1
|
Ko M, Kim J, Lazim R, Lee JY, Kim JY, Gosu V, Lee Y, Choi S, Kwon HJ. The anticancer effect of metformin targets VDAC1 via ER-mitochondria interactions-mediated autophagy in HCC. Exp Mol Med 2024; 56:2714-2725. [PMID: 39627451 DOI: 10.1038/s12276-024-01357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (MetF) is used worldwide as a first-line therapy for type 2 diabetes. Recently, interest in the pleiotropic effects of MetF, such as its anticancer and antiaging properties, has increased. However, the molecular target of MetF and the detailed mechanism underlying its ability to inhibit cell growth through autophagy induction remain incompletely understood. In this study, using an innovative label-free drug affinity responsive target stability (DARTS)-LC-MS/MS method, we discovered that mitochondrial voltage-dependent anion channel 1 (VDAC1) is a novel binding protein involved in the induction of autophagy-related cell death by high-dose MetF in hepatocellular carcinoma (HCC). Computational alanine scanning mutagenesis revealed that MetF and VDAC1 (D9, E203) interact electrostatically. MetF disrupts the IP3R-GRP75-VDAC1 complex, which plays a key role in stabilizing mitochondria-associated ER membranes (MAMs), by binding to VDAC1. This disruption leads to increased cytosolic calcium levels, thereby contributing to autophagy induction. MetF also decreased the AMP/ATP ratio and activated the AMPK pathway. Cells with genetic knockdown of VDAC1 mimicked the activity of MetF. In conclusion, this study provides new insights into the involvement of MetF in ionic interactions with VDAC1, contributing to its anticancer effects in HCC. These findings help elucidate the diverse biological and pharmacological effects of MetF, particularly its influence on autophagy, as well as the potential of MetF as a therapeutic agent for diseases characterized by VDAC1 overexpression.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Raudah Lazim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Vijayakumar Gosu
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Li Y, Wang Y, Kou L, Yin S, Chi X, Sun Y, Wu J, Jin Z, Zhou Q, Zou W, Wang T, Xia Y. Plasma exosomes impair microglial degradation of α-synuclein through V-ATPase subunit V1G1. CNS Neurosci Ther 2024; 30:e14738. [PMID: 38702933 PMCID: PMC11069054 DOI: 10.1111/cns.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 03/30/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.
Collapse
Affiliation(s)
- Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Park SI, Cho SM, Atsumi S, Kawada M, Shibuya M, Lee JY, Kim JY, Kwon HJ. NDUFA12 as a Functional Target of the Anticancer Compound Ertredin in Human Hepatoma Cells As Revealed by Label-Free Chemical Proteomics. J Proteome Res 2024; 23:130-141. [PMID: 38104258 DOI: 10.1021/acs.jproteome.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA. However, the underlying mechanism remains unclear. In this study, we investigated the target protein of Ertredin by combining drug affinity-responsive target stability (DARTS) assays with liquid chromatography-mass spectrometry using label-free Ertredin as a bait and HepG2 cell lysates as a proteome pool. NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12) was identified as an Ertredin-binding protein that was responsible for its biological activity. The interaction between NDUFA12 and Ertredin was validated by DARTS and cellular thermal shift assays. In addition, the genetic knockdown of the identified target, NDUFA12, was shown to suppress cell proliferation. NDUFA12 was identified as a biologically relevant target protein of Ertredin that is responsible for its antitumor activity, and these results provide insights into the role of NDUFA12 as a downstream factor in EGFRvIII mutants.
