1
|
Vandergrift GW, Veličković M, Day LZ, Gorman BL, Williams SM, Shrestha B, Anderton CR. Untargeted Spatial Metabolomics and Spatial Proteomics on the Same Tissue Section. Anal Chem 2024. [PMID: 39708340 DOI: 10.1021/acs.analchem.4c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
An increasing number of spatial multiomic workflows have recently been developed. Some of these approaches have leveraged initial mass spectrometry imaging (MSI)-based spatial metabolomics to inform the region of interest (ROI) selection for downstream spatial proteomics. However, these workflows have been limited by varied substrate requirements between modalities or have required analyzing serial sections (i.e., one section per modality). To mitigate these issues, we present a new multiomic workflow that uses desorption electrospray ionization (DESI)-MSI to identify representative spatial metabolite patterns on-tissue prior to spatial proteomic analyses on the same tissue section. This workflow is demonstrated here with a model mammalian tissue (coronal rat brain section) mounted on a poly(ethylene naphthalate)-membrane slide. Initial DESI-MSI resulted in 160 annotations (SwissLipids) within the METASPACE platform (≤20% false discovery rate). A segmentation map from the annotated ion images informed the downstream ROI selection for spatial proteomics characterization from the same sample. The unspecific substrate requirements and minimal sample disruption inherent to DESI-MSI allowed for an optimized, downstream spatial proteomics assay, resulting in 3888 ± 240 to 4717 ± 48 proteins being confidently directed per ROI (200 μm × 200 μm). Finally, we demonstrate the integration of multiomic information, where we found ceramide localization to be correlated with SMPD3 abundance (ceramide synthesis protein), and we also utilized protein abundance to resolve metabolite isomeric ambiguity. Overall, the integration of DESI-MSI into the multiomic workflow allows for complementary spatial- and molecular-level information to be achieved from optimized implementations of each MS assay inherent to the workflow itself.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marija Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Z Day
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Brittney L Gorman
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Qiu T. Mass Spectrometry Imaging for Spatial Toxicology Research. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5104. [PMID: 39624029 PMCID: PMC11612705 DOI: 10.1002/jms.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
The spatial information of xenobiotics distribution, metabolism, and toxicity mechanisms in situ has drawn increasing attention in both pharmaceutical and environmental toxicology research to aid drug development and environmental risk assessments. Mass spectrometry imaging (MSI) provides a label-free, multiplexed, and high-throughput tool to characterize xenobiotics, their metabolites, and endogenous molecules in situ with spatial resolution, providing knowledge on spatially resolved absorption, distribution, metabolism, excretion, and toxicity on the molecular level. In this perspective, we briefly summarize applications of MSI in toxicology on xenobiotic distribution and metabolism, quantification, toxicity mechanisms, and biomarker discovery. We identified several challenges regarding how we can fully harness the power of MSI in both fundamental toxicology research and regulatory practices. First, how can we increase the coverage, sensitivity, and specificity in detecting xenobiotics and their metabolites in complex biological matrices? Second, how can we link the spatial molecular information of xenobiotics to toxicity consequences to understand toxicity mechanisms, predict exposure outcomes, and aid biomarker discovery? Finally, how can we standardize the MSI experiment and data analysis workflow to provide robust conclusions for regulation and drug development? With these questions in mind, we provide our perspectives on the future directions of MSI as a promising tool in spatial toxicology research.
Collapse
Affiliation(s)
- Tian (Autumn) Qiu
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Sheehan K, Jeon H, Corr SC, Hayes JM, Mok KH. Antibody Aggregation: A Problem Within the Biopharmaceutical Industry and Its Role in AL Amyloidosis Disease. Protein J 2024:10.1007/s10930-024-10237-6. [PMID: 39527351 DOI: 10.1007/s10930-024-10237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Due to the large size and rapid growth of the global therapeutic antibody market, there is major interest in understanding the aggregation of protein products as it can compromise efficacy, concentration, and safety. Various production and storage conditions have been identified as capable of inducing aggregation of polyclonal and monoclonal antibody (mAb) therapies such as low pH, freezing, light exposure, lyophilisation and increased ionic strength. The addition of stabilising excipients to these therapeutics helps to combat the formation of aggregates with future aggregation inhibition mechanisms involving the introduction of point mutations and glycoengineering within aggregation prone regions (APRs). Antibody aggregation also plays an integral role in the pathogenesis of a condition known as amyloid light chain (AL) amyloidosis which is characterised by the production of improperly folded and amyloidogenic immunoglobulin light chains (LCs). Current diagnostic tools rely heavily on histological staining with their future moving towards amyloid component identification and proteomic analysis. For many years, treatment options designed for multiple myeloma (MM) have been applied to AL amyloidosis patients by depleting plasma cell numbers. More recently, treatment strategies more specific to this condition have been developed with many designed to recognize amyloid fibrils and trigger their degradation without causing systemic plasma cell cytotoxicity. Amyloid fibrils in AL disease and aggregates in antibody therapeutics are both formed through the oligomerisation of misfolded / modified proteins attempting to reach a thermodynamically stable, free energy minimum that is lower than the respective monomers themselves. Although the final morphologies are different, by understanding the principles underlying such aggregation, we expect to find common insights that may contribute to the development of new and effective methods of antibody aggregation and/or amyloidosis management. We envision that this area of research will continue to be very relevant in both industry and clinical settings.
