1
|
Chen ZZ, Dufresne J, Bowden P, Celej D, Miao M, Marshall JG. Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS. Anal Biochem 2025; 697:115694. [PMID: 39442602 DOI: 10.1016/j.ab.2024.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Organic precipitation of proteins with acetonitrile demonstrated complete protein recovery and improved chromatography of human plasma proteins. The separation of 25 μL of human plasma into 22 fractions on a QA SAX resin facilitated more effective protein discovery despite the limited sample size. Micro chromatography of plasma proteins over quaternary amine (QA) strong anion exchange (SAX) resins performed best, followed by diethylaminoethyl (DEAE), heparin (HEP), carboxymethyl cellulose (CMC), and propyl sulfate (PS) resins. Two independent statistical methods, Monte Carlo comparison with random MS/MS spectra and the rigorous X!TANDEM goodness of fit algorithm protein p-values corrected to false discovery rate q-values (q ≤ 0.01) agreed on at least 12,000 plasma proteins, each represented by at least three fully tryptic corrected peptide observations. There was qualitative agreement on 9393 protein/gene symbols between the linear quadrupole versus orbital ion trap but also quantitative agreement with a highly significant linear regression relationship between log observation frequency (F value 4,173, p-value 2.2e-16). The use of a QA resin showed nearly perfect replication of all the proteins that were also found using DEAE-, HEP-, CMC-, and PS-based chromatographic methods combined and together estimated the size of the size of the plasma proteome as ≥12,000 gene symbols.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Dominika Celej
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
2
|
Remes PM, Jacob CC, Heil LR, Shulman N, MacLean BX, MacCoss MJ. Hybrid Quadrupole Mass Filter-Radial Ejection Linear Ion Trap and Intelligent Data Acquisition Enable Highly Multiplex Targeted Proteomics. J Proteome Res 2024; 23:5476-5486. [PMID: 39475161 DOI: 10.1021/acs.jproteome.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Targeted mass spectrometry (MS) methods are powerful tools for the selective and sensitive analysis of peptides identified in global discovery experiments. Selected reaction monitoring (SRM) is the most widely accepted clinical MS method due to its reliability and performance. However, SRM and parallel reaction monitoring (PRM) are limited in throughput and are typically used for assays with around 100 targets or fewer. Here we introduce a new MS platform featuring a quadrupole mass filter, collision cell, and linear ion trap architecture, capable of targeting 5000-8000 peptides per hour. This high multiplexing capability is facilitated by acquisition rates of 70-100 Hz and real-time chromatogram alignment. We present a Skyline external software tool for building targeted methods based on data-independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. Our platform demonstrates ∼10× lower limits of quantitation (LOQs) than traditional SRM on a triple quadrupole instrument for highly multiplexed assays, due to parallel product ion accumulation. Finally, we explore how analytical figures of merit vary with method duration and the number of analytes, providing insights into optimizing assay performance.
Collapse
Affiliation(s)
- Philip M Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Cristina C Jacob
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Lilian R Heil
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Sato K, Nakamura Y, Fujiyama K, Ohneda K, Nobukuni T, Ogishima S, Mizuno S, Koshiba S, Kuriyama S, Jinno S. Absolute quantification of eight human milk oligosaccharides in breast milk to evaluate their concentration profiles and associations with infants' neurodevelopmental outcomes. J Food Sci 2024; 89:10152-10170. [PMID: 39656795 DOI: 10.1111/1750-3841.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Human milk oligosaccharides (HMOs) have been positively associated with child neurodevelopment in some cohort studies. However, there is a lack of consistency in the association between HMOs and benefits to infants' brains. Moreover, the quantification methods for HMOs have not yet been standardized. In this study, we developed a quantification method for evaluating eight HMOs (2'-fucosyllactose [2'-FL], 3'-fucosyllactose [3'-FL], 3'-sialyllactose [3'-SL], 6'-sialyllactose [6'-SL], lactosialyltetrasaccharide a [LSTa], lactosialyltetrasaccharide b [LSTb], lactosialyltetrasaccharide c [LSTc], and disialyllacto-N-tetraose [DSLNT]) in breast milk. After validating the method, we applied it to 1-month breast milk samples (n = 150) from the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study to assess HMO profiles in breast milk and their possible association with changes in head circumference z-score (ΔHCZ) and neurodevelopmental scores of children (as measured by the Ages and Stages Questionnaire, Third Edition). The validation demonstrated that the method had relative standard deviation ≤ 12.7% of precision and 79.5-110.9% of accuracy. Using