1
|
Shan X, Zou Z, Mi Z, Tong K, Hou C. Preparation of Smart Self-Healing Coatings on Zinc Surfaces Using Halloysite Nanotubes Loaded with Corrosion Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25236-25249. [PMID: 39531671 DOI: 10.1021/acs.langmuir.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work presents the development of a novel nanotube (S12HNTS-T-P) that is coated with polyethylenimine (PEI) and internally loaded with a corrosion inhibitor (thiourea) utilizing vacuum negative pressure and electrostatic adsorption methods. A smart self-healing coating with self-repairing properties was fabricated on the basis of S12HNTS-T-P. Bis[3-(triethoxysilyl)propyl]tetrasulfide (Si69), a widely used organosilane coupling agent, provides stability and corrosion resistance. The integration of S12HNTS-T-P into Si69 significantly enhances the coating's corrosion resistance and self-healing capabilities. To further evaluate the performance of the smart self-healing coating, a control group comprising Si69 coatings without S12HNTS-T-P was established. Electrochemical tests revealed that the coating with 3 wt % S12HNTS-T-P exhibited markedly superior corrosion resistance compared to those with 0, 1, and 5 wt % S12HNTS-T-P. In comparison to the control group, the coating with 3 wt % S12HNTS-T-P demonstrated a 99.4% increase in corrosion inhibition efficiency after 72 h of immersion in a 3.5 wt % NaCl solution. Scanning electron microscopy (SEM) and immersion tests further corroborated that the smart self-healing coating exhibited self-repairing behavior when subjected to external scratching stimuli. Simulation results indicated that thiourea released from the nanotubes can adsorb and form a protective film at the scratch sites, effectively repairing the coating's defects. The exceptional corrosion resistance and high healing rates of the smart self-healing coating suggest that S12HNTS-T-P plays a pivotal role in enhancing the corrosion protection of zinc.
Collapse
Affiliation(s)
- Xichang Shan
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhongli Zou
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhijuan Mi
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kunmin Tong
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Chunping Hou
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
2
|
Wu S, Xiang Y, Cai Y, Liu J. Superhydrophobic magnetic Fe 3O 4 polyurethane sponges for oil-water separation and oil-spill recovery. J Environ Sci (China) 2024; 139:160-169. [PMID: 38105044 DOI: 10.1016/j.jes.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 12/19/2023]
Abstract
The effective and affordable separation of oil and water, a crucial process in the safe handling of environmental disasters such as crude oil spills and recovery of valuable resources, is a highly sought-after yet challenging task. Herein, superhydrophobic PU sponge was fabricated for the fast and cost-effective adsorptive separation of oil and different organic solvents from water. Octadecyltrichlorosilane (OTS)-functionalized Fe3O4@SiO2 core-shell microspheres were dip-coated on the surface of porous materials via a dip-coating process, thereby endowing them with superhydrophobicity. Owing to the hydrophobic interaction between OTS molecules and oil and increased capillary force in the micropores, the resulting superhydrophobic sponge served as a selective oil-sorbent scaffold for absorbing oil from oil-water mixtures, including oil-water suspensions and emulsions. Remarkably, after the recovery of the adsorbed oil via mechanical extrusion, these superhydrophobic materials could be reused multiple times and maintain their oil-water separation efficacy even after 10 oil-water separation cycles.