Collapse
Affiliation(s)
- Kate Sheehan
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Hyesoo Jeon
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Lonza Biologics Tuas Pte. Ltd., 35 Tuas South Ave 6, Singapore, 637377, Republic of Singapore
| | - Sinéad C Corr
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jerrard M Hayes
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - K H Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Zivko C, Hahm TH, Tressler C, Brown D, Glunde K, Mahairaki V. Mass Spectrometry Imaging of Organoids to Improve Preclinical Research. Adv Healthc Mater 2024; 13:e2302499. [PMID: 38247228 DOI: 10.1002/adhm.202302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tae-Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cay Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dalton Brown
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
6
|
Phulara NR, Seneviratne HK. Mass spectrometry imaging-based multi-omics approaches to understand drug metabolism and disposition. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5042. [PMID: 38840330 DOI: 10.1002/jms.5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
8
|
Hendriks TF, Krestensen KK, Mohren R, Vandenbosch M, De Vleeschouwer S, Heeren RM, Cuypers E. MALDI-MSI-LC-MS/MS Workflow for Single-Section Single Step Combined Proteomics and Quantitative Lipidomics. Anal Chem 2024; 96:4266-4274. [PMID: 38469638 PMCID: PMC10938281 DOI: 10.1021/acs.analchem.3c05850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
We introduce a novel approach for comprehensive molecular profiling in biological samples. Our single-section methodology combines quantitative mass spectrometry imaging (Q-MSI) and a single step extraction protocol enabling lipidomic and proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis on the same tissue area. The integration of spatially correlated lipidomic and proteomic data on a single tissue section allows for a comprehensive interpretation of the molecular landscape. Comparing Q-MSI and Q-LC-MS/MS quantification results sheds new light on the effect of MSI and related sample preparation. Performing MSI before Q-LC-MS on the same tissue section led to fewer protein identifications and a lower correlation between lipid quantification results. Also, the critical role and influence of internal standards in Q-MSI for accurate quantification is highlighted. Testing various slide types and the evaluation of different workflows for single-section spatial multiomics analysis emphasized the need for critical evaluation of Q-MSI data. These findings highlight the necessity for robust quantification methods comparable to current gold-standard LC-MS/MS techniques. The spatial information from MSI allowed region-specific insights within heterogeneous tissues, as demonstrated for glioblastoma multiforme. Additionally, our workflow demonstrated the efficiency of a single step extraction for lipidomic and proteomic analyses on the same tissue area, enabling the examination of significantly altered proteins and lipids within distinct regions of a single section. The integration of these insights into a lipid-protein interaction network expands the biological information attainable from a tissue section, highlighting the potential of this comprehensive approach for advancing spatial multiomics research.
Collapse
Affiliation(s)
- Tim F.E. Hendriks
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Kasper K. Krestensen
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Ronny Mohren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Steven De Vleeschouwer
- Department
of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Truong JXM, Rao SR, Ryan FJ, Lynn DJ, Snel MF, Butler LM, Trim PJ. Spatial MS multiomics on clinical prostate cancer tissues. Anal Bioanal Chem 2024; 416:1745-1757. [PMID: 38324070 DOI: 10.1007/s00216-024-05178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.
Collapse
Affiliation(s)
- Jacob X M Truong
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sushma R Rao
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Feargal J Ryan
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - David J Lynn
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Marten F Snel
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Lisa M Butler
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Paul J Trim
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
10
|
Navolić J, Moritz M, Voß H, Schlumbohm S, Schumann Y, Schlüter H, Neumann JE, Hahn J. Direct 3D Sampling of the Embryonic Mouse Head: Layer-wise Nanosecond Infrared Laser (NIRL) Ablation from Scalp to Cortex for Spatially Resolved Proteomics. Anal Chem 2023; 95:17220-17227. [PMID: 37956982 PMCID: PMC10688223 DOI: 10.1021/acs.analchem.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Common workflows in bottom-up proteomics require homogenization of tissue samples to gain access to the biomolecules within the cells. The homogenized tissue samples often contain many different cell types, thereby representing an average of the natural proteome composition, and rare cell types are not sufficiently represented. To overcome this problem, small-volume sampling and spatial resolution are needed to maintain a better representation of the sample composition and their proteome signatures. Using nanosecond infrared laser ablation, the region of interest can be targeted in a three-dimensional (3D) fashion, whereby the spatial information is maintained during the simultaneous process of sampling and homogenization. In this study, we ablated 40 μm thick consecutive layers directly from the scalp through the cortex of embryonic mouse heads and analyzed them by subsequent bottom-up proteomics. Extra- and intracranial ablated layers showed distinct proteome profiles comprising expected cell-specific proteins. Additionally, known cortex markers like SOX2, KI67, NESTIN, and MAP2 showed a layer-specific spatial protein abundance distribution. We propose potential new marker proteins for cortex layers, such as MTA1 and NMRAL1. The obtained data confirm that the new 3D tissue sampling and homogenization method is well suited for investigating the spatial proteome signature of tissue samples in a layerwise manner. Characterization of the proteome composition of embryonic skin and bone structures, meninges, and cortex lamination in situ enables a better understanding of molecular mechanisms of development during embryogenesis and disease pathogenesis.
Collapse
Affiliation(s)
- Jelena Navolić
- Research
Group Molecular Pathology in Neurooncology, Center for Molecular Neurobiology
(ZMNH), University Medical Center Hamburg−Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Manuela Moritz
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Hannah Voß
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Simon Schlumbohm
- High
Performance Computing, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Yannis Schumann
- High
Performance Computing, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Hartmut Schlüter
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julia E. Neumann
- Research
Group Molecular Pathology in Neurooncology, Center for Molecular Neurobiology
(ZMNH), University Medical Center Hamburg−Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Institute
of Neuropathology, University Medical Center
Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jan Hahn
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
11
|
Bourceau P, Geier B, Suerdieck V, Bien T, Soltwisch J, Dreisewerd K, Liebeke M. Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat Protoc 2023; 18:3050-3079. [PMID: 37674095 DOI: 10.1038/s41596-023-00864-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023]
Abstract
Label-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells. Here, we detail metaFISH as a robust and easy method for assigning the spatial distribution of metabolites to microbiome members based on imaging of nucleic acid probes, down to single-cell resolution. We describe the steps required for tissue preparation, on-tissue hybridization, fluorescence microscopy, data integration into a correlative image dataset, matrix application and MSI data acquisition. Using metaFISH, we map hundreds of metabolites and several microbial species to the micrometer scale on a single tissue section. For example, intra- and extracellular bacteria, host cells and their associated metabolites can be localized in animal tissues, revealing their complex metabolic interactions. We explain how we identify low-abundance bacterial infection sites as regions of interest for high-resolution MSI analysis, guiding the user to a trade-off between metabolite signal intensities and fluorescence signals. MetaFISH is suitable for a broad range of users from environmental microbiologists to clinical scientists. The protocol requires ~2 work days.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tanja Bien
- Institute of Hygiene, University of Münster, Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Institute of Human Nutrition and Food Sciences, University of Kiel, Kiel, Germany.