Collapse
Affiliation(s)
- Se In Park
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sung Min Cho
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma 370-1393, Japan
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
7
|
Ko M, Jung HY, Lee D, Jeon J, Kim J, Baek S, Lee JY, Kim JY, Kwon HJ. Inhibition of chloride intracellular channel protein 1 (CLIC1) ameliorates liver fibrosis phenotype by activating the Ca 2+-dependent Nrf2 pathway. Biomed Pharmacother 2023; 168:115776. [PMID: 37924785 DOI: 10.1016/j.biopha.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Persistent damage to liver cells leads to liver fibrosis, which is characterized by the accumulation of scar tissue in the liver, ultimately leading to cirrhosis and serious complications. Because it is difficult to reverse cirrhosis once it has progressed, the primary focus has been on preventing the progression of liver fibrosis. However, studies on therapeutic agents for liver fibrosis are still lacking. Here, we investigated that the natural dipeptide cyclic histidine-proline (CHP, also known as diketopiperazine) shows promising potential as a therapeutic agent in models of liver injury by inhibiting the progression of fibrosis through activation of the Nrf2 pathway. To elucidate the underlying biological mechanism of CHP, we used the Cellular Thermal Shift Assay (CETSA)-LC-MS/MS, a label-free compound-based target identification platform. Chloride intracellular channel protein 1 (CLIC1) was identified as a target whose thermal stability is increased by CHP treatment. We analyzed the direct interaction of CHP with CLIC1 which revealed a potential interaction between CHP and the E228 residue of CLIC1. Biological validation experiments showed that knockdown of CLIC1 mimicked the antioxidant effect of CHP. Further investigation using a mouse model of CCl4-induced liver fibrosis in wild-type and CLIC1 KO mice revealed the critical involvement of CLIC1 in mediating the effects of CHP. Taken together, our results provide evidence that CHP exerts its anti-fibrotic effects through specific binding to CLIC1. These insights into the mechanism of action of CHP may pave the way for the development of novel therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang 37668, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Moon JH, Hong JM, Seol JW, Park BY, Eo SK, Park SY. Melatonin inhibits Japanese encephalitis virus replication and neurotoxicity via calcineurin-autophagy pathways. BMC Neurosci 2023; 24:59. [PMID: 37932682 PMCID: PMC10629071 DOI: 10.1186/s12868-023-00832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that has no specific treatment except for supportive medical care. JEV is a neurotropic virus that affects the nervous system and triggers inflammation in the brain. METHODS Melatonin is used as a sleep-inducing agent in neurophysiology and may serve as a protective agent against neurological and neurodegenerative diseases. Herein, we investigated the effects of melatonin and the critical roles of the serine/threonine protein phosphatase calcineurin during JEV infection in SK-N-SH neuroblastoma cells. RESULTS Melatonin treatment decreased JEV replication and JEV-mediated neurotoxicity. Calcineurin activity was increased by JEV infection and inhibited by melatonin treatment. Through calcineurin regulation, melatonin decreased the JEV-mediated neuroinflammatory response and attenuated JEV-induced autophagy. CONCLUSIONS Calcineurin inactivation has a protective effect in JEV-infected neuronal cells, and melatonin is a novel resource for the development of anti-JEV agents.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Yong Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Seong Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
9
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Liu M, Yu Z, Yang F, Zhao Z, Zhou M, Wang C, Zhang B, Liang G, Liu X, Shao J. BDE209-promoted Dio2 degradation in H4 glioma cells through the autophagy pathway, resulting in hypothyroidism and leading to neurotoxicity. Toxicology 2023:153581. [PMID: 37330034 DOI: 10.1016/j.tox.2023.153581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Decabromodiphenyl ether (BDE209), the homologue with the highest number of brominates in polybrominated diphenyl ethers (PBDEs), is one of the most widespread environmental persistent organic pollutants (POPs) due to its mass production and extensive application in recent decades. BDE209 is neurotoxic, possibly related to its interference with the thyroid hormone (TH) system. However, the underlying molecular mechanisms of BDE209-induced TH interference and neurobehavioral disorders remains unknown. Here, we explored how BDE209 manipulated the major enzyme, human type II iodothyronine deiodinase (Dio2), that is most important in regulating local cerebral TH equilibrium by neuroglial cells, using an in vitro model of human glioma H4 cells. Clonogenic cell survival assay and LC/MS/MS analysis showed that BDE209 could induce chronic neurotoxicity by inducing TH interference. Co-IP assay, RT-qPCR and confocal assay identified that BDE209 destroyed the stability of Dio2 without affecting its expression, and promoted its binding to p62, thereby enhancing its autophagic degradation, thus causing TH metabolism disorder and neurotoxicity. Furthermore, molecular docking studies predicted that BDE209 could effectively suppress Dio2 activity by competing with tetraiodothyronine (T4). Collectively, our study demonstrates that BDE209-induced Dio2 degradation and loss of its enzymatic activity in neuroglial cells are the fundamental pathogenic basis for BDE209-mediated cerebral TH disequilibrium and neurotoxicity, providing a target of interest for further investigation using glial/neuronal cell co-culture system and in vivo models.