Collapse
Affiliation(s)
- Shiyu Wu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunjie Xiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yaqi Cai
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Mastrangelo R, Chelazzi D, Baglioni P. New horizons on advanced nanoscale materials for Cultural Heritage conservation. NANOSCALE HORIZONS 2024; 9:566-579. [PMID: 38264785 DOI: 10.1039/d3nh00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanomaterials have permeated numerous scientific and technological fields, and have gained growing importance over the past decades also in the preservation of Cultural Heritage. After a critical overview of the main nanomaterials adopted in art preservation, we provide new insights into some highly relevant gels, which constitute valuable tools to selectively remove dirt or other unwanted layers from the surface of works of art. In particular, the recent "twin-chain" gels, obtained by phase separation of two different PVAs and freeze-thawing, were considered as the most performing gel systems for the cleaning of Cultural Heritage. Three factors are crucial in determining the final gel properties, i.e., pore size, pore connectivity, and surface roughness, which belong to the micro/nanodomain. The pore size is affected by the molecular weight of the phase-separating PVA polymer, while pore connectivity and tortuosity likely depend on interconnections formed during gelation. Tortuosity greatly impacts on cleaning capability, as the removal of matter at the gel-target interface increases with the uploaded fluid's residence time at the interface (higher tortuosity produces longer residence). The gels' surface roughness, adaptability and stickiness can also be controlled by modulating the porogen amount or adding different polymers to PVA. Finally, PVA can be partially replaced with different biopolymers yielding gels with enhanced sustainability and effective cleaning capability, where the selection of the biopolymer affects the gel porosity and effectiveness. These results shed new light on the effect of micro/nanoscale features on the cleaning performances of "twin-chain" and composite gels, opening new horizons for advanced and "green"/sustainable gel materials that can impact on fields even beyond art preservation, like drug-delivery, detergency, food industry, cosmetics and tissue engineering.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - David Chelazzi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| |
Collapse
|
4
|
Makurat-Kasprolewicz B, Ossowska A. Electrophoretically deposited titanium and its alloys in biomedical engineering: Recent progress and remaining challenges. J Biomed Mater Res B Appl Biomater 2024; 112:e35342. [PMID: 37905698 DOI: 10.1002/jbm.b.35342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/23/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Over the past decade, titanium implants have gained popularity as the number of performed implantation operations has significantly increased. There are a number of methods for modifying the surface of biomaterials, which are aimed at extending the life of titanium implants. The developments in this field in recent years have required a comprehensive discussion of all the properties of electrophoretically deposited coatings on titanium and its alloys, taking into account their bioactivity. The development that took place in this field in recent years required a comprehensive discussion of all the properties of coatings electrophoretically deposited on titanium and its alloys, with particular emphasis on their bioactivity. Herein, we attempt to assess the influence of the electrophoretic deposition (EPD) process parameters on these coatings' biological and mechanical properties. Particular attention has been addressed to the in-vitro and in-vivo studies conducted hitherto. We have seen an increased interest in using titanium alloys without the addition of toxic compounds and gaps in the EPD field such as the uncommon endeavors to develop a "Design of experiments" approach as well as the lack of assessment of the surface free energy and detailed topography of electrophoretically deposited coatings. The exact correlation of coating properties with EPD process parameters still seems explicitly not understood, necessitating more future investigations. Ipso facto, the exact mechanism of particle agglomeration and Hamaker's law need to be fathomable.
Collapse
Affiliation(s)
| | - Agnieszka Ossowska
- Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
5
|
Maximov P, Dasi E, Kalinina N, Ruban A, Pokidko B, Rudmin M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6729. [PMID: 37895713 PMCID: PMC10608737 DOI: 10.3390/ma16206729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
This study reports on the development of nanocomposites utilizing a mineral inhibitor and a micronutrient filler. The objective was to produce a slow release fertilizer, with zinc sulfate as the filler and halloysite nanotubes as the inhibitor. The study seeks to chemically activate the intercalation of zinc into the macro-, meso-, and micropores of the halloysite nanotubes to enhance their performance. As a result, we obtained three nanocomposites in zinc sulfate solution with concentrations of 2%, 20%, and 40%, respectively, which we named Hly-7Å-Zn2, Hly-7Å-Zn20, and Hly-7Å-Zn40. We investigated the encapsulation of zinc sulfate in halloysite nanotubes using X-ray diffraction analysis, transmission electron spectroscopy, infrared spectroscopy (FTIR), and scanning electron microscopy with an energy-dispersive spectrometer. No significant changes were observed in the initial mineral parameters when exposed to a zinc solution with a concentration of 2 mol%. It was proven that zinc was weakly intercalated in the micropore space of the halloysite through the increase in its interlayer distance from 7.2 to 7.4. With an increase in the concentration of the reacted solution, the average diameter of the nanotubes increased from 96 nm to 129 nm, indicating that the macropore space of the nanotubes, also known as the "site", was filled. The activated nanocomposites exhibit a maximum fixed content of adsorbed zinc on the nanotube surface of 1.4 wt%. The TEM images reveal an opaque appearance in the middle section of the nanotubes. S SEM images revealed strong adhesion of halloysite nanotubes to plant tissues. This property guarantees prolonged retention of the fertilizer on the plant surface and its resistance to leaching through irrigation or rainwater. Surface spraying of halloysite nanotubes offers accurate delivery of zinc to plants and prevents soil and groundwater contamination, rendering this fertilizer ecologically sound. The suggested approach of activating halloysite with a zinc solution appears to be a possible route forward, with potential for the production of tailored fertilizers in the days ahead.