| |
Collapse
|
12
|
Guo W, Hu Y, Qian J, Zhu L, Cheng J, Liao J, Fan X. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics 2023; 50:641-651. [PMID: 37544594 DOI: 10.1016/j.jgg.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Yining Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Junyun Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
13
|
Li N, Li S, Wang Q, Yang S, Hou Y, Gao Y, Zhang X, Zhang M, Chen H. A novel visualization method for the composition analysis of processed garlic by MALDI-TOF imaging mass spectrometry (MSI) and Q-TOF LC-MS/MS. Food Res Int 2023; 168:112746. [PMID: 37120200 DOI: 10.1016/j.foodres.2023.112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Laba garlic is a kind of vinegar processed garlic (Allium sativum L.) product with multiple health effects. This study applied matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-TOF MSI) and Q-TOF LC-MS/MS for the first time to investigate the garlic tissue spatial distribution changes of low molecular weight compounds during the Laba garlic processing. The distribution characteristics of the compounds were observed in processed and unprocessed garlic including amino acids and derivatives, organosulfur compounds, pigment precursors, polysaccharides and saponins. During Laba garlic processing, some bioactive compounds such as alliin and saponins were lost because they were transformed into other compounds or leached into the acetic acid solution, and some new compounds including pigments-related compounds occurred. This study provided a basis for the spatial distributions and changes of compounds in garlic tissue during Laba garlic processing, which suggested that the bioactivities of garlic might be changed after processing owing to the transformation and change of the constituents.
Collapse
|
14
|
Development of a Laser Microdissection-Coupled Quantitative Shotgun Lipidomic Method to Uncover Spatial Heterogeneity. Cells 2023; 12:cells12030428. [PMID: 36766770 PMCID: PMC9913738 DOI: 10.3390/cells12030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.
Collapse
|
15
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Kwon Y, Piehowski PD, Zhao R, Sontag RL, Moore RJ, Burnum-Johnson KE, Smith RD, Qian WJ, Kelly RT, Zhu Y. Hanging drop sample preparation improves sensitivity of spatial proteomics. LAB ON A CHIP 2022; 22:2869-2877. [PMID: 35838077 PMCID: PMC9320080 DOI: 10.1039/d2lc00384h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Spatial proteomics holds great promise for revealing tissue heterogeneity in both physiological and pathological conditions. However, one significant limitation of most spatial proteomics workflows is the requirement of large sample amounts that blurs cell-type-specific or microstructure-specific information. In this study, we developed an improved sample preparation approach for spatial proteomics and integrated it with our previously-established laser capture microdissection (LCM) and microfluidics sample processing platform. Specifically, we developed a hanging drop (HD) method to improve the sample recovery by positioning a nanowell chip upside-down during protein extraction and tryptic digestion steps. Compared with the commonly-used sitting-drop method, the HD method keeps the tissue pixel away from the container surface, and thus improves the accessibility of the extraction/digestion buffer to the tissue sample. The HD method can increase the MS signal by 7 fold, leading to a 66% increase in the number of identified proteins. An average of 721, 1489, and 2521 proteins can be quantitatively profiled from laser-dissected 10 μm-thick mouse liver tissue pixels with areas of 0.0025, 0.01, and 0.04 mm2, respectively. The improved system was further validated in the study of cell-type-specific proteomes of mouse uterine tissues.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| |
Collapse
|
17
|
Takagi Y, Kazoe Y, Morikawa K, Kitamori T. Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis. Anal Chem 2022; 94:10074-10081. [PMID: 35793145 DOI: 10.1021/acs.analchem.2c01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the fields of biology and medicine, comprehensive protein analysis at the single-cell level utilizing mass spectrometry (MS) with pL sample volumes and zmol to amol sensitivity is required. Our group has developed nanofluidic analytical pretreatment methods that exploit nanochannels for downsizing chemical unit operations to fL-pL volumes. In the field of analytical instruments, mass spectrometers have advanced to achieve ultrahigh sensitivity. However, a method to interface between fL-pL pretreatments and mass spectrometers without sample loss and dispersion is still challenging. In this study, we developed an MS interface utilizing nanofluidics to achieve high-sensitivity detection. After charging analyte molecules by an applied voltage through an electrode, the liquid sample was converted to fL droplets by a nanofluidic device. Considering the inertial force that acts on the droplets, the droplets were carried with a controlled trajectory, even in turbulent air flow, and injected into a mass spectrometer with 100% efficiency. A module for heat transfer was designed and constructed, by which all of the injected droplets were vaporized to produce gas-phase ions. The detection of caffeine ions was achieved at a limit of detection of 1.52 amol, which was 290 times higher than a conventional MS interface by electrospray ionization with sample dispersion combined with a similar mass spectrometer. Therefore, sensitivity that was 2 orders of magnitude higher could be realized due to the 100% sample injection rate. The present study provides a new methodology for the analysis of ultrasmall samples with high-sensitivity, such as protein molecules produced from a single cell.