this method, eight HMO levels (2'-FL, 0-4.74 mg/mL; 3'-FL, 0.02-1.52 mg/mL; 3'-SL, 0.07-0.32 mg/mL; 6'-SL, 0.01-0.70 mg/mL; LSTa, 0.002-0.043 mg/mL; LSTb, 0.02-0.31 mg/mL; LSTc, 0.001-0.47 mg/mL; and DSLNT, 0.09-0.71 mg/mL [min-max, all participants]) and the ratio of low secretors (16.0%) in the Japanese cohort were obtained. The obtained HMO levels in breast milk were subjected to multivariate analysis to screen for HMOs showing a positive association with ΔHCZ and neurodevelopmental scores. The results proposed that ΔHCZ was positively associated with LSTb and 2'-FL levels, whereas neurodevelopmental scores were positively associated with 2'-FL levels (among all participants) and 3'-SL and DSLNT levels (among secretor participants). This study showed that the developed method provides HMO profiles in Japanese breast milk, as well as additional information on the associations between specific HMOs and neurodevelopment, reinforcing the sum of evidence for the role of HMOs in the brain.
Collapse
Affiliation(s)
- Keigo Sato
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji, Japan
- International Centre for Biotechnology, Osaka University, Suita, Japan
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
| | - Kazuhito Fujiyama
- International Centre for Biotechnology, Osaka University, Suita, Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takahiro Nobukuni
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Mizuno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shinji Jinno
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji, Japan
| |
Collapse
|
4
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
5
|
Searle B, Shannon A, Teodorescu R, Song NJ, Heil L, Jacob C, Remes P, Li Z, Rubinstein M. Rapid assay development for low input targeted proteomics using a versatile linear ion trap. RESEARCH SQUARE 2024:rs.3.rs-4702746. [PMID: 39070662 PMCID: PMC11275998 DOI: 10.21203/rs.3.rs-4702746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Advances in proteomics and mass spectrometry enable the study of limited cell populations, where high-mass accuracy instruments are typically required. While triple quadrupoles offer fast and sensitive low-mass accuracy measurements, these instruments are effectively restricted to targeted proteomics. Linear ion traps (LITs) offer a versatile, cost-effective alternative capable of both targeted and global proteomics. Here, we describe a workflow using a new hybrid quadrupole-LIT instrument that rapidly develops targeted proteomics assays from global data-independent acquisition (DIA) measurements without needing high-mass accuracy. Using an automated software approach for scheduling parallel reaction monitoring assays (PRM), we show consistent quantification across three orders of magnitude in a matched-matrix background. We demonstrate measuring low-level proteins such as transcription factors and cytokines with quantitative linearity below two orders of magnitude in a 1 ng background proteome without requiring stable isotope-labeled standards. From a 1 ng sample, we found clear consistency between proteins in subsets of CD4+ and CD8+ T cells measured using high dimensional flow cytometry and LIT-based proteomics. Based on these results, we believe hybrid quadrupole-LIT instruments represent an economical solution to democratizing mass spectrometry in a wide variety of laboratory settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zihai Li
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | |
Collapse
|
6
|
Plubell DL, Remes PM, Wu CC, Jacob CC, Merrihew GE, Hsu C, Shulman N, MacLean BX, Heil L, Poston K, Montine T, MacCoss MJ. Development of highly multiplex targeted proteomics assays in biofluids using the Stellar mass spectrometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597431. [PMID: 38895256 PMCID: PMC11185584 DOI: 10.1101/2024.06.04.597431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The development of targeted assays that monitor biomedically relevant proteins is an important step in bridging discovery experiments to large scale clinical studies. Targeted assays are currently unable to scale to hundreds or thousands of targets. We demonstrate the generation of large-scale assays using a novel hybrid nominal mass instrument. The scale of these assays is achievable with the Stellar™ mass spectrometer through the accommodation of shifting retention times by real-time alignment, while being sensitive and fast enough to handle many concurrent targets. Assays were constructed using precursor information from gas-phase fractionated (GPF) data-independent acquisition (DIA). We demonstrate the ability to schedule methods from an orbitrap and linear ion trap acquired GPF DIA library and compare the quantification of a matrix-matched calibration curve from orbitrap DIA and linear ion trap parallel reaction monitoring (PRM). Two applications of these proposed workflows are shown with a cerebrospinal fluid (CSF) neurodegenerative disease protein PRM assay and with a Mag-Net enriched plasma extracellular vesicle (EV) protein survey PRM assay.