Collapse
Affiliation(s)
- Prokopiy Maximov
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Evan Dasi
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Natalia Kalinina
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Ruban
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Boris Pokidko
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS), 119017 Moscow, Russia
| | - Maxim Rudmin
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| |
Collapse
|
6
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
9
|
Xu P, Zhou Y, Wang C, Cao Z, Cheng H. Conductive halloysite nanotubes/polypyrrole cathodes prepared by one-step in situ polymerization for zinc-ion batteries. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Zagni C, Scamporrino AA, Riccobene PM, Floresta G, Patamia V, Rescifina A, Carroccio SC. Portable Nanocomposite System for Wound Healing in Space. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:741. [PMID: 36839109 PMCID: PMC9961582 DOI: 10.3390/nano13040741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | - Paolo Maria Riccobene
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sabrina Carola Carroccio
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
11
|
Biribicchi C, Macchia A, Favero G, Strangis R, Gabriele B, Mancuso R, La Russa MF. Sustainable solutions for removing aged wax-based coatings from cultural heritage: exploiting hydrophobic deep eutectic solvents (DESs). NEW J CHEM 2023. [DOI: 10.1039/d3nj00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Hydrophobic deep eutectic solvents as suitable alternatives to toxic solvents used in the conservation of Cultural Heritage sector.
Collapse
Affiliation(s)
- Chiara Biribicchi
- Department of Earth Sciences, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy
| | - Andrea Macchia
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via Pietro Bucci 12/B, 87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Favero
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romina Strangis
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via Pietro Bucci 12/B, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
12
|
Thermal and Mechanical Characterization of Yarn Samples from Flemish Tapestry of the Sixteenth Century. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238450. [PMID: 36500542 PMCID: PMC9737756 DOI: 10.3390/molecules27238450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
We propose a physico-chemical approach for theharacterization of the conservation condition of yarns from a Flemish tapestry of the sixteenth century. The aging effect on the yarns' performance was evaluated by comparison with commercial materials. Water uptake experiments highlighted the aptitude of yarns toward water sorption and their increased hydrophilicity upon aging. Thermogravimetric analysis can be considered a fast approach for the fiber identification and assessment on the material life-time. The dynamic mechanical analysis provided direct evidence on the yarns, conservation state and their performance under different mechanical stresses. The proposed characterization path can be relevant for stating the condition of the tapestry and for designing a conservation protocol for the preservation of the artwork.
Collapse
|
13
|
Preparation of stearic acid/halloysite intercalation compound and their reinforcement for styrene butadiene rubber composite. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
14
|
Fluorinated graphene nanosheet supported halloysite nanoarchitectonics: Super-wetting coatings for efficient and recyclable oil sorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Aydın K, Sevim H, Can HK. Insight into the fabrication, characterization, and in vitro cytotoxicity studies approaches of halloysite-based functional anhydride containing polymer nanocomposites. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Kübra Aydın
- Division of Polymer Chemistry, Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Handan Sevim
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hatice Kaplan Can
- Division of Polymer Chemistry, Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Duraivel M, Nagappan S, Park KH, Ha CS, Prabakar K. Transition metal oxy/hydroxides functionalized flexible halloysite nanotubes for hydrogen evolution reaction. J Colloid Interface Sci 2022; 618:518-528. [PMID: 35366479 DOI: 10.1016/j.jcis.2022.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The hierarchical halloysite nanotubes (HNT) have alumina containing positive Al-OH groups on its inner surface and silica-containing negative siloxane groups of Si-O-Si on its outer surface. The silicate laminate consists of silicon-oxygen at tetrahedral sites and aluminum-oxygen at octahedral sites. Since HNT has an abundant hydroxyl group on the surface with exceptional cation/anion exchange capacity, the surface-functionalized HNT could boost electrocatalytic activity. Hence, we have synthesized Ni, Co, and Cu metal oxy/hydroxides functionalized HNT by a facile hydrothermal method for HER. Among them, Co(OH)2@HNT on flexible carbon cloth displays an ultra-low overpotential of 65 mV at 10 mA cm-2 current density and Tafel slope of 181 mV dec-1 and also exhibited a larger exchange current density of 3.98 mA cm-2 in alkaline 1 M KOH electrolyte due to superior electrostatic affinity between OH- and Co2+. The electrolyzers with anion exchange membrane consisting of RuO2||Co(OH)2@HNT show remarkable stability of over 50 h at 10 mA cm-2 in alkaline electrolyte. The post stability sample retains the same surface oxidation state which confirms the robustness of the electrocatalyst. The reported results are far better than many of the transition metal oxides/chalcogenides electrocatalysts and hence it is expected that HNT could act as a potential alternative candidate to replace the benchmark platinum catalyst.