Collapse
Affiliation(s)
- Min Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Fangyu Yang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China
| | - Zikuang Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 116000, China
| | - Meirong Zhou
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China.
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology; Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
11
|
Wang H, Zhu Y, Liu H, Liang T, Wei Y. Advances in Drug Discovery Targeting Lysosomal Membrane Proteins. Pharmaceuticals (Basel) 2023; 16:ph16040601. [PMID: 37111358 PMCID: PMC10145713 DOI: 10.3390/ph16040601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lysosomes are essential organelles of eukaryotic cells and are responsible for various cellular functions, including endocytic degradation, extracellular secretion, and signal transduction. There are dozens of proteins localized to the lysosomal membrane that control the transport of ions and substances across the membrane and are integral to lysosomal function. Mutations or aberrant expression of these proteins trigger a variety of disorders, making them attractive targets for drug development for lysosomal disorder-related diseases. However, breakthroughs in R&D still await a deeper understanding of the underlying mechanisms and processes of how abnormalities in these membrane proteins induce related diseases. In this article, we summarize the current progress, challenges, and prospects for developing therapeutics targeting lysosomal membrane proteins for the treatment of lysosomal-associated diseases.
Collapse
Affiliation(s)
- Hongna Wang
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Yidong Zhu
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Huiyan Liu
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Tianxiang Liang
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Yongjie Wei
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510095, China
| |
Collapse
|
12
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
13
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Kwak C, Park C, Ko M, Im CY, Moon H, Park YH, Kim SY, Lee S, Kang MG, Kwon HJ, Hong E, Seo JK, Rhee HW. Identification of proteomic landscape of drug-binding proteins in live cells by proximity-dependent target ID. Cell Chem Biol 2022; 29:1739-1753.e6. [PMID: 36272407 DOI: 10.1016/j.chembiol.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
Direct identification of the proteins targeted by small molecules can provide clues for disease diagnosis, prevention, and drug development. Despite concentrated attempts, there are still technical limitations associated with the elucidation of direct interactors. Herein, we report a target-ID system called proximity-based compound-binding protein identification (PROCID), which combines our direct analysis workflow of proximity-labeled proteins (Spot-ID) with the HaloTag system to efficiently identify the dynamic proteomic landscape of drug-binding proteins. We successfully identified well-known dasatinib-binding proteins (ABL1, ABL2) and confirmed the unapproved dasatinib-binding kinases (e.g., BTK and CSK) in a live chronic myeloid leukemia cell line. PROCID also identified the DNA helicase protein SMARCA2 as a dasatinib-binding protein, and the ATPase domain was confirmed to be the binding site of dasatinib using a proximity ligation assay (PLA) and in cellulo biotinylation assay. PROCID thus provides a robust method to identify unknown drug-interacting proteins in live cells that expedites the mode of action of the drug.
Collapse
Affiliation(s)
- Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Cheolhun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Minjeong Ko
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Heegyum Moon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - So Young Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Seungyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea.
| | - Jeong Kon Seo
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
16
|
Ren YS, Li HL, Piao XH, Yang ZY, Wang SM, Ge YW. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: Principles and application. Biochem Pharmacol 2021; 194:114798. [PMID: 34678227 DOI: 10.1016/j.bcp.2021.114798] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Drug affinity responsive target stability (DARTS) is a novel target discovery approach and is particularly adept at screening small molecule (SM) targets without requiring any structural modifications. The DARTS method is capable of revealing drug-target interactions from cells or tissues by tracking changes in the stability of proteins acting as receptors of bioactive SMs. Due to its simple operation and high efficiency, the DARTS method has been applied to uncover the drug-action mechanism. This review summarized analytical principles, protocols, validation approaches, applications, and challenges involved in the DARTS method. Due to the innate advantages of the DARTS method, it is expected to be a powerful tool to accelerate SM target discovery, especially for bioactive natural products with unknown mechanisms.