Collapse
Affiliation(s)
- Yuto Takagi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yutaka Kazoe
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kyojiro Morikawa
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan R. O. C
| | - Takehiko Kitamori
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan R. O. C
| |
Collapse
|
18
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
19
|
Dong C, Donnarumma F, Murray KK. Infrared Laser Ablation Microsampling for Small Volume Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1003-1010. [PMID: 35536596 DOI: 10.1021/jasms.2c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infrared (IR) laser ablation was used to remove localized tissue regions from which proteins were extracted and processed with a low volume sample preparation workflow for bottom-up proteomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). A polytetrafluoroethylene (PTFE) coated glass slide with 2 mm diameter microwells was used to capture ablated rat brain tissue for in situ protein digestion with submicroliter solution volumes. The resulting peptides were analyzed with LC-MS/MS for protein identification and label-free quantification. The method was used to identify an average of 600, 1350, and 1900 proteins from ablation areas of 0.01, 0.04, and 0.1 mm2, respectively, from a 50 μm thick rat brain tissue section. Differential proteomics of 0.01 mm2 regions captured from cerebral cortex and corpus callosum was accomplished to demonstrate the capabilities of the approach.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
20
|
Dannhorn A, Kazanc E, Hamm G, Swales JG, Strittmatter N, Maglennon G, Goodwin RJA, Takats Z. Correlating Mass Spectrometry Imaging and Liquid Chromatography-Tandem Mass Spectrometry for Tissue-Based Pharmacokinetic Studies. Metabolites 2022; 12:metabo12030261. [PMID: 35323705 PMCID: PMC8954739 DOI: 10.3390/metabo12030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a standard tool used for absolute quantification of drugs in pharmacokinetic (PK) studies. However, all spatial information is lost during the extraction and elucidation of a drugs biodistribution within the tissue is impossible. In the study presented here we used a sample embedding protocol optimized for mass spectrometry imaging (MSI) to prepare up to 15 rat intestine specimens at once. Desorption electrospray ionization (DESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) were employed to determine the distributions and relative abundances of four benchmarking compounds in the intestinal segments. High resolution MALDI-MSI experiments performed at 10 µm spatial resolution allowed to determine the drug distribution in the different intestinal histological compartments to determine the absorbed and tissue bound fractions of the drugs. The low tissue bound drug fractions, which were determined to account for 56–66% of the total drug, highlight the importance to understand the spatial distribution of drugs within the histological compartments of a given tissue to rationalize concentration differences found in PK studies. The mean drug abundances of four benchmark compounds determined by MSI were correlated with the absolute drug concentrations. Linear regression resulted in coefficients of determination (R2) ranging from 0.532 to 0.926 for MALDI-MSI and R2 values ranging from 0.585 to 0.945 for DESI-MSI, validating a quantitative relation of the imaging data. The good correlation of the absolute tissue concentrations of the benchmark compounds and the MSI data provides a bases for relative quantification of compounds within and between tissues, without normalization to an isotopically labelled standard, provided that the compared tissues have inherently similar ion suppression effects.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Emine Kazanc
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
| | - Gregory Hamm
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - John G. Swales
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Nicole Strittmatter
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Richard J. A. Goodwin
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
- Laboratoire PRISM, Inserm U1192, University of Lille, Villeneuve d’Ascq, 59655 Lille, France
- The Rosalind Franklin Institute, Harwell OX11 0QG, UK
- Correspondence:
| |
Collapse
|
21
|
Hamilton BR, Chan W, Cheney KL, Sullivan RKP, Floetenmeyer M, Garson MJ, Wepf R. Cryo-ultramicrotomy and Mass Spectrometry Imaging Analysis of Nudibranch Microstructures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:592-597. [PMID: 35084175 DOI: 10.1021/jasms.1c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, we investigate the presence of latrunculin A in the outer rim of a nudibranch Chromodoris kuiteri and show that by combining ultrathin cryosection methods with MALDI MSI we can achieve improved lateral (x and y) resolution and very high resolution in the z dimension by virtue of the ultrathin 200 nm thin cryosections. We also demonstrate that a post ionization laser increases sensitivity. Recent advances in MALDI source design have improved the lateral resolution (x and y) and sensitivity during MSI. Taken together, very high z resolution, from ultrathin sections, and improved lateral (x and y) resolution will allow for subcellular molecular imaging with the potential for subcellular 3D volume reconstruction.
Collapse
Affiliation(s)
- Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Weili Chan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Roger Wepf
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| |
Collapse
|
22
|
DeLaney K, Phetsanthad A, Li L. ADVANCES IN HIGH-RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY. MASS SPECTROMETRY REVIEWS 2022; 41:194-214. [PMID: 33165982 PMCID: PMC8106695 DOI: 10.1002/mas.21661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/13/2020] [Indexed: 05/08/2023]
Abstract
Research in the field of neurobiology and neurochemistry has seen a rapid expansion in the last several years due to advances in technologies and instrumentation, facilitating the detection of biomolecules critical to the complex signaling of neurons. Part of this growth has been due to the development and implementation of high-resolution Fourier transform (FT) mass spectrometry (MS), as is offered by FT ion cyclotron resonance (FTICR) and Orbitrap mass analyzers, which improves the accuracy of measurements and helps resolve the complex biological mixtures often analyzed in the nervous system. The coupling of matrix-assisted laser desorption/ionization (MALDI) with high-resolution MS has drastically expanded the information that can be obtained with these complex samples. This review discusses notable technical developments in MALDI-FTICR and MALDI-Orbitrap platforms and their applications toward molecules in the nervous system, including sequence elucidation and profiling with de novo sequencing, analysis of post-translational modifications, in situ analysis, key advances in sample preparation and handling, quantitation, and imaging. Notable novel applications are also discussed to highlight key developments critical to advancing our understanding of neurobiology and providing insight into the exciting future of this field. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
23
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
24
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
25
|
Alexovič M, Sabo J, Longuespée R. Microproteomic sample preparation. Proteomics 2021; 21:e2000318. [PMID: 33547857 DOI: 10.1002/pmic.202000318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Multiple applications of proteomics in life and health science, pathology and pharmacology, require handling size-limited cell and tissue samples. During proteomic sample preparation, analyte loss in these samples arises when standard procedures are used. Thus, specific considerations have to be taken into account for processing, that are summarised under the term microproteomics (μPs). Microproteomic workflows include: sampling (e.g., flow cytometry, laser capture microdissection), sample preparation (possible disruption of cells or tissue pieces via lysis, protein extraction, digestion in bottom-up approaches, and sample clean-up) and analysis (chromatographic or electrophoretic separation, mass spectrometric measurements and statistical/bioinformatic evaluation). All these steps must be optimised to reach wide protein dynamic ranges and high numbers of identifications. Under optimal conditions, sampling is adapted to the studied sample types and nature, sample preparation isolates and enriches the whole protein content, clean-up removes salts and other interferences such as detergents or chaotropes, and analysis identifies as many analytes as the instrumental throughput and sensitivity allow. In the suggested review, we present and discuss the current state in μP applications for processing of small number of cells (cell μPs) and microscopic tissue regions (tissue μPs).
