces. Our work will be helpful to design surface plasmon resonance photoelectrochemical reactions on metal electrode surfaces of nanostructures with higher efficiency.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhuan-Yun Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Wei-Xin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jia-Zheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Xiao-Ru Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Rajkumar Devasenathipathy
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
39
|
Jun H, Choi S, Lee JB, Nam YS. Plasmonic Heterostructure Functionalized with a Carbene-Linked Molecular Catalyst for Sustainable and Selective Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33817-33826. [PMID: 32638585 DOI: 10.1021/acsami.0c09517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybridization of homogeneous catalytic sites with a photoelectrode is an attractive approach to highly selective and tunable photocatalysis using heterogeneous platforms. However, weak and unclear surface chemistry often leads to the dissociation and irregular orientation of catalytic centers, restricting long-term usability with high selectivity. Well-defined and robust ligands that can persist under harsh photocatalytic conditions are essential for the success of hybrid-type photocatalysis. Here, we introduce N-heterocyclic carbene as a durable linker for the immobilization of a Rubpy complex-based CO2 reduction site (cis-dichloro-(4,4'-diphosphonato-Rubpy)(p-cymene) (RuCY)) on a p-type gallium nitride/gold nanoparticle (p-GaN/AuNP) heterostructure. The p-GaN/AuNPs/RuCY photocathode was coupled with a hematite photoanode to drive photoelectrochemical CO2 reduction along with water oxidation. Highly selective CO2 reduction into formates, up to 98.2%, was achieved utilizing plasmonic hot electrons accumulated on AuNPs. The turnover frequency was 1.46 min-1 with a faradic efficiency of 96.8% under visible light illumination (243 mW·cm-2). This work demonstrates that the N-heterocyclic carbene-mediated surface functionalization with homogeneous catalytic sites is a promising approach to increase the sustainability and usability of hybrid catalysts.
Collapse
|
40
|
Wei H, Loeb SK, Halas NJ, Kim JH. Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proc Natl Acad Sci U S A 2020; 117:15473-15481. [PMID: 32571948 PMCID: PMC7354998 DOI: 10.1073/pnas.2003362117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of sustainable methods for the degradation of pollutants in water is an ongoing critical challenge. Anthropogenic organic micropollutants such as pharmaceuticals, present in our water supplies in trace quantities, are currently not remediated by conventional treatment processes. Here, we report an initial demonstration of the oxidative degradation of organic micropollutants using specially designed nanoparticles and visible-wavelength sunlight. Gold "Janus" nanorods (Au JNRs), partially coated with silica to enhance their colloidal stability in aqueous solutions while also maintaining a partially uncoated Au surface to facilitate photocatalysis, were synthesized. Au JNRs were dispersed in an aqueous solution containing peroxydisulfate (PDS), where oxidative degradation of both simulant and actual organic micropollutants was observed. Photothermal heating, light-induced hot electron-driven charge transfer, and direct electron shuttling under dark conditions all contribute to the observed oxidation chemistry. This work not only provides an ideal platform for studying plasmonic photochemistry in aqueous medium but also opens the door for nanoengineered, solar-based methods to remediate recalcitrant micropollutants in water supplies.
Collapse
Affiliation(s)
- Haoran Wei
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005
| | - Stephanie K Loeb
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005
| | - Naomi J Halas
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511;
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005
| |
Collapse
|
41
|
Qi Y, Brasiliense V, Ueltschi TW, Park JE, Wasielewski MR, Schatz GC, Van Duyne RP. Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. J Am Chem Soc 2020; 142:13120-13129. [DOI: 10.1021/jacs.0c05031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Qi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler W. Ueltschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Mao Z, Espinoza R, Garcia A, Enwright A, Vang H, Nguyen SC. Tuning Redox Potential of Gold Nanoparticle Photocatalysts by Light. ACS NANO 2020; 14:7038-7045. [PMID: 32441918 DOI: 10.1021/acsnano.0c01704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metallic nanoparticle-based photocatalysts have gained a lot of interest in catalyzing oxidation-reduction reactions. In previous studies, the poor performance of these catalysts is partly due to their operation that relies on picosecond-lifetime hot carriers. In this work, electrons that accumulate at a photostationary state, generated by photocharging the catalysts, have a much longer lifetime for catalysis. This approach makes it possible to determine and tune the photoredox potentials of the catalysts. As demonstrated in a model reaction, the photostationary state of the photocatalyzed oxidative etching of colloidal gold nanoparticles using FeCl3 was established under continuous irradiation of different wavelengths. The photoredox potentials of the nanoparticles were then calculated using the Nernst equation. The potentials can be tuned to a range of 1.28 to 1.40 V (vs SHE) under irradiation of different wavelengths in the range of 450 to 517 nm. The effects of particle size or optical power on the photoredox potentials are small compared to the wavelength effect. Control over the photoredox potential of the particles using different excitation wavelengths can potentially be used to tune the activities and selectivities of metallic nanoparticle photocatalysts.