Collapse
Affiliation(s)
- Deanna L Plubell
- Department of Genome Sciences, University of Washington, Seattle WA
| | | | - Christine C Wu
- Department of Genome Sciences, University of Washington, Seattle WA
| | | | | | - Chris Hsu
- Department of Genome Sciences, University of Washington, Seattle WA
| | - Nick Shulman
- Department of Genome Sciences, University of Washington, Seattle WA
| | | | | | - Kathleen Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto CA, USA
| | - Tom Montine
- Department of Pathology, Stanford University, Palo Alto CA, USA
| | | |
Collapse
|
7
|
Shannon AE, Teodorescu RN, Soon N, Heil LR, Jacob CC, Remes PM, Rubinstein MP, Searle BC. A workflow for targeted proteomics assay development using a versatile linear ion trap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596891. [PMID: 38853838 PMCID: PMC11160733 DOI: 10.1101/2024.05.31.596891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Advances in proteomics and mass spectrometry have enabled the study of limited cell populations, such as single-cell proteomics, where high-mass accuracy instruments are typically required. While triple quadrupoles offer fast and sensitive nominal resolution measurements, these instruments are effectively limited to targeted proteomics. Linear ion traps (LITs) offer a versatile, cost-effective alternative capable of both targeted and global proteomics. We demonstrate a workflow using a newly released, hybrid quadrupole-LIT instrument for developing targeted proteomics assays from global data-independent acquisition (DIA) measurements without needing high-mass accuracy. Gas-phase fraction-based DIA enables rapid target library generation in the same background chemical matrix as each quantitative injection. Using a new software tool embedded within EncyclopeDIA for scheduling parallel reaction monitoring assays, we show consistent quantification across three orders of magnitude of input material. Using this approach, we demonstrate measuring peptide quantitative linearity down to 25x dilution in a background of only a 1 ng proteome without requiring stable isotope labeled standards. At 1 ng total protein on column, we found clear consistency between immune cell populations measured using flow cytometry and immune markers measured using LIT-based proteomics. We believe hybrid quadrupole-LIT instruments represent an economic solution to democratizing mass spectrometry in a wide variety of laboratory settings.
Collapse
|
8
|
Remes PM, Jacob CC, Heil LR, Shulman N, MacLean BX, MacCoss MJ. Hybrid Quadrupole Mass Filter - Radial Ejection Linear Ion Trap and Intelligent Data Acquisition Enable Highly Multiplex Targeted Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596848. [PMID: 38854069 PMCID: PMC11160808 DOI: 10.1101/2024.05.31.596848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted mass spectrometry (MS) methods are powerful tools for selective and sensitive analysis of peptides identified by global discovery experiments. Selected reaction monitoring (SRM) is currently the most widely accepted MS method in the clinic, due to its reliability and analytical performance. However, due to limited throughput and the difficulty in setting up and analyzing large scale assays, SRM and parallel reaction monitoring (PRM) are typically used only for very refined assays of on the order of 100 targets or less. Here we introduce a new MS platform with a quadrupole mass filter, collision cell, linear ion trap architecture that has increased acquisition rates compared to the analogous hardware found in the Orbitrap™ Tribrid™ series instruments. The platform can target more analytes than existing SRM and PRM instruments - in the range of 5000 to 8000 peptides per hour. This capability for high multiplexing is enabled by acquisition rates of 70-100 Hz for peptide applications, and the incorporation of real-time chromatogram alignment that adjusts for retention time drift and enables narrow time scheduled acquisition windows. Finally, we describe a Skyline external software tool that implements the building of targeted methods based on data independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. We show that the platform delivers ~10x lower LOQs than traditional SRM analysis for a highly multiplex assay and also demonstrate how analytical figures of merit change while varying method duration with a constant number of analytes, or by keeping a constant time duration while varying the number of analytes.