Collapse
Affiliation(s)
- Ying-Shan Ren
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui-Lin Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiu-Hong Piao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue-Wei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Niu YN, Zeng Y, Zhong FF, Long SL, Ren DW, Qin X, Liu WJ. Salidroside overcomes dexamethasone resistance in T-acute lymphoblastic leukemia cells. Exp Ther Med 2021; 21:636. [PMID: 33968167 PMCID: PMC8097222 DOI: 10.3892/etm.2021.10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to analyze whether the use of salidroside (SAL) could overcome dexamethasone (DEX) resistance in T-acute lymphocytic leukemia cells. The human T-ALL DEX-resistant cell line, CEM-C1 and the DEX-sensitive cell line, CEM-C7 were used in the current study. The proliferation inhibition rates in these cells, treated with SAL and DEX alone, and in combination were detected using a Cell Counting Kit-8 assay, while the morphological changes of the cells were observed using an inverted microscope. Reverse transcription-quantitative PCR was used to detect the mRNA expression levels of the c-Myc and LC3 genes, while flow cytometry was used to detect the cell cycle distribution and the rate of apoptosis. In addition, western blot analysis was used to detect the protein expression levels of c-Myc, BCL-2, Bax, cleaved PARP and LC3. and acridine orange staining was used to detect the changes in acidic autophagy vesicles. It was found that SAL could effectively inhibit cell proliferation and induce apoptosis in the CEM-C1 and CEM-C7 cells. In addition, SAL promoted the induction of autophagy. The protein expression levels of c-Myc in the CEM-C1 cells were significantly higher compared with that in the CEM-C7 cells. SAL downregulated the mRNA expression levels of the c-Myc gene and protein in a dose-dependent manner. This suggested that SAL could inhibit the proliferation of the CEM-C1 and CEM-C7 cells, induce apoptosis and autophagy and overcome DEX resistance in the CEM-C1 cells. The mechanism may be associated with the downregulation of c-Myc.
Collapse
Affiliation(s)
- Ya-Na Niu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Fang-Fang Zhong
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Si-Li Long
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Dan-Wei Ren
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Jun Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
19
|
He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. Treatment With Calcineurin Inhibitor FK506 Attenuates Noise-Induced Hearing Loss. Front Cell Dev Biol 2021; 9:648461. [PMID: 33777956 PMCID: PMC7994600 DOI: 10.3389/fcell.2021.648461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, Carr SA, Ahmad R, Xu W. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol Psychiatry 2021; 89:256-269. [PMID: 33032807 PMCID: PMC9258036 DOI: 10.1016/j.biopsych.2020.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. METHODS Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing-dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. RESULTS Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. CONCLUSIONS Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.
Collapse
Affiliation(s)
- Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | | | - Lei J. Ding
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Allen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Henny Haensgen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jen Q. Pan
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
22
|
Wang M, Li A, Sekiya M, Beckmann ND, Quan X, Schrode N, Fernando MB, Yu A, Zhu L, Cao J, Lyu L, Horgusluoglu E, Wang Q, Guo L, Wang YS, Neff R, Song WM, Wang E, Shen Q, Zhou X, Ming C, Ho SM, Vatansever S, Kaniskan HÜ, Jin J, Zhou MM, Ando K, Ho L, Slesinger PA, Yue Z, Zhu J, Katsel P, Gandy S, Ehrlich ME, Fossati V, Noggle S, Cai D, Haroutunian V, Iijima KM, Schadt E, Brennand KJ, Zhang B. Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron 2021; 109:257-272.e14. [PMID: 33238137 PMCID: PMC7855384 DOI: 10.1016/j.neuron.2020.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023]
Abstract
To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,These authors contributed equally
| | - Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,These authors contributed equally
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan 467-8603,These authors contributed equally
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,These authors contributed equally
| | - Xiuming Quan
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,These authors contributed equally
| | - Nadine Schrode
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael B. Fernando
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Alex Yu
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Liwei Lyu
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Emrin Horgusluoglu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yuan-shuo Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ryan Neff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qi Shen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Seok-Man Ho
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan 192-0397
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Scott Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,Neurology, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan 467-8603,Senior author
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Senior author
| | - Kristen J. Brennand
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Senior author
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Senior author,Lead Contact,Correspondence: (B.Z.)