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Piezoelectric Ultrasonic Biological Microdissection Device Based on a Novel Flexure Mechanism for Suppressing Vibration. MICROMACHINES 2021; 12:mi12020196. [PMID: 33668595 PMCID: PMC7918422 DOI: 10.3390/mi12020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023]
Abstract
Biological microdissection has a wide range of applications in the field of molecular pathology. The current laser-assisted dissection technology is expensive. As an economical microdissection method, piezoelectric ultrasonic microdissection has broad application prospects. However, the performance of the current piezoelectric ultrasonic microdissection technology is unsatisfactory. This paper aims to solve the problems of the low dissecting precision and excessive wear of the dissecting needle caused by the harmful lateral vibration of the present piezoelectric ultrasonic microdissection device. A piezoelectric ultrasonic microdissection device based on a novel flexure mechanism is proposed. By analyzing the flexure hinge flexibility, the type of flexure beam and the optimal design parameters are determined. Through harmonic response simulation analysis, the newly designed microdissection device with a vibration-suppressing mechanism achieves the best vibration effect when the driving frequency is 28 kHz. Under this driving frequency, the lateral vibration suppression effect is improved by 68% compared to the traditional effect without vibration suppression. Then, based on 3D printing technology, a prototype of a novel microdissection device is produced, and its performance is tested. Experiments on dissecting needle vibration tests show that the flexure mechanism does indeed suppress the lateral vibration of the needle tip. We conducted various tissue dissection experiments on paraffin tissue sections. First, we determine the optimal dissecting parameters (driving voltage, frequency, feed speed, cutting angle) of the new equipment through various parameter dissecting experiments. Then, we adopt these optimal dissecting parameters to perform three kinds of dissecting experiments on mouse tissue paraffin section (liver, lung, bone), dissecting experiments on tissue sections of different thicknesses (3 μm, 4 μm, 5 μm), sampling and extraction experiments on complete tissue. The new device has a better dissecting performance for paraffin tissue sections below a 5 μm thickness and can complete various dissecting tasks. Finally, we compare the wear of the dissecting needles of the new and old devices after the same dissecting tasks. The results prove that the suppression of harmful lateral vibration not only significantly improves the dissecting effect but also increases the service life and durability of the dissecting needle, which is beneficial for reducing the equipment costs.
Collapse
|
27
|
Mezger STP, Mingels AMA, Bekers O, Heeren RMA, Cillero-Pastor B. Mass Spectrometry Spatial-Omics on a Single Conductive Slide. Anal Chem 2021; 93:2527-2533. [PMID: 33412004 PMCID: PMC7859928 DOI: 10.1021/acs.analchem.0c04572] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Mass
spectrometry imaging (MSI) can analyze the spatial distribution
of hundreds of different molecules directly from tissue sections usually
placed on conductive glass slides to provide conductivity on the sample
surface. Additional experiments are often required for molecular identification
using consecutive sections on membrane slides compatible with laser
capture microdissection (LMD). In this work, we demonstrate for the
first time the use of a single conductive slide for both matrix-assisted
laser desorption ionization (MALDI)-MSI and direct proteomics. In
this workflow, regions of interest can be directly ablated with LMD
while preserving protein integrity. These results offer an alternative
for MSI-based multimodal spatial-omics.
Collapse
Affiliation(s)
- Stephanie T P Mezger
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.,Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Alma M A Mingels
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
28
|
Yang C, Yang C, Yarden Y, To KKW, Fu L. The prospects of tumor chemosensitivity testing at the single-cell level. Drug Resist Updat 2021; 54:100741. [PMID: 33387814 DOI: 10.1016/j.drup.2020.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023]
Abstract
Tumor chemosensitivity testing plays a pivotal role in the optimal selection of chemotherapeutic regimens for cancer patients in a personalized manner. High-throughput drug screening approaches have been developed but they failed to take into account intratumor heterogeneity and therefore only provided limited predictive power of therapeutic response to individual cancer patients. Single cancer cell drug sensitivity testing (SCC-DST) has been recently developed to evaluate the variable sensitivity of single cells to different anti-tumor drugs. In this review, we discuss how SCC-DST overcomes the obstacles of traditional drug screening methodologies. We outline critical procedures of SCC-DST responsible for single-cell generation and sorting, cell-drug encapsulation on a microfluidic chip and detection of cell-drug interactions. In SCC-DST, droplet-based microfluidics is emerging as an important platform that integrated various assays and analyses for drug susceptibility tests for individual patients. With the advancement of technology, both fluorescence imaging and label-free analysis have been used for detecting single cell-drug interactions. We also discuss the feasibility of integrating SCC-DST with single-cell RNA sequencing to unravel the mechanisms leading to drug resistance, and utilizing artificial intelligence to facilitate the analysis of various omics data in the evaluation of drug susceptibility. SCC-DST is setting the stage for better drug selection for individual cancer patients in the era of precision medicine.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Caibo Yang
- Guangzhou Handy Biotechnology CO., LTD, Guangzhou, 510000, China.
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Guangzhou Handy Biotechnology CO., LTD, Guangzhou, 510000, China.
| |
Collapse
|
29
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
30
|
Tuck M, Blanc L, Touti R, Patterson NH, Van Nuffel S, Villette S, Taveau JC, Römpp A, Brunelle A, Lecomte S, Desbenoit N. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem 2020; 93:445-477. [PMID: 33253546 DOI: 10.1021/acs.analchem.0c04595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tuck
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Landry Blanc
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Rita Touti
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
| | - Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandrine Villette
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean-Christophe Taveau
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alain Brunelle
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR 8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Lecomte
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nicolas Desbenoit
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| |
Collapse
|
31
|
Dewez F, Oejten J, Henkel C, Hebeler R, Neuweger H, De Pauw E, Heeren RMA, Balluff B. MS Imaging‐Guided Microproteomics for Spatial Omics on a Single Instrument. Proteomics 2020; 20:e1900369. [DOI: 10.1002/pmic.201900369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/13/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Frédéric Dewez
- Maastricht MultiModal Molecular Imaging (M4I) Institute Division of Imaging Mass Spectrometry Maastricht University Universiteitssingel 50 Maastricht 6229 ER The Netherlands
- Mass Spectrometry Laboratory (MSLab) Department of Chemistry University of Liège Liège 4000 Belgium
| | | | | | | | | | - Edwin De Pauw
- Mass Spectrometry Laboratory (MSLab) Department of Chemistry University of Liège Liège 4000 Belgium
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute Division of Imaging Mass Spectrometry Maastricht University Universiteitssingel 50 Maastricht 6229 ER The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) Institute Division of Imaging Mass Spectrometry Maastricht University Universiteitssingel 50 Maastricht 6229 ER The Netherlands
| |
Collapse
|
32
|
Waas M, Kislinger T. Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. J Proteome Res 2020; 19:3607-3619. [PMID: 32697918 DOI: 10.1021/acs.jproteome.0c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells exhibit a broad spectrum of functions driven by differences in molecular phenotype. Understanding the heterogeneity between and within cell types has led to advances in our ability to diagnose and manipulate biological systems. Heterogeneity within and between tumors still poses a challenge to the development and efficacy of therapeutics. In this Perspective we review the toolkit of protein-level experimental approaches for investigating cellular heterogeneity. We describe how innovative approaches and technical developments have supported the advent of bottom-up single-cell proteomic analysis and present opportunities and challenges within cancer research. Finally, we introduce the concept of "precision proteomics" and discuss how the advantages and limitations of various experimental approaches render them suitable for different biological systems and questions.