Collapse
Affiliation(s)
- Ziliang Mao
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Anthony Garcia
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Adrian Enwright
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Hnubci Vang
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C Nguyen
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
43
|
de Freitas IC, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang YC, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC. Design-controlled synthesis of IrO 2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. NANOSCALE 2020; 12:12281-12291. [PMID: 32319490 DOI: 10.1039/d0nr01875a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We develop herein plasmonic-catalytic Au-IrO2 nanostructures with a morphology optimized for efficient light harvesting and catalytic surface area; the nanoparticles have a nanoflower morphology, with closely spaced Au branches all partially covered by an ultrathin (1 nm) IrO2 shell. This nanoparticle architecture optimizes optical features due to the interactions of closely spaced plasmonic branches forming electromagnetic hot spots, and the ultra-thin IrO2 layer maximizes efficient use of this expensive catalyst. This concept was evaluated towards the enhancement of the electrocatalytic performances towards the oxygen evolution reaction (OER) as a model transformation. The OER can play a central role in meeting future energy demands but the performance of conventional electrocatalysts in this reaction is limited by the sluggish OER kinetics. We demonstrate an improvement of the OER performance for one of the most active OER catalysts, IrO2, by harvesting plasmonic effects from visible light illumination in multimetallic nanoparticles. We find that the OER activity for the Au-IrO2 nanoflowers can be improved under LSPR excitation, matching best properties reported in the literature. Our simulations and electrocatalytic data demonstrate that the enhancement in OER activities can be attributed to an electronic interaction between Au and IrO2 and to the activation of Ir-O bonds by LSPR excited hot holes, leading to a change in the reaction mechanism (rate-determinant step) under visible light illumination.
Collapse
Affiliation(s)
- Isabel C de Freitas
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tang H, Chen CJ, Huang Z, Bright J, Meng G, Liu RS, Wu N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J Chem Phys 2020; 152:220901. [PMID: 32534522 DOI: 10.1063/5.0005334] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a "plasmonic photosensitizer." This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices.
Collapse
Affiliation(s)
- Haibin Tang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhulin Huang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Joeseph Bright
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, USA
| | - Guowen Meng
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, USA
| |
Collapse
|
45
|
Guo W, Johnston-Peck AC, Zhang Y, Hu Y, Huang J, Wei WD. Cooperation of Hot Holes and Surface Adsorbates in Plasmon-Driven Anisotropic Growth of Gold Nanostars. J Am Chem Soc 2020; 142:10921-10925. [PMID: 32484345 DOI: 10.1021/jacs.0c03342] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Light-driven synthesis of plasmonic metal nanostructures has garnered broad scientific interests. Although it has been widely accepted that surface plasmon resonance (SPR)-generated energetic electrons play an essential role in this photochemical process, the exact function of plasmon-generated hot holes in regulating the morphology of nanostructures has not been fully explored. Herein, we discover that those hot holes work with surface adsorbates collectively to control the anisotropic growth of gold (Au) nanostructures. Specifically, it is found that hot holes stabilized by surface adsorbed iodide enable the site-selective oxidative etching of Au0, which leads to nonuniform growths along different lateral directions to form six-pointed Au nanostars. Our studies establish a molecular-level understanding of the mechanism behind the plasmon-driven synthesis of Au nanostars and illustrate the importance of cooperation between charge carriers and surface adsorbates in regulating the morphology evolution of plasmonic nanostructures.
Collapse
Affiliation(s)
- Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron C Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Yue Hu
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Jiawei Huang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
46
|
Sim S, Beierle A, Mantos P, McCrory S, Prasankumar RP, Chowdhury S. Ultrafast relaxation dynamics in bimetallic plasmonic catalysts. NANOSCALE 2020; 12:10284-10291. [PMID: 32363371 DOI: 10.1039/d0nr00831a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining a plasmonic metal, such as gold, with other popular catalysts, such as Ni or Pt, can extend its benefits to many energy-extensive reactions catalyzed by those metals. The efficiency of a plasmon-enhanced catalytic reaction is mainly determined by the light absorption cross section and the photoexcited charge carrier relaxation dynamics of the nanoparticles. We have investigated the charge carrier relaxation dynamics of gold/nickel (Au/Ni) and gold/platinum (Au/Pt) bimetallic nanoparticles. We found that the addition of Ni or Pt to gold can reduce light absorption in gold nanoparticles. However, electron-phonon coupling rates of Au/Ni and Au/Pt nanoparticles are significantly faster than that of pure Au nanoparticles. This is due to the fact that both Ni and Pt possess significantly larger electron-phonon coupling constants and higher densities of states near the Fermi level in comparison with Au. Additionally, the phonon-phonon coupling rate of bimetallic Au/Pt and Au/Ni nanoparticles was significantly different from that of pure gold nanoparticles, due to the acoustic impedance mismatch at the nanoparticle/substrate interface. Our findings provide important insights into the rational design of bimetallic plasmonic catalysts.
Collapse
Affiliation(s)
- Sangwan Sim
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | |
Collapse
|
47
|
DuChene JS, Tagliabue G, Welch AJ, Li X, Cheng WH, Atwater HA. Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO 2 Reduction in Aqueous Electrolytes. NANO LETTERS 2020; 20:2348-2358. [PMID: 32134672 DOI: 10.1021/acs.nanolett.9b04895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the light-induced modification of catalytic selectivity for photoelectrochemical CO2 reduction in aqueous media using copper (Cu) nanoparticles dispersed onto p-type nickel oxide (p-NiO) photocathodes. Optical excitation of Cu nanoparticles generates hot electrons available for driving CO2 reduction on the Cu surface, while charge separation is accomplished by hot-hole injection from the Cu nanoparticles into the underlying p-NiO support. Photoelectrochemical studies demonstrate that optical excitation of plasmonic Cu/p-NiO photocathodes imparts increased selectivity for CO2 reduction over hydrogen evolution in aqueous electrolytes. Specifically, we observed that plasmon-driven CO2 reduction increased the production of carbon monoxide and formate, while simultaneously reducing the evolution of hydrogen. Our results demonstrate an optical route toward steering the selectivity of artificial photosynthetic systems with plasmon-driven photocathodes for photoelectrochemical CO2 reduction in aqueous media.
Collapse
|
48
|
Zhang W, Kong J, Chen H, Zhao H, You T, Guo Y, Guo Q, Yin P, Xia A. Insights into plasmon induced keto-enol isomerization. NANOSCALE 2020; 12:4334-4340. [PMID: 32044913 DOI: 10.1039/c9nr09882h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical reactions that are driven by plasmon-induced hot carriers are a timely topic of interest to chemists and material scientists as they provide catalytic alternatives that may reduce cost and/or waste. Herein, we monitored the localized surface plasmon resonance-induced keto-enol isomerization process of 2-mercapto-4(3H)-quinazolinone (MQ) by time-dependent surface enhanced Raman scattering (SERS), where the MQ molecules are adsorbed on gold nanoparticles (GNP) surface by Au-S bonds. The mechanism of keto-enol isomerization has been successfully investigated, and it is found that the isomerization is induced by hot hole transfer from GNPs to the adsorbed molecules. The present investigation could provide significant insights into hot hole catalyzed chemical reactions via SERS spectra and theoretical calculations.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Yuanyuan Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Rodio M, Graf M, Schulz F, Mueller NS, Eich M, Lange H. Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marina Rodio
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Matthias Graf
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Florian Schulz
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Niclas S. Mueller
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Manfred Eich
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Holger Lange
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| |
Collapse
|
50
|
Hogan LT, Horak EH, Ward JM, Knapper KA, Nic Chormaic S, Goldsmith RH. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS NANO 2019; 13:12743-12757. [PMID: 31614083 PMCID: PMC6887843 DOI: 10.1021/acsnano.9b04702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Optical microresonators have widespread application at the frontiers of nanophotonic technology, driven by their ability to confine light to the nanoscale and enhance light-matter interactions. Microresonators form the heart of a recently developed method for single-particle photothermal absorption spectroscopy, whereby the microresonators act as microscale thermometers to detect the heat dissipated by optically pumped, nonluminescent nanoscopic targets. However, translation of this technology to chemically dynamic systems requires a platform that is mechanically stable, solution compatible, and visibly transparent. We report microbubble absorption spectrometers as a versatile platform that meets these requirements. Microbubbles integrate a two-port microfluidic device within a whispering gallery mode microresonator, allowing for the facile exchange of chemical reagents within the resonator's interior while maintaining a solution-free environment on its exterior. We first leverage these qualities to investigate the photoactivated etching of single gold nanorods by ferric chloride, providing a method for rapid acquisition of spatial and morphological information about nanoparticles as they undergo chemical reactions. We then demonstrate the ability to control nanorod orientation within a microbubble through optically exerted torque, a promising route toward the construction of hybrid photonic-plasmonic systems. Critically, the reported platform advances microresonator spectrometer technology by permitting room-temperature, aqueous experimental conditions, which may be used for time-resolved single-particle experiments on non-emissive, nanoscale analytes engaged in catalytically and biologically relevant chemical dynamics.
Collapse
Affiliation(s)
- Levi T. Hogan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erik H. Horak
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M. Ward
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kassandra A. Knapper
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|