| |
Collapse
|
23
|
Kim D, Hwang HY, Ji ES, Kim JY, Yoo JS, Kwon HJ. Activation of mitochondrial TUFM ameliorates metabolic dysregulation through coordinating autophagy induction. Commun Biol 2021; 4:1. [PMID: 33398033 PMCID: PMC7782552 DOI: 10.1038/s42003-020-01566-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload. Kim, Hwang et al. use in vitro and in vivo models of autophagy disorder/metabolic dysfunction to show that in this context, the natural compound kaempferide is an autophagy enhancer and reveal that one of the underlying mechanisms governing this is mediated by the mitochondrial elongation factor TUFM. This insight may have therapeutic value in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Hwang HY, Shim JS, Kim D, Kwon HJ. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy 2020; 17:2783-2799. [PMID: 33124469 PMCID: PMC8525979 DOI: 10.1080/15548627.2020.1841953] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macroautophagy/autophagy (hereafter autophagy), the process of mass degradation of unnecessary elements within the cell, is often dysregulated in many diseases such as cancer, atherosclerosis, and neurodegenerative diseases. Hence, autophagy modulating agents have a great potential to be therapeutic agents for the autophagy-related diseases. Here we report that an anti-depressant drug sertraline (Sert) is an autophagy-inducing agent. Mechanistically, Sert potentially binds to and antagonizes the mitochondrial VDAC1 (voltage dependent anion channel 1), resulting in reduced cellular ATP (adenosine triphosphate) level, activation of AMP-activated protein kinase (AMPK) and inhibition of its downstream, MTOR (mechanistic target of rapamycin kinase)-RPS6KB1 (ribosomal protein S6 kinase B1) signaling pathway. Cells lacking VDAC1 expression completely abrogate the modulatory effect of Sert on AMPK-MTOR pathway and autophagy-inducing activity. We further show that Sert suppresses tauopathy by promoting the autophagic degradation of MAPT (microtubule associated protein tau) protein via inducing autophagy. Our study demonstrates the potential of Sert as a novel small molecule autophagy-inducing agent and provides a new drug candidate to treat autophagy related diseases by targeting VDAC1. Abbreviations: AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Baf: bafilomycin A1; BiFC: biomolecular fluorescence complementation; CAMKK2/CAMKKB: calcium/calmodulin dependent protein kinase kinase 2; CC: compound C; DARTS: drug affinity responsive target stability; HUVECs: human umbilical vein endothelial cells; Inda: indatraline; STK11/LKB1: serine/threonine kinase 11; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; 3-MA: 3-methyladenine; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; Rapa: rapamycin; Sert: sertraline; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; SLC6A4/SERT1: solute carrier family 6 member 4; TFEB: transcription factor EB; VDAC1: voltage dependent anion channel 1; WT: wild-type; WM: wortmannin.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Miyazaki D, Shimizu D, Fukushima A, Ebihara N, Uchio E, Shoji J, Namba K, Inoue Y, Ohashi Y, Okamoto S, Takamura E, Fujishima H. Reduced steroid-induced intraocular pressure elevation in tacrolimus-treated refractory allergic ocular diseases. Jpn J Ophthalmol 2020; 64:568-576. [PMID: 33026594 DOI: 10.1007/s10384-020-00774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether topical tacrolimus can lessen steroid-induced intraocular pressure (IOP) elevation. STUDY DESIGN Open cohort post hoc analysis study. METHODS Five hundred eleven patients with vernal keratoconjunctivitis or atopic keratoconjunctivitis (mean age 17.0 ± 9.2 years) were studied. All 511 patients were treated with topical tacrolimus with or without topical steroids, and the changes in IOP were measured monthly for 3 months. The elevation in IOP induced by use of topical steroids was calculated using mixed linear regression analyses. The relationship between the elevation in IOP within 4 weeks and the use or nonuse of tacrolimus reported in published data was analyzed using metaregression analysis to estimate the effects of tacrolimus on the IOP in eyes treated with topical steroids. RESULTS The mean topical steroid-induced IOP elevation in tacrolimus-treated eyes was lower, by 5.2 mmHg (P = 0.04), than that in earlier published data without tacrolimus as the control. In the tacrolimus-treated eyes, the mean betamethasone-induced IOP elevation was 1.3 mmHg without discontinuation of the steroid. Metaregression analysis indicated that glaucoma history and younger age had significant effects on topical steroid-induced IOP elevation, by 4.0 mmHg (P = 0.002) and 3.9 mmHg (P = 0.01), respectively. In tacrolimus-treated eyes, the most significant effect on the IOP was associated with glaucoma history or medication; however, its effect on the IOP was limited to 1.7 mmHg elevation (P = 0.006). CONCLUSIONS Topical tacrolimus may lessen the steroid-induced elevation in IOP in younger individuals and may be a good adjunctive therapy to avoid IOP elevation in refractory cases.