Collapse
Affiliation(s)
- Philip M Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Cristina C Jacob
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Lilian R Heil
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle WA 98195
| |
Collapse
|
9
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Wu CC, Tsantilas KA, Park J, Plubell D, Sanders JA, Naicker P, Govender I, Buthelezi S, Stoychev S, Jordaan J, Merrihew G, Huang E, Parker ED, Riffle M, Hoofnagle AN, Noble WS, Poston KL, Montine TJ, MacCoss MJ. Mag-Net: Rapid enrichment of membrane-bound particles enables high coverage quantitative analysis of the plasma proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.10.544439. [PMID: 38617345 PMCID: PMC11014469 DOI: 10.1101/2023.06.10.544439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Membrane-bound particles in plasma are composed of exosomes, microvesicles, and apoptotic bodies and represent ~1-2% of the total protein composition. Proteomic interrogation of this subset of plasma proteins augments the representation of tissue-specific proteins, representing a "liquid biopsy," while enabling the detection of proteins that would otherwise be beyond the dynamic range of liquid chromatography-tandem mass spectrometry of unfractionated plasma. We have developed an enrichment strategy (Mag-Net) using hyper-porous strong-anion exchange magnetic microparticles to sieve membrane-bound particles from plasma. The Mag-Net method is robust, reproducible, inexpensive, and requires <100 μL plasma input. Coupled to a quantitative data-independent mass spectrometry analytical strategy, we demonstrate that we can collect results for >37,000 peptides from >4,000 plasma proteins with high precision. Using this analytical pipeline on a small cohort of patients with neurodegenerative disease and healthy age-matched controls, we discovered 204 proteins that differentiate (q-value < 0.05) patients with Alzheimer's disease dementia (ADD) from those without ADD. Our method also discovered 310 proteins that were different between Parkinson's disease and those with either ADD or healthy cognitively normal individuals. Using machine learning we were able to distinguish between ADD and not ADD with a mean ROC AUC = 0.98 ± 0.06.
Collapse
Affiliation(s)
- Christine C. Wu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Deanna Plubell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Justin A. Sanders
- Department of Computer Science, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | - Gennifer Merrihew
- Department of Computer Science, University of Washington, Seattle, WA, USA
| | - Eric Huang
- Department of Computer Science, University of Washington, Seattle, WA, USA
| | - Edward D. Parker
- Vision Core Lab, Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrew N. Hoofnagle
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science, University of Washington, Seattle, WA, USA
| | - Kathleen L. Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto CA, USA
| | | | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Lyu Z, Genereux JC. Quantitative Measurement of Transthyretin Mistargeting by Proximity Labeling and Parallel Reaction Monitoring. FRONTIERS IN CHEMICAL BIOLOGY 2023; 2:1288188. [PMID: 38173467 PMCID: PMC10764115 DOI: 10.3389/fchbi.2023.1288188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which sometimes suffers from poor sensitivity. Here, we integrate parallel reaction monitoring (PRM) mass spectrometry to enable a more quantitative platform, and assess how chemical ER stressors impact pre-QC of the model secretory protein transthyretin in HEK293T cells. We find that some drug treatments affect labeling efficiency, which can be controlled for by normalizing to APEX2 auto-labeling. While some chemical ER stress inducers including Brefeldin A and thapsigargin induce pre-QC, tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Heil L, Damoc E, Arrey TN, Pashkova A, Denisov E, Petzoldt J, Peterson AC, Hsu C, Searle BC, Shulman N, Riffle M, Connolly B, MacLean BX, Remes PM, Senko MW, Stewart HI, Hock C, Makarov AA, Hermanson D, Zabrouskov V, Wu CC, MacCoss MJ. Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition. J Proteome Res 2023; 22:3290-3300. [PMID: 37683181 PMCID: PMC10563156 DOI: 10.1021/acs.jproteome.3c00357] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/10/2023]
Abstract
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.