Collapse
|
33
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
34
|
Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal Bioanal Chem 2020; 412:6875-6886. [PMID: 32712813 PMCID: PMC7496020 DOI: 10.1007/s00216-020-02818-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
MALDI mass spectrometry imaging (MALDI-MSI) is a widely used technique to map the spatial distribution of molecules in sectioned tissue. The technique is based on the systematic generation and analysis of ions from small sample volumes, each representing a single pixel of the investigated sample surface. Subsequently, mass spectrometric images for any recorded ion species can be generated by displaying the signal intensity at the coordinate of origin for each of these pixels. Although easily equalized, these recorded signal intensities, however, are not necessarily a good measure for the underlying amount of analyte and care has to be taken in the interpretation of MALDI-MSI data. Physical and chemical properties that define the analyte molecules’ adjacencies in the tissue largely influence the local extraction and ionization efficiencies, possibly leading to strong variations in signal intensity response. Here, we inspect the validity of signal intensity distributions recorded from murine cerebellum as a measure for the underlying molar distributions. Based on segmentation derived from MALDI-MSI measurements, laser microdissection (LMD) was used to cut out regions of interest with a homogenous signal intensity. The molar concentration of six exemplary selected membrane lipids from different lipid classes in these tissue regions was determined using quantitative nano-HPLC-ESI-MS. Comparison of molar concentrations and signal intensity revealed strong deviations between underlying concentration and the distribution suggested by MSI data. Determined signal intensity response factors strongly depend on tissue type and lipid species. Graphical abstract ![]()
Collapse
|
35
|
Eggeling F, Hoffmann F. Microdissection—An Essential Prerequisite for Spatial Cancer Omics. Proteomics 2020; 20:e2000077. [DOI: 10.1002/pmic.202000077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ferdinand Eggeling
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| | - Franziska Hoffmann
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| |
Collapse
|
36
|
van Huizen NA, Ijzermans JNM, Burgers PC, Luider TM. Collagen analysis with mass spectrometry. MASS SPECTROMETRY REVIEWS 2020; 39:309-335. [PMID: 31498911 DOI: 10.1002/mas.21600] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Ščupáková K, Balluff B, Tressler C, Adelaja T, Heeren RM, Glunde K, Ertaylan G. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin Chem Lab Med 2020; 58:914-929. [PMID: 31665113 PMCID: PMC9867918 DOI: 10.1515/cclm-2019-0858] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Mass spectrometry (MS) is the workhorse of metabolomics, proteomics and lipidomics. Mass spectrometry imaging (MSI), its extension to spatially resolved analysis of tissues, is a powerful tool for visualizing molecular information within the histological context of tissue. This review summarizes recent developments in MSI and highlights current challenges that remain to achieve molecular imaging at the cellular level of clinical specimens. We focus on matrix-assisted laser desorption/ionization (MALDI)-MSI. We discuss the current status of each of the analysis steps and remaining challenges to reach the desired level of cellular imaging. Currently, analyte delocalization and degradation, matrix crystal size, laser focus restrictions and detector sensitivity are factors that are limiting spatial resolution. New sample preparation devices and laser optic systems are being developed to push the boundaries of these limitations. Furthermore, we review the processing of cellular MSI data and images, and the systematic integration of these data in the light of available algorithms and databases. We discuss roadblocks in the data analysis pipeline and show how technology from other fields can be used to overcome these. Finally, we conclude with curative and community efforts that are needed to enable contextualization of the information obtained.
Collapse
Affiliation(s)
- Klára Ščupáková
- Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tobi Adelaja
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ron M.A. Heeren
- Corresponding author: Ron M.A. Heeren, Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands,
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gökhan Ertaylan
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
38
|
Implementation of MALDI Mass Spectrometry Imaging in Cancer Proteomics Research: Applications and Challenges. J Pers Med 2020; 10:jpm10020054. [PMID: 32580362 PMCID: PMC7354689 DOI: 10.3390/jpm10020054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Studying the proteome–the entire set of proteins in cells, tissues, organs and body fluids—is of great relevance in cancer research, as differential forms of proteins are expressed in response to specific intrinsic and extrinsic signals. Discovering protein signatures/pathways responsible for cancer transformation may lead to a better understanding of tumor biology and to a more effective diagnosis, prognosis, recurrence and response to therapy. Moreover, proteins can act as a biomarker or potential drug targets. Hence, it is of major importance to implement proteomic, particularly mass spectrometric, approaches in cancer research, to provide new crucial insights into tumor biology. Recently, mass spectrometry imaging (MSI) approaches were implemented in cancer research, to provide individual molecular characteristics of each individual tumor while retaining molecular spatial distribution, essential in the context of personalized disease management and medicine.
Collapse
|
39
|
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS One 2020; 15:e0231681. [PMID: 32555742 PMCID: PMC7299319 DOI: 10.1371/journal.pone.0231681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
40
|
Wu Y, Feng W, Liu R, Xia T, Liu S. Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver. ACS NANO 2020; 14:877-890. [PMID: 31891481 DOI: 10.1021/acsnano.9b08127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The liver is the primary organ to sequester nanodrugs, representing a substantial hurdle for drug delivery and raising toxicity concerns. However, the mechanistic details underlying the liver sequestration and effects on the liver are still elusive. The difficulty in studying the liver lies in its complexity, which is structured with stringently organized anatomical units called lobules. Graphene oxide (GO) has attracted attention for its applications in biomedicine, especially as a nanocarrier; however, its sequestration and effects in the liver, the major enrichment and metabolic organ, are less understood. Herein, we unveiled the differential distribution of GO in lobules in the liver, with a higher amount surrounding portal triad zones than the central vein zones. Strikingly, liver zonation patterns also changed, as reflected by changes in vital zonated genes involved in hepatocyte integrity and metabolism, leading to compromised hepatic functions. RNA-Seq and DNA methylation sequencing analyses unraveled that GO-induced changes in liver functional zonation could be ascribed to dysregulation of key signaling pathways governing liver zonation at not only mRNA transcriptions but also DNA methylation imprinting patterns, partially through TET-dependent signaling. Together, this study reveals the differential GO distribution pattern in liver lobules and pinpoints the genetic and epigenetic mechanisms in GO-induced liver zonation alterations.