Collapse
Affiliation(s)
- Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Daisuke Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | | | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Namba
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University School of Medicine, Toon, Ehime, Japan
| | | | - Etsuko Takamura
- Department of Ophthalmology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hiroshi Fujishima
- Department of Ophthalmology, Tsurumi University Dental Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
26
|
Nakanuma R, Masumi-Koizumi K, Ohmuro-Matsuyama Y, Katsuda T, Yamaji H. Effects of autophagy inducers on recombinant antibody production in insect cells. Cytotechnology 2020; 73:10.1007/s10616-020-00423-6. [PMID: 32996001 PMCID: PMC8166964 DOI: 10.1007/s10616-020-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
Insect cells have recently proven to be an excellent platform for the high-level production of functional recombinant proteins. Autophagy is an important mechanism that promotes cell survival by eliminating damaged organelles and protein aggregates, and it also may influence recombinant protein production. In the present study, we compared the effects that autophagy inducers rapamycin, everolimus, and lithium chloride exert on recombinant lepidopteran insect cells that secrete an engineered antibody molecule. Compared with nontreatment, treatment with either rapamycin or everolimus prolonged cell growth to allow high cell density, improved viability in the declining phase, and then increased the yield of secreted antibodies. These positive effects appeared to be induced via autophagy since autophagosomes were clearly detected, particularly in cells treated with rapamycin or everolimus. Unlike rapamycin, another autophagy inducer, FK506, was ineffective in insect cells. The addition of an appropriate autophagy inducer may be effective in increasing the productivity of recombinant proteins in insect cells.
Collapse
Affiliation(s)
- Ryou Nakanuma
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kyoko Masumi-Koizumi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuki Ohmuro-Matsuyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Katsuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideki Yamaji
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
27
|
Zhao B, Liu N, Chen L, Geng S, Fan Z, Xing J. Direct label-free methods for identification of target proteins in agrochemicals. Int J Biol Macromol 2020; 164:1475-1483. [PMID: 32763403 DOI: 10.1016/j.ijbiomac.2020.07.237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Green agrochemicals are important guarantee for food production and security, and target protein identification is the most important basis for development of novel agrochemicals. Affinity chromatography methods for immobilization of agrochemicals have been widely used to identify and confirm new targets. However, this method often requires modification of the active molecules which can affect or damage its biological activity, and biomacromolecules, particularly most natural products, are hard to be modified either. In order to overcome the shortcomings of molecular modification, label-free technology has been developed based on evaluating responses to thermal or proteolytic treatments. Combined with the chemical biology technology and molecular biology technology, it has been used in the development of drugs and agrochemicals. Herein, common methods of label-free technology for identification of direct target of agrochemicals are reviewed, including the principle, advantages, limitations and applications in the research of agrochemicals in the last decade. And the methods for validation of candidate targets obtained by the label-free methods are also reviewed, which are important to obtain the accurate and reliable targets. Combined application of these methods will greatly reduce the experimental costs and shorten the period for the new target identification and validation by improving its accuracy, which will provide a systematic solution for new ecological agrochemicals research and development.
Collapse
Affiliation(s)
- Bin Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China; State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ning Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, PR China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China; State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Shuo Geng
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Jihong Xing
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
28
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Autophagic Inhibition via Lysosomal Integrity Dysfunction Leads to Antitumor Activity in Glioma Treatment. Cancers (Basel) 2020; 12:cancers12030543. [PMID: 32120820 PMCID: PMC7139627 DOI: 10.3390/cancers12030543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we used a label-free drug affinity responsive target stability (DARTS) approach with a liquid chromatography/tandem mass spectrometry (LC–MS/MS) readout. Of 35 protein interactors, we identified Hsp70 as a key target protein of unmodified APZ in autophagy. Either APZ treatment or Hsp70 inhibition attenuates integrity of lysosomes, which leads to autophagic cell death exhibiting an excellent synergism with a clinical drug, temozolomide, in vitro, in vivo, and orthotropic glioma xenograft model. These findings demonstrate the potential of APZ to induce autophagic cell death and its development to combinational chemotherapeutic agent for glioma treatment. Collectively, our study demonstrated that APZ, a new autophagy inhibitor, can be used as a potent antitumor drug candidate to get over unassailable glioma and revealed a novel function of Hsp70 in lysosomal integrity regulation of autophagy.
Collapse
|
31
|
Profiling the Protein Targets of Unmodified Bio‐Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Proteomics 2020; 20:e1900325. [DOI: 10.1002/pmic.201900325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/28/2019] [Indexed: 12/17/2022]
|
32
|
de Souza N, Picotti P. Mass spectrometry analysis of the structural proteome. Curr Opin Struct Biol 2020; 60:57-65. [DOI: 10.1016/j.sbi.2019.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
|
33
|
Cho SM, Lee HK, Liu Q, Wang MW, Kwon HJ. A Guanidine-Based Synthetic Compound Suppresses Angiogenesis via Inhibition of Acid Ceramidase. ACS Chem Biol 2019; 14:11-19. [PMID: 30507149 DOI: 10.1021/acschembio.8b00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis generates new blood vessels from pre-existing vessels. Tumors induce the formation of new blood vessels to ensure sufficient oxygen and nutrients for their growth. Normally, angiogenesis is induced by various pro-angiogenesis factors, including vascular endothelial growth factor (VEGF). Inhibition of VEGF is a promising approach to cancer treatment. A guanidine-based synthetic compound, E2, was identified as a potent hit from 68 guanidine-based derivatives by screening for angiogenesis inhibitors showing antiproliferative activity in human umbilical vein endothelial cells (HUVECs). To explore the mode of action of E2, target proteins were investigated using phage display biopanning, and acid ceramidase 1 (ASAH1) was identified as an E2-binding protein. Drug affinity responsive target stability (DARTS) and ASAH1 activity assays revealed the direct binding of E2 to ASAH1. Moreover, siRNA knockdown of ASAH1 demonstrated its role as an angiogenesis factor. Consequently, E2 inhibited chemoinvasion and tube formation of HUVECs in a dose-dependent manner. E2 also potently suppressed neo-vascularization of chorioallantoic membranes in vivo. Collectively, these data suggest that E2 is a novel angiogenesis inhibitor and ASAH1 is proposed to be a new antiangiogenesis target.
Collapse
Affiliation(s)
- Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyung Keun Lee
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Qing Liu
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
34
|
Ma R, Meng H, Wiebelhaus N, Fitzgerald MC. Chemo-Selection Strategy for Limited Proteolysis Experiments on the Proteomic Scale. Anal Chem 2018; 90:14039-14047. [PMID: 30403842 DOI: 10.1021/acs.analchem.8b04122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Described here is a chemo-selective enrichment strategy, termed the semitryptic peptide enrichment strategy for proteolysis procedures (STEPP), to isolate the semitryptic peptides generated in mass spectrometry-based proteome-wide applications of limited proteolysis methods. The strategy involves reacting the ε-amino groups of lysine side chains and any N-termini created in the limited proteolysis reaction with isobaric mass tags. A subsequent digestion of the sample with trypsin and the chemo-selective reaction of the newly exposed N-termini of the tryptic peptides with N-hydroxysuccinimide (NHS)-activated agarose resin removes the tryptic peptides from solution, leaving only the semitryptic peptides with one nontryptic cleavage site generated in the limited proteolysis reaction for subsequent LC-MS/MS analysis. As part of this work, the STEPP technique is interfaced with two different proteolysis methods, including the pulse proteolysis (PP) and limited proteolysis (LiP) methods. The STEPP-PP workflow is evaluated in two proof-of-principle experiments involving the proteins in a yeast cell lysate and two well-studied drugs, cyclosporin A and geldanamycin. The STEPP-LiP workflow is evaluated in a proof-of-principle experiment involving the proteins in two cell culture models of human breast cancer, MCF-7 and MCF-10A cell lines. The STEPP protocol increased the number of semitryptic peptides detected in the LiP and PP experiments by 5- to 10-fold. The STEPP protocol not only increases the proteomic coverage, but also increases the amount of structural information that can be gleaned from limited proteolysis experiments. Moreover, the protocol also enables the quantitative determination of ligand binding affinities.
Collapse
Affiliation(s)
- Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Nancy Wiebelhaus
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
35
|
Liu T, Zhou J, Cui H, Li P, Li H, Wang Y, Tang T. Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism. Brain Behav 2018; 8:e01130. [PMID: 30307711 PMCID: PMC6236229 DOI: 10.1002/brb3.1130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Intracerebral hemorrhage (ICH) is a lethal cerebrovascular disorder with a high mortality and morbidity. The pathophysiological mechanisms underlying ICH-induced secondary injury remain unclear. METHODS To examine one of the gaps in the knowledge about ICH pathological mechanisms, isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in collagenase-induced ICH rats on the 2nd day. RESULTS A total of 6,456 proteins were identified with a 1% false discovery rate (FDR). Of these proteins, 126 and 75 differentially expressed proteins (DEPs) were substantially increased and decreased, respectively. Based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING analyses, the protein changes in cerebral hemorrhage were comprehensively evaluated, and the energy metabolism in ICH was anchored. The core position of the nitrogen metabolism pathway in brain metabolism in ICH was found for the first time. Carbonic anhydrase 1 (Ca1), carbonic anhydrase 2 (Ca2), and glutamine synthetase (Glul) participated in this pathway. We constructed the protein-protein interaction (PPI) networks for the energy metabolism of ICH, including the Atp6v1a-Atp6v0c-Atp6v0d1-Ppa2-Atp6ap2 network. CONCLUSIONS It seems that dysregulation of energy metabolism, especially nitrogen metabolism, may be a major cause in secondary ICH injury. This information provides novel insights into secondary events following ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- Department of GerontologyTraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Jing Zhou
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Hanjin Cui
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Pengfei Li
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Haigang Li
- Department of PharmacyChangsha Medical UniversityChangshaChina
| | - Yang Wang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Tao Tang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
36
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
37
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
38
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
39
|
The Crosstalk between ROS and Autophagy in the Field of Transplantation Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7120962. [PMID: 29410735 PMCID: PMC5749284 DOI: 10.1155/2017/7120962] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022]
Abstract
Many factors during the transplantation process influence posttransplant graft function and survival, including donor type and age, graft preservation methods (cold storage, machine perfusion), and ischemia-reperfusion injury. Successively, they will lead to cellular and molecular alterations that determine cell and ultimately organ fate. Oxidative stress and autophagy are implicated in posttransplant outcome since they are both affected by the stress responses triggered in each step (donor, preservation, and recipient) of the transplantation process. Furthermore, oxidative stress influences autophagy and vice versa. Interestingly, both processes have positive as well as negative effects on graft outcome, suggesting they are tightly linked during the transplantation process. In this review, we discuss the importance, regulation and crosstalk of oxidative signals, and autophagy in the field of transplantation medicine.
Collapse
|
40
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
41
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
42
|
Daptomycin, a last-resort antibiotic, binds ribosomal protein S19 in humans. Proteome Sci 2017; 15:16. [PMID: 28680364 PMCID: PMC5494143 DOI: 10.1186/s12953-017-0124-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daptomycin is a recently introduced, last-resort antibiotic that displays a unique mode of action against Gram-positive bacteria that is not fully understood. Several bacterial targets have been proposed but no human binding partner is known. METHODS In the present study we tested daptomycin in cell viability and proliferation assays against six human cell lines, describe the synthesis of biotinylated and fluorescently labeled analogues of daptomycin. Biotinylated daptomycin was used as bait to isolate the human binding partner by the application of reverse chemical proteomics using T7 phage display of five human tumor cDNA libraries. The interaction between the rescued protein and daptomycin was validated via siRNA knockdown, DARTS assay and immunocytochemistry. RESULTS We have found that daptomycin possesses selective growth inhibition of some cancer cell lines, especially MCF7. The unbiased interrogation of human cDNA libraries, displayed on bacteriophage T7, revealed a single human target of daptomycin; ribosomal protein S19. Using a drug affinity responsive target stability (DARTS) assay in vitro, we show that daptomycin stabilizes RPS19 toward pronase. Fluorescently labeled daptomycin stained specific structures in HeLa cells and co-localized with a RPS19 antibody. CONCLUSION This study provides, for the first time, a human protein target of daptomycin and identifies RPS19 as a possible anticancer drug target for the development of new pharmacological applications and research.
Collapse
|