1
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal 2024; 14:1-15. [PMID: 38352954 PMCID: PMC10859535 DOI: 10.1016/j.jpha.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ruidi Jiao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
3
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
4
|
Lin J, Yun K, Sun Q, Xiang P, Wu L, Yang S, Dun J, Fu S, Chen H. How to sample a seizure plant: the role of the visualization spatial distribution analysis of Lophophora williamsii as an example. Forensic Sci Res 2023; 8:140-151. [PMID: 37621449 PMCID: PMC10445667 DOI: 10.1093/fsr/owad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/26/2023] Open
Abstract
Natural compounds in plants are often unevenly distributed, and determining the best sampling locations to obtain the most representative results is technically challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide the basis for formulating sampling guideline. For a succulent plant sample, ensuring the authenticity and in situ nature of the spatial distribution analysis results during MSI analysis also needs to be thoroughly considered. In this study, we developed a well-established and reliable MALDI-MSI method based on preservation methods, slice conditions, auxiliary matrices, and MALDI parameters to detect and visualize the spatial distribution of mescaline in situ in Lophophora williamsii. The MALDI-MSI results were validated using liquid chromatography-tandem mass spectrometry. Low-temperature storage at -80°C and drying of "bookmarks" were the appropriate storage methods for succulent plant samples and their flower samples, and cutting into 40 μm thick sections at -20°C using gelatin as the embedding medium is the appropriate sectioning method. The use of DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as an auxiliary matrix and a laser intensity of 45 are favourable MALDI parameter conditions for mescaline analysis. The region of interest semi-quantitative analysis revealed that mescaline is concentrated in the epidermal tissues of L. williamsii as well as in the meristematic tissues of the crown. The study findings not only help to provide a basis for determining the best sampling locations for mescaline in L. williamsii, but they also provide a reference for the optimization of storage and preparation conditions for raw plant organs before MALDI detection. Key Points An accurate in situ MSI method for fresh water-rich succulent plants was obtained based on multi-parameter comparative experiments.Spatial imaging analysis of mescaline in Lophophora williamsii was performed using the above method.Based on the above results and previous results, a sampling proposal for forensic medicine practice is tentatively proposed.
Collapse
Affiliation(s)
- Jiaman Lin
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Qiran Sun
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Lina Wu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Shuo Yang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | | | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Hang Chen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
5
|
Wehrli P, Ge J, Michno W, Koutarapu S, Dreos A, Jha D, Zetterberg H, Blennow K, Hanrieder J. Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution. JACS AU 2023; 3:762-774. [PMID: 37006756 PMCID: PMC10052239 DOI: 10.1021/jacsau.2c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ) plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity.
Collapse
Affiliation(s)
- Patrick
M. Wehrli
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Junyue Ge
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
- U.
K. Dementia Research Institute at University College London, London WC1N 3BG, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Sha Tin, N.T. 1512-1518, Hong Kong, China
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
| |
Collapse
|
6
|
Arciniega C, Garrard KP, Guymon JP, Manni JG, Apffel A, Fjeldsted JC, Muddiman DC. Quasi-continuous infrared matrix-assisted laser desorption electrospray ionization source coupled to a quadrupole time-of-flight mass spectrometer for direct analysis from well plates. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4902. [PMID: 36694312 PMCID: PMC9944147 DOI: 10.1002/jms.4902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
High-throughput screening (HTS) is a technique mostly used by pharmaceutical companies to rapidly screen multiple libraries of compounds to find drug hits with biological or pharmaceutical activity. Mass spectrometry (MS) has become a popular option for HTS given that it can simultaneously resolve hundreds to thousands of compounds without additional chemical derivatization. For this application, it is convenient to do direct analysis from well plates. Herein, we present the development of an infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source coupled directly to an Agilent 6545 for direct analysis from well plates. The source is coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometer to take advantage of the high acquisition rates without sacrificing resolving power as required with Orbitrap or Fourier-transform ion cyclotron resonance (FTICR) instruments. The laser used for this source operates at 100 Hz, firing 1 pulse-per-burst, and delivers around 0.7 mJ per pulse. Continuously firing this laser for an extended duration makes it a quasi-continuous ionization source. Additionally, a metal capillary was constructed to extend the inlet of the mass spectrometer, increase desolvation of electrospray charged droplets, improve ion transmission, and increase sensitivity. Its efficiency was compared with the conventional dielectric glass capillary by measured signal and demonstrated that the metal capillary increased ionization efficiency due to its more uniformly distributed temperature gradient. Finally, we present the functionality of the source by analyzing tune mix directly from well plates. This source is a proof of concept for HTS applications using IR-MALDESI coupled to a different MS platform.