Collapse
Affiliation(s)
- Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
41
|
Eveque-Mourroux MR, Rocha B, Barré FPY, Heeren RMA, Cillero-Pastor B. Spatially resolved proteomics in osteoarthritis: State of the art and new perspectives. J Proteomics 2020; 215:103637. [PMID: 31926309 DOI: 10.1016/j.jprot.2020.103637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/07/2019] [Accepted: 01/05/2020] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is one of the most common diseases worldwide caused by chronic degeneration of the joints. Its high prevalence and the involvement of several tissues define OA as a highly heterogeneous disease. New biological markers to evaluate the progression of the pathology and improve its prognosis are needed. Among all the different -omic strategies applied to OA, solution phase bottom-up proteomics has made an extensive contribution to the field of biomarker research. However, new technologies for protein analysis should be considered for a better understanding of the disease. This review focuses on complementary proteomic methodologies and new technologies for translational research of OA and other rheumatic pathologies, especially mass spectrometry imaging and protein imaging methods not applied by the OA community yet.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - B Rocha
- Proteomics Group-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR), INIBIC - Hospital Universitario de A Coruña, A Coruña, Spain
| | - F P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - R M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - B Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands.
| |
Collapse
|
42
|
Müller T, Kalxdorf M, Longuespée R, Kazdal DN, Stenzinger A, Krijgsveld J. Automated sample preparation with SP3 for low-input clinical proteomics. Mol Syst Biol 2020; 16:e9111. [PMID: 32129943 PMCID: PMC6966100 DOI: 10.15252/msb.20199111] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
High-throughput and streamlined workflows are essential in clinical proteomics for standardized processing of samples from a variety of sources, including fresh-frozen tissue, FFPE tissue, or blood. To reach this goal, we have implemented single-pot solid-phase-enhanced sample preparation (SP3) on a liquid handling robot for automated processing (autoSP3) of tissue lysates in a 96-well format. AutoSP3 performs unbiased protein purification and digestion, and delivers peptides that can be directly analyzed by LCMS, thereby significantly reducing hands-on time, reducing variability in protein quantification, and improving longitudinal reproducibility. We demonstrate the distinguishing ability of autoSP3 to process low-input samples, reproducibly quantifying 500-1,000 proteins from 100 to 1,000 cells. Furthermore, we applied this approach to a cohort of clinical FFPE pulmonary adenocarcinoma (ADC) samples and recapitulated their separation into known histological growth patterns. Finally, we integrated autoSP3 with AFA ultrasonication for the automated end-to-end sample preparation and LCMS analysis of 96 intact tissue samples. Collectively, this constitutes a generic, scalable, and cost-effective workflow with minimal manual intervention, enabling reproducible tissue proteomics in a broad range of clinical and non-clinical applications.
Collapse
Affiliation(s)
- Torsten Müller
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Mathias Kalxdorf
- German Cancer Research Center (DKFZ)HeidelbergGermany
- EMBLHeidelbergGermany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
| | - Daniel N Kazdal
- Institute of PathologyHeidelberg UniversityHeidelbergGermany
| | | | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
43
|
Dewez F, Martin-Lorenzo M, Herfs M, Baiwir D, Mazzucchelli G, De Pauw E, Heeren RMA, Balluff B. Precise co-registration of mass spectrometry imaging, histology, and laser microdissection-based omics. Anal Bioanal Chem 2019; 411:5647-5653. [PMID: 31263919 PMCID: PMC6704276 DOI: 10.1007/s00216-019-01983-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 11/26/2022]
Abstract
Mass spectrometry imaging (MSI) is an analytical technique for the unlabeled and multiplex imaging of molecules in biological tissue sections. It therefore enables the spatial and molecular annotations of tissues complementary to histology. It has already been shown that MSI can guide subsequent material isolation technologies such as laser microdissection (LMD) to enable a more in-depth molecular characterization of MSI-highlighted tissue regions. However, with MSI now reaching spatial resolutions at the single-cell scale, there is a need for a precise co-registration between MSI and the LMD. As proof-of-principle, MSI of lipids was performed on a breast cancer tissue followed by a segmentation of the data to detect molecularly distinct segments within its tumor areas. After image processing of the segmentation results, the coordinates of the MSI-detected segments were passed to the LMD system by three co-registration steps. The errors of each co-registration step were quantified and the total error was found to be less than 13 μm. With this link established, MSI data can now accurately guide LMD to excise MSI-defined regions of interest for subsequent extract-based analyses. In our example, the excised tissue material was then subjected to ultrasensitive microproteomics in order to determine predominant molecular mechanisms in each of the MSI-highlighted intratumor segments. This work shows how the strengths of MSI, histology, and extract-based omics can be combined to enable a more comprehensive molecular characterization of in situ biological processes.
Collapse
Affiliation(s)
- Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Mass Spectrometry Laboratory (L.S.M), University of Liège, 4000, Liège, Belgium
| | - Marta Martin-Lorenzo
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory (L.S.M), University of Liège, 4000, Liège, Belgium
| | | | - Edwin De Pauw
- Mass Spectrometry Laboratory (L.S.M), University of Liège, 4000, Liège, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A, Perry WJ, Cassat JE, Skaar EP, Caprioli RM, Spraggins JM. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Anal Chem 2019; 91:7578-7585. [PMID: 31149808 PMCID: PMC6652190 DOI: 10.1021/acs.analchem.8b05889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a liquid extraction surface analysis (LESA) workflow, termed microLESA, that allows proteomic profiling from discrete tissue features of ∼110 μm in diameter by integrating nondestructive autofluorescence microscopy and spatially targeted liquid droplet micro-digestion. Autofluorescence microscopy provides the visualization of tissue foci without the need for chemical stains or the use of serial tissue sections. Tryptic peptides are generated from tissue foci by applying small volume droplets (∼250 pL) of enzyme onto the surface prior to LESA. The microLESA workflow reduced the diameter of the sampled area almost 5-fold compared to previous LESA approaches. Experimental parameters, such as tissue thickness, trypsin concentration, and enzyme incubation duration, were tested to maximize proteomics analysis. The microLESA workflow was applied to the study of fluorescently labeled Staphylococcus aureus infected murine kidney to identify unique proteins related to host defense and bacterial pathogenesis. Proteins related to nutritional immunity and host immune response were identified by performing microLESA at the infectious foci and surrounding abscess. These identifications were then used to annotate specific proteins observed in infected kidney tissue by MALDI FT-ICR IMS through accurate mass matching.