Collapse
Affiliation(s)
- Lilian
R. Heil
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Eugen Damoc
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | - Tabiwang N. Arrey
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | - Anna Pashkova
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | - Eduard Denisov
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | - Johannes Petzoldt
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | | | - Chris Hsu
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brian C. Searle
- Pelotonia
Institute for Immuno-Oncology, The Ohio
State University Comprehensive Cancer Center, Columbus, Ohio 43210, United States
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Nicholas Shulman
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brian Connolly
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brendan X. MacLean
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Philip M. Remes
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Michael W. Senko
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Hamish I. Stewart
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | - Christian Hock
- Thermo
Fisher Scientific, Hanna-Kunath
Ste. 11, 28199 Bremen, Germany
| | | | - Daniel Hermanson
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Vlad Zabrouskov
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Christine C. Wu
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Heil LR, Remes PM, Canterbury JD, Yip P, Barshop WD, Wu CC, MacCoss MJ. Dynamic Data-Independent Acquisition Mass Spectrometry with Real-Time Retrospective Alignment. Anal Chem 2023; 95:11854-11858. [PMID: 37527417 PMCID: PMC10517878 DOI: 10.1021/acs.analchem.3c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Data-independent acquisition (DIA) mass spectrometry has grown in popularity in recent years, because of the reproducibility and quantitative rigor of a systematic tandem mass spectrometry (MS/MS) sampling method. However, traditional DIA methods may spend valuable instrument time acquiring MS/MS spectra with no usable information in them, affecting sensitivity and quantitative performance. We developed a DIA strategy that dynamically adjusts the MS/MS windows during the chromatographic separation. The method focuses MS/MS acquisition on the most relevant mass range at each point in time─increasing the quantitative sensitivity by increasing the time spent on each DIA window. We demonstrate an improved lower limit of quantification, on average, without sacrificing the number of peptides detected.
Collapse
Affiliation(s)
- Lilian R Heil
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Philip M Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Jesse D Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Ping Yip
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - William D Barshop
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Christine C Wu
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma. Int J Mol Sci 2023; 24:12592. [PMID: 37628770 PMCID: PMC10454042 DOI: 10.3390/ijms241612592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time.
Collapse
Affiliation(s)
| | | | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| |
Collapse
|
15
|
Heil LR, Damoc E, Arrey TN, Pashkova A, Denisov E, Petzoldt J, Peterson AC, Hsu C, Searle BC, Shulman N, Riffle M, Connolly B, MacLean BX, Remes PM, Senko MW, Stewart HI, Hock C, Makarov AA, Hermanson D, Zabrouskov V, Wu CC, MacCoss MJ. Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data Independent Acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543570. [PMID: 37398334 PMCID: PMC10312564 DOI: 10.1101/2023.06.03.543570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range. We also use a newly developed extra-cellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5,000 plasma proteins in a 60-minute gradient with the Orbitrap Astral mass spectrometer.
Collapse
Affiliation(s)
- Lilian R. Heil
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Eugen Damoc
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | - Tabiwang N. Arrey
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | - Anna Pashkova
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | - Eduard Denisov
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | - Johannes Petzoldt
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | | | - Chris Hsu
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brian C. Searle
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, United States
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brian Connolly
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Philip M. Remes
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Michael W. Senko
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Hamish I. Stewart
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | - Christian Hock
- Thermo Fisher Scientific, Hanna-Kunath Ste. 11, 28199 Bremen, Germany
| | | | - Daniel Hermanson
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Quanrud GM, Lyu Z, Balamurugan SV, Canizal C, Wu HT, Genereux JC. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles. ACS Chem Biol 2023; 18:1661-1676. [PMID: 37427419 PMCID: PMC10367052 DOI: 10.1021/acschembio.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sunil V. Balamurugan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Carolina Canizal
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Lyu Z, Genereux JC. Quantitative Measurement of Secretory Protein Mistargeting by Proximity Labeling and Parallel Reaction Monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549095. [PMID: 37503147 PMCID: PMC10370094 DOI: 10.1101/2023.07.19.549095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which is only semi-quantitative and suffers from poor sensitivity. Here, we integrate parallel reaction monitoring mass spectrometry to enable a more quantitative platform for ER import. PRM as opposed to densitometry improves quantification of transthyretin mistargeting while also achieving at least a ten-fold gain in sensitivity. The multiplexing of PRM also enabled us to evaluate a series of normalization approaches, revealing that normalization to auto-labeled APEX2 peroxidase is necessary to account for drug treatment-dependent changes in labeling efficiency. We apply this approach to systematically characterize the relationship between chemical ER stressors and ER pre-QC induction in HEK293T cells. Using dual-FLAG-tagged transthyretin (FLAGTTR) as a model secretory protein, we find that Brefeldin A treatment as well as ER calcium depletion cause pre-QC, while tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
18
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
19
|
Eshghi A, Xie X, Hardie D, Chen MX, Izaguirre F, Newman R, Zhu Y, Kelly RT, Goodlett DR. Sample Preparation Methods for Targeted Single-Cell Proteomics. J Proteome Res 2023. [PMID: 37093777 DOI: 10.1021/acs.jproteome.2c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We compared three cell isolation and two proteomic sample preparation methods for single-cell and near-single-cell analysis. Whole blood was used to quantify hemoglobin (Hb) and glycated-Hb (gly-Hb) in erythrocytes using targeted mass spectrometry and stable isotope-labeled standard peptides. Each method differed in cell isolation and sample preparation as follows: 1) FACS and automated preparation in one-pot for trace samples (autoPOTS); 2) limited dilution via microscopy and a novel rapid one-pot sample preparation method that circumvented the need for the solid-phase extraction, low-volume liquid handling instrumentation and humidified incubation chamber; and 3) CellenONE-based cell isolation and the same one-pot sample preparation method used for limited dilution. Only the CellenONE device routinely isolated single-cells from which Hb was measured to be 540-660 amol per red blood cell (RBC), which was comparable to the calculated SI reference range for mean corpuscular hemoglobin (390-540 amol/RBC). FACSAria sorter and limited dilution could routinely isolate single-digit cell numbers, to reliably quantify CMV-Hb heterogeneity. Finally, we observed that repeated measures, using 5-25 RBCs obtained from N = 10 blood donors, could be used as an alternative and more efficient strategy than single RBC analysis to measure protein heterogeneity, which revealed multimodal distribution, unique for each individual.
Collapse
Affiliation(s)
- Azad Eshghi
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Darryl Hardie
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Michael X Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Laboratory Medicine, Pathology, and Medical Genetics, Vancouver Island Health Authority, Vancouver, British Columbia V9A 2P8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Fabiana Izaguirre
- Cellenion SASU, 60 Avenue Rockefeller, Bâtiment BioSerra2, Lyon, Auvergne-Rhône-Alpes 69008, France
| | - Rachael Newman
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - David R Goodlett
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Pomerania 80-309, Poland
| |
Collapse
|
20
|
Phlairaharn T, Ye Z, Krismer E, Pedersen AK, Pietzner M, Olsen JV, Schoof EM, Searle BC. Optimizing linear ion trap data independent acquisition towards single cell proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529444. [PMID: 36865114 PMCID: PMC9980145 DOI: 10.1101/2023.02.21.529444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A linear ion trap (LIT) is an affordable, robust mass spectrometer that proves fast scanning speed and high sensitivity, where its primary disadvantage is inferior mass accuracy compared to more commonly used time-of-flight (TOF) or orbitrap (OT) mass analyzers. Previous efforts to utilize the LIT for low-input proteomics analysis still rely on either built-in OTs for collecting precursor data or OT-based library generation. Here, we demonstrate the potential versatility of the LIT for low-input proteomics as a stand-alone mass analyzer for all mass spectrometry measurements, including library generation. To test this approach, we first optimized LIT data acquisition methods and performed library-free searches with and without entrapment peptides to evaluate both the detection and quantification accuracy. We then generated matrix-matched calibration curves to estimate the lower limit of quantification using only 10 ng of starting material. While LIT-MS1 measurements provided poor quantitative accuracy, LIT-MS2 measurements were quantitatively accurate down to 0.5 ng on column. Finally, we optimized a suitable strategy for spectral library generation from low-input material, which we used to analyze single-cell samples by LIT-DIA using LIT-based libraries generated from as few as 40 cells.
Collapse
|
21
|
Chen X, Zhong W, Chang Y, Song T, Liu B, Kong X, Kong Q. Comparative proteomic analysis of the mitochondria of menstrual stem cells and ovarian cancer cells. Exp Ther Med 2023; 25:99. [PMID: 36761005 PMCID: PMC9893228 DOI: 10.3892/etm.2023.11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial transplantation is a popular field of research in cell-free therapy. Menstrual stem cells (MenSCs) are potential donor cells for provision of foreign mitochondria. The present study aimed to investigate the potential effects of MenSC-derived mitochondria on ovarian cancer from the perspective of protein expression profiling. MenSCs were harvested from menstrual blood. The mitochondria were isolated from MenSCs and ovarian cancer cell line SKOV3. A label-free mitochondria proteomics and analysis were performed by comparing the protein expression in mitochondria of MenSCs and SKOV3 cells. The differentially expressed proteins with fold-change >2 were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and protein domain enrichment, protein interaction networks and parallel reaction monitoring (PRM) analysis. In total, 592 proteins that were found to have increased expression in the mitochondria of MenSCs were analyzed. Functional enrichment analysis revealed these proteins were enriched in metabolism-associated pathway entries including 'oxidative phosphorylation' (OXPHOS) pathway. PRM analysis confirmed that four of 6 candidate proteins in the OXPHOS pathway showed similar increasing trends. The protein domain enrichment analysis showed that domains such as 'thioredoxin domain' were significantly enriched. Based on these findings, it was hypothesized that mitochondria from MenSCs have the potential to enhance progression of ovarian cancer likely mediated by the enrichment of OXPHOS-associated metabolic pathways.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wen Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Tiefang Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Botong Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China,Correspondence to: Dr Xianchao Kong, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, P.R. China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China,Correspondence to: Dr Xianchao Kong, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
22
|
Park J, Yu F, Fulcher JM, Williams SM, Engbrecht K, Moore RJ, Clair GC, Petyuk V, Nesvizhskii AI, Zhu Y. Evaluating Linear Ion Trap for MS3-Based Multiplexed Single-Cell Proteomics. Anal Chem 2023; 95:1888-1898. [PMID: 36637389 DOI: 10.1021/acs.analchem.2c03739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a growing demand to develop high-throughput and high-sensitivity mass spectrometry methods for single-cell proteomics. The commonly used isobaric labeling-based multiplexed single-cell proteomics approach suffers from distorted protein quantification due to co-isolated interfering ions during MS/MS fragmentation, also known as ratio compression. We reasoned that the use of MS3-based quantification could mitigate ratio compression and provide better quantification. However, previous studies indicated reduced proteome coverages in the MS3 method, likely due to long duty cycle time and ion losses during multilevel ion selection and fragmentation. Herein, we described an improved MS acquisition method for MS3-based single-cell proteomics by employing a linear ion trap to measure reporter ions. We demonstrated that linear ion trap can increase the proteome coverages for single-cell-level peptides with even higher gain obtained via the MS3 method. The optimized real-time search MS3 method was further applied to study the immune activation of single macrophages. Among a total of 126 single cells studied, over 1200 and 1000 proteins were quantifiable when at least 50 and 75% nonmissing data were required, respectively. Our evaluation also revealed several limitations of the low-resolution ion trap detector for multiplexed single-cell proteomics and suggested experimental solutions to minimize their impacts on single-cell analysis.
Collapse
Affiliation(s)
- Junho Park
- Department of Pharmacology, School of Medicine, CHA University, Seongnam-si, Gyeonggi-do, Seongnam 13488, Republic of Korea
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristin Engbrecht
- Nuclear, Chemistry, and Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
23
|
Wang H, Ji D, Tian H, Gao Z, Song C, Jia J, Cui X, Zhong L, Shen J, Gu J. Predictive value of proteomic markers for advanced rectal cancer with neoadjuvant chemoradiotherapy. BMC Cancer 2022; 22:868. [PMID: 35945555 PMCID: PMC9361520 DOI: 10.1186/s12885-022-09960-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Preoperative neoadjuvant chemoradiation (nCRT) has been the standard treatment for locally advanced rectal cancer. Serum biomarkers to stratify patients with respect to prognosis and response to nCRT are needed due to the diverse response to the therapy. Methods Thirteen paired pre- and post-nCRT sera from rectal cancer patients were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) method. Twenty-five proteins were selected for validation by parallel reaction monitoring (PRM) in ninety-one patients. Results Totally, 310 proteins were identified and quantified in sera samples. Reactome pathway analysis showed that the immune activation-related pathways were enriched in response to nCRT. Twenty-five proteins were selected for further validation. PRM result showed that the level of PZP was higher in pathological complete response (pCR) patients than non-pCR patients. The Random Forest algorithm identified a prediction model composed of 10 protein markers, which allowed discrimination between pCR patients and non-pCR patients (area under the curve (AUC) = 0.886 on testing set). Higher HEP2 and GELS or lower S10A8 in baseline sera were associated with better prognosis. Higher APOA1 in post nCRT sera was associated with better disease-free survival (DFS). Conclusions We identified and confirmed a 10-protein panel for nCRT response prediction and four potential biomarkers HEP2, GELS, S10A8 and APOA1 for prognosis of rectal cancer based on iTRAQ-based comparative proteomics screening and PRM-based targeted proteomic validation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09960-z.
Collapse
Affiliation(s)
- Hanyang Wang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing, 100142, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing, 100142, China
| | - Huifang Tian
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Peking University S.G. Hospital, Beijing, China
| | - Can Song
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing, 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing, 100142, China
| | - Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Shen
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing, 100142, China. .,Peking University S.G. Hospital, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
24
|
Furtwängler B, Üresin N, Motamedchaboki K, Huguet R, Lopez-Ferrer D, Zabrouskov V, Porse BT, Schoof EM. Real-Time Search-Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage in Multiplexed Single-Cell Proteomics. Mol Cell Proteomics 2022; 21:100219. [PMID: 35219906 PMCID: PMC8961214 DOI: 10.1016/j.mcpro.2022.100219] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 10/26/2022] Open
Abstract
In the young field of single-cell proteomics (scMS), there is a great need for improved global proteome characterization, both in terms of proteins quantified per cell and quantitative performance thereof. The recently introduced real-time search (RTS) on the Orbitrap Eclipse Tribrid mass spectrometer in combination with SPS-MS3 acquisition has been shown to be beneficial for the measurement of samples that are multiplexed using isobaric tags. Multiplexed scMS requires high ion injection times and high-resolution spectra to quantify the single-cell signal; however, the carrier channel facilitates peptide identification and thus offers the opportunity for fast on-the-fly precursor filtering before committing to the time-intensive quantification scan. Here, we compared classical MS2 acquisition against RTS-SPS-MS3, both using the Orbitrap Eclipse Tribrid MS with the FAIMS Pro ion mobility interface and present a new acquisition strategy termed RETICLE (RTS enhanced quant of single cell spectra) that makes use of fast real-time searched linear ion trap scans to preselect MS1 peptide precursors for quantitative MS2 Orbitrap acquisition. We show that classical MS2 acquisition is outperformed by both RTS-SPS-MS3 through increased quantitative accuracy at similar proteome coverage, and RETICLE through higher proteome coverage, with the latter enabling the quantification of over 1000 proteins per cell at an MS2 injection time of 750 ms using a 2 h gradient.
Collapse
Affiliation(s)
- Benjamin Furtwängler
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nil Üresin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
25
|
Quanrud GM, Montoya MR, Mei L, Awad MR, Genereux JC. Hsp40 Affinity to Identify Proteins Destabilized by Cellular Toxicant Exposure. Anal Chem 2021; 93:16940-16946. [PMID: 34874156 PMCID: PMC9942771 DOI: 10.1021/acs.analchem.1c04230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental toxins and toxicants can damage proteins and threaten cellular proteostasis. Most current methodologies to identify misfolded proteins in cells survey the entire proteome for sites of changed reactivity. We describe and apply a quantitative proteomics methodology to identify destabilized proteins based on their binding to the human Hsp40 chaperone DNAJB8. These protein targets are validated by an orthogonal limited proteolysis assay using parallel reaction monitoring. We find that a brief exposure of HEK293T cells to meta-arsenite increases the affinity of two dozen proteins to DNAJB8, including known arsenite-sensitive proteins. In particular, arsenite treatment destabilizes both the pyruvate dehydrogenase complex E1 subunit and several RNA-binding proteins. This platform can be used to explore how environmental toxins impact cellular proteostasis and to identify the susceptible proteome.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, CA 92521
| | | | | | - Mohammad R. Awad
- Department of Chemistry, University of California, Riverside, CA 92521
| | | |
Collapse
|