Collapse
Affiliation(s)
- Cristina Arciniega
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
| | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
- Precision Engineering ConsortiumNorth Carolina State UniversityRaleighNC27695USA
- Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighNC27695USA
| | - Jacob P. Guymon
- Precision Engineering ConsortiumNorth Carolina State UniversityRaleighNC27695USA
| | | | | | | | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
- Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
7
|
Mellinger AL, Kibbe RR, Rabbani ZN, Meritet D, Muddiman DC, Gamcsik MP. Mapping glycine uptake and its metabolic conversion to glutathione in mouse mammary tumors using functional mass spectrometry imaging. Free Radic Biol Med 2022; 193:677-684. [PMID: 36402437 PMCID: PMC9737053 DOI: 10.1016/j.freeradbiomed.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Although glutathione plays a key role in cancer cell viability and therapy response there is no clear trend in relating the level of this antioxidant to clinical stage, histological grade, or therapy response in patient tumors. The likely reason is that static levels of glutathione are not a good indicator of how a tissue deals with oxidative stress. A better indicator is the functional capacity of the tissue to maintain glutathione levels in response to this stress. However, there are few methods to assess glutathione metabolic function in tissue. We have developed a novel functional mass spectrometry imaging (fMSI) method that can map the variations in the conversion of glycine to glutathione metabolic activity across tumor tissue sections by tracking the fate of three glycine isotopologues administered in a timed sequence to tumor-bearing anesthetized mice. This fMSI method generates multiple time point kinetic data for substrate uptake and glutathione production from each spatial location in the tissue. As expected, the fMSI data shows glutathione metabolic activity varies across the murine 4T1 mammary tumor. Although glutathione levels are highest at the tumor periphery there are regions of high content but low metabolic activity. The timed infusion method also detects variations in delivery of the glycine isotopologues thereby providing a measure of tissue perfusion, including evidence of intermittent perfusion, that contributes to the observed differences in metabolic activity. We believe this new approach will be an asset to linking molecular content to tissue function.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, NC State University, 2700 Stinson Dr., Raleigh, NC, 27607, USA
| | - Russell R Kibbe
- FTMS Laboratory for Human Health Research, Department of Chemistry, NC State University, 2700 Stinson Dr., Raleigh, NC, 27607, USA
| | - Zahid N Rabbani
- UNC/NCSU Joint Department of Biomedical Engineering, 1840 Entrepreneur Drive, Raleigh, NC, 27695, USA
| | - Danielle Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, 27607, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, NC State University, 2700 Stinson Dr., Raleigh, NC, 27607, USA; Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC, 27695, USA
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, 1840 Entrepreneur Drive, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Jin B, Pang X, Zang Q, Ga M, Xu J, Luo Z, Zhang R, Shi J, He J, Abliz Z. Spatiotemporally resolved metabolomics and isotope tracing reveal CNS drug targets. Acta Pharm Sin B 2022; 13:1699-1710. [PMID: 37139420 PMCID: PMC10149982 DOI: 10.1016/j.apsb.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvoluting and localizing potential targets of CNS drugs by using ambient mass spectrometry imaging. This strategy can map various substances including exogenous drugs, isotopically labeled metabolites, and various types of endogenous metabolites in the brain tissue sections to illustrate their microregional distribution pattern in the brain and locate drug action-related metabolic nodes and pathways. The strategy revealed that the sedative-hypnotic drug candidate YZG-331 was prominently distributed in the pineal gland and entered the thalamus and hypothalamus in relatively small amounts, and can increase glutamate decarboxylase activity to elevate γ-aminobutyric acid (GABA) levels in the hypothalamus, agonize organic cation transporter 3 to release extracellular histamine into peripheral circulation. These findings emphasize the promising capability of spatiotemporally resolved metabolomics and isotope tracing to help elucidate the multiple targets and the mechanisms of action of CNS drugs.
Collapse
Affiliation(s)
- Bo Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Man Ga
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
- Corresponding authors.
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
- Corresponding authors.
| |
Collapse
|