Collapse
Affiliation(s)
- Daniel J. Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nicole E. Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aimee D. Wilde
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - William J. Perry
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - James E. Cassat
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- United States (U.S.) Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave South #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| |
Collapse
|
45
|
Gilmore IS, Heiles S, Pieterse CL. Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:201-224. [PMID: 30848927 DOI: 10.1146/annurev-anchem-061318-115516] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is an increasing appreciation that every cell, even of the same type, is different. This complexity, when additionally combined with the variety of different cell types in tissue, is driving the need for spatially resolved omics at the single-cell scale. Rapid advances are being made in genomics and transcriptomics, but progress in metabolomics lags. This is partly because amplification and tagging strategies are not suited to dynamically created metabolite molecules. Mass spectrometry imaging has excellent potential for metabolic imaging. This review summarizes the recent advances in two of these techniques: matrix-assisted laser desorption ionization (MALDI) and secondary ion mass spectrometry (SIMS) and their convergence in subcellular spatial resolution and molecular information. The barriers that have held back progress such as lack of sensitivity and the breakthroughs that have been made including laser-postionization are highlighted as well as the future challenges and opportunities for metabolic imaging at the single-cell scale.
Collapse
Affiliation(s)
- Ian S Gilmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom; k
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Cornelius L Pieterse
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom; k
| |
Collapse
|
46
|
Duncan KD, Lanekoff I. Spatially Defined Surface Sampling Capillary Electrophoresis Mass Spectrometry. Anal Chem 2019; 91:7819-7827. [DOI: 10.1021/acs.analchem.9b01516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Duncan
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
47
|
Demarais NJ, Donaldson PJ, Grey AC. Age-related spatial differences of human lens UV filters revealed by negative ion mode MALDI imaging mass spectrometry. Exp Eye Res 2019; 184:146-151. [PMID: 31004573 DOI: 10.1016/j.exer.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Tryptophan-derived UV filters are predominantly found in the lenses of primates and humans. While protective against UV radiation, aging alters the complement and spatial distributions of human lens UV filters, and a role for UV filters has been suggested in age-related cataract formation. To establish how the spatial distributions of UV filters change in normal human lens aging, matrix assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) was utilised to map the locations and relative abundance of multiple UV filters simultaneously. Frozen human lenses were cryosectioned axially, and the 20 μm-thick sections coated with MALDI matrix via robotic sprayer and analysed using negative ion mode MALDI-Fourier transform-ion cyclotron resonance MS. While signal for many UV filters was detected throughout the lenses, signal intensity was generally highest in the central (embryonic) nucleus and decreased uniformly in outer (foetal, juvenile, adult) nuclear and cortical regions, and many UV filter signals declined with age. In contrast, two antioxidant-conjugated UV filters (Cys-3-OHKG and GSH-3-OHKG) were restricted to the lens nucleus and their relative signal increased with increasing lens age. The enhanced spatial resolution of MALDI-IMS over manual trephine dissection techniques and its multiplex capability allowed the spatial relationships between lens UV filters to be established and explored in relation to aging. Together these results confirmed that the complement of UV filters in each lens is dynamic and undergoes significant age-related changes. In the future, this information could be used to compare with other lens biomolecule changes to better understand the lens aging process and age-related cataract formation.
Collapse
Affiliation(s)
- Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
48
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
49
|
Laser capture microdissection: techniques and applications in liver diseases. Hepatol Int 2019; 13:138-147. [DOI: 10.1007/s12072-018-9917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
|
50
|
Piga I, Casano S, Smith A, Tettamanti S, Leni D, Capitoli G, Pincelli AI, Scardilli M, Galimberti S, Magni F, Pagni F. Update on: proteome analysis in thyroid pathology - part II: overview of technical and clinical enhancement of proteomic investigation of the thyroid lesions. Expert Rev Proteomics 2018; 15:937-948. [PMID: 30290700 DOI: 10.1080/14789450.2018.1532793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION An accurate diagnostic classification of thyroid lesions remains an important clinical aspect that needs to be addressed in order to avoid 'diagnostic' thyroidectomies. Among the several 'omics' techniques, proteomics is playing a pivotal role in the search for diagnostic markers. In recent years, different approaches have been used, taking advantage of the technical improvements related to mass spectrometry that have occurred. Areas covered: The review provides an update of the recent findings in diagnostic classification, in genetic definition and in the investigation of thyroid lesions based on different proteomics approaches and on different type of specimens: cytological, surgical and biofluid samples. A brief section will discuss how these findings can be integrated with those obtained by metabolomics investigations. Expert commentary: Among the several proteomics approaches able to deepen our knowledge of the molecular alterations of the different thyroid lesions, MALDI-MSI is strongly emerging above all. In fact, MS-imaging has also been demonstrated to be capable of distinguishing thyroid lesions, based on their different molecular signatures, using cytological specimens. The possibility to use the material obtained by the fine needle aspiration makes MALDI-MSI a highly promising technology that could be implemented into the clinical and pathological units.
Collapse
Affiliation(s)
- Isabella Piga
- a Department of Medicine and Surgery , University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit , Vedano al Lambro , Italy.,b Department of Medicine and Surgery , University of Milano-Bicocca, Section of Pathology , Monza , Italy
| | - Stefano Casano
- b Department of Medicine and Surgery , University of Milano-Bicocca, Section of Pathology , Monza , Italy
| | - Andrew Smith
- a Department of Medicine and Surgery , University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit , Vedano al Lambro , Italy
| | - Silvia Tettamanti
- a Department of Medicine and Surgery , University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit , Vedano al Lambro , Italy
| | - Davide Leni
- c Department of Radiology , San Gerardo Hospital , Monza , Italy
| | - Giulia Capitoli
- d Department of Medicine and Surgery , University of Milano-Bicocca, Centre of Biostatistics for Clinical Epidemiology , Monza , Italy
| | | | | | - Stefania Galimberti
- d Department of Medicine and Surgery , University of Milano-Bicocca, Centre of Biostatistics for Clinical Epidemiology , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit , Vedano al Lambro , Italy
| | - Fabio Pagni
- b Department of Medicine and Surgery , University of Milano-Bicocca, Section of Pathology , Monza , Italy
| |
Collapse
|