Collapse
Affiliation(s)
- Malarkodi Duraivel
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Saravanan Nagappan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
17
|
Feng M, Li M, Zhang L, Luo Y, Zhao D, Yuan M, Zhang K, Wang F. Oyster Shell Modified Tobacco Straw Biochar: Efficient Phosphate Adsorption at Wide Range of pH Values. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7227. [PMID: 35742476 PMCID: PMC9223713 DOI: 10.3390/ijerph19127227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
In order to improve the phosphate adsorption capacity of Ca-loaded biochar at a wide range of pH values, Ca (oyster shell) was loaded as Ca(OH)2 on the tobacco stalk biochar (Ca-BC), which was prepared by high-temperature calcination, ultrasonic treatment, and stirring impregnation method. The phosphorus removal performance of Ca-BC adsorption was studied by batch adsorption experiments, and the mechanism of Ca-BC adsorption and phosphorus removal was investigated by SEM-EDS, FTIR, and XRD. The results showed that after high-temperature calcination, oyster shells became CaO, then converted into Ca(OH)2 in the process of stirring impregnation and had activated the pore expansion effect of biochar. According to the Langmuir model, the adsorption capacity of Ca-BC for phosphate was 88.64 mg P/g, and the adsorption process followed pseudo-second-order kinetics. The Ca(OH)2 on the surface of biochar under the initial pH acidic condition preferentially neutralizes with H+ acid-base in solution, so that Ca-BC chemically precipitates with phosphate under alkaline conditions, which increases the adsorption capacity by 3-15 times compared with other Ca-loaded biochar. Ca-BC phosphate removal rate of livestock wastewater (pig and cattle farms) is 91~95%, whereas pond and domestic wastewater can be quantitatively removed. This study provides an experimental basis for efficient phosphorus removal by Ca-modified biochar and suggesting possible applications in real wastewater.
Collapse
Affiliation(s)
- Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, West Yunnan University of Applied Sciences, Dali 671004, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, West Yunnan University of Applied Sciences, Dali 671004, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Yuan Luo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Di Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, West Yunnan University of Applied Sciences, Dali 671004, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (M.F.); (M.L.); (L.Z.); (Y.L.); (D.Z.); (M.Y.); (K.Z.)
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, West Yunnan University of Applied Sciences, Dali 671004, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali 671004, China
| |
Collapse
|
18
|
Cascione M, De Matteis V, Persano F, Leporatti S. AFM Characterization of Halloysite Clay Nanocomposites' Superficial Properties: Current State-of-the-Art and Perspectives. MATERIALS 2022; 15:ma15103441. [PMID: 35629468 PMCID: PMC9146693 DOI: 10.3390/ma15103441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023]
Abstract
Natural halloysite clay nanotubes (HNTs) are versatile inorganic reinforcing materials for creating hybrid composites. Upon doping HNTs with polymers, coating, or loading them with bioactive molecules, the production of novel nanocomposites is possible, having specific features for several applications. To investigate HNTs composites nanostructures, AFM is a very powerful tool since it allows for performing nano-topographic and morpho-mechanical measurements in any environment (air or liquid) without treatment of samples, like electron microscopes require. In this review, we aimed to provide an overview of recent AFM investigations of HNTs and HNT nanocomposites for unveiling hidden characteristics inside them envisaging future perspectives for AFM as a smart device in nanomaterials characterization.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Department of Mathematics & Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (V.D.M.); (F.P.)
- Correspondence: (M.C.); (S.L.); Tel.: +39-0832-319829 (S.L.)
| | - Valeria De Matteis
- Department of Mathematics & Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (V.D.M.); (F.P.)
| | - Francesca Persano
- Department of Mathematics & Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (V.D.M.); (F.P.)
- CNR Nanotec—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Correspondence: (M.C.); (S.L.); Tel.: +39-0832-319829 (S.L.)
| |
Collapse
|
19
|
Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. CRYSTALS 2022. [DOI: 10.3390/cryst12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Geopolymer concrete (GPC) is a new material in the construction industry, with different chemical compositions and reactions involved in a binding material. The pozzolanic materials (industrial waste like fly ash, ground granulated blast furnace slag (GGBFS), and rice husk ash), which contain high silica and alumina, work as binding materials in the mix. Geopolymer concrete is economical, low energy consumption, thermally stable, easily workable, eco-friendly, cementless, and durable. GPC reduces carbon footprints by using industrial solid waste like slag, fly ash, and rice husk ash. Around one tonne of carbon dioxide emissions produced one tonne of cement that directly polluted the environment and increased the world’s temperature by increasing greenhouse gas production. For sustainable construction, GPC reduces the use of cement and finds the alternative of cement for the material’s binding property. So, the geopolymer concrete is an alternative to Portland cement concrete and it is a potential material having large commercial value and for sustainable development in Indian construction industries. The comprehensive survey of the literature shows that geopolymer concrete is a perfect alternative to Portland cement concrete because it has better physical, mechanical, and durable properties. Geopolymer concrete is highly resistant to acid, sulphate, and salt attack. Geopolymer concrete plays a vital role in the construction industry through its use in bridge construction, high-rise buildings, highways, tunnels, dams, and hydraulic structures, because of its high performance. It can be concluded from the review that sustainable development is achieved by employing geopolymers in Indian construction industries, because it results in lower CO2 emissions, optimum utilization of natural resources, utilization of waste materials, is more cost-effective in long life infrastructure construction, and, socially, in financial benefits and employment generation.
Collapse
|
20
|
Balbas DQ, Cirrincione C, Cimò M, Lanterna G, Pizzo B, Fontana R, Striova J. Evaluation of an eco-friendly flame retardant treatment applied to cellulosic textiles used for the conservation of historical tapestries. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Geopolymers and Functionalization Strategies for the Development of Sustainable Materials in Construction Industry and Cultural Heritage Applications: A Review. MATERIALS 2022; 15:ma15051725. [PMID: 35268955 PMCID: PMC8910959 DOI: 10.3390/ma15051725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023]
Abstract
In the last decades, new synthetic hybrid materials, with an inorganic and organic nature, have been developed to promote their application as protective coatings and/or structural consolidants for several substrates in the construction industry and cultural heritage field. In this context, the scientific community paid attention to geopolymers and their new hybrid functional derivatives to design and develop innovative and sustainable composites with better chemical resistance, durability and mechanical characteristics. This review offers an overview of the latest progress in geopolymer-based hybrid nanofunctional materials and their use to treat and restore cultural heritage, as well as their employment in the building and architectural engineering field. In addition, it discusses the influence of some parameters, such as the chemical and physical characteristics of the substrates, the dosage of the alkaline activator, and the curing treatment, which affect their synthesis and performance.
Collapse
|
22
|
Abu El-Soad AM, Lazzara G, Abd El-Magied MO, Cavallaro G, Al-Otaibi JS, Sayyed MI, Kovaleva EG. Chitosan Functionalized with Carboxyl Groups as a Recyclable Biomaterial for the Adsorption of Cu (II) and Zn (II) Ions in Aqueous Media. Int J Mol Sci 2022; 23:2396. [PMID: 35216511 PMCID: PMC8875004 DOI: 10.3390/ijms23042396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The modification of chitosan represents a challenging task in obtaining biopolymeric materials with enhanced removal capacity for heavy metals. In the present work, the adsorption characteristics of chitosan modified with carboxyl groups (CTS-CAA) towards copper (II) and zinc (II) ions have been tested. The efficacy of the synthesis of CTS-CAA has been evaluated by studying various properties of the modified chitosan. Specifically, the functionalized chitosan has been characterized by using several techniques, including thermal analyses (differential scanning calorimetry and thermogravimetry), spectroscopies (FT-IR, XRD), elemental analysis, and scanning electron microscopy. The kinetics and the adsorption isotherms of CTS-CAA towards both Cu (II) and Zn (II) have been determined in the aqueous solvent under variable pH. The obtained results have been analyzed by using different adsorption models. In addition, the experiments have been conducted at variable temperatures to explore the thermodynamics of the adsorption process. The regeneration of CTS-CAA has been investigated by studying the desorption process using different eluents. This paper reports an efficient protocol to synthesize chitosan-based material perspective as regenerative adsorbents for heavy metals.
Collapse
Affiliation(s)
- Asmaa M. Abu El-Soad
- Department of Technology of Organic Synthesis, Institute of Chemical Technology, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia;
- Nuclear Materials Authority, El Maadi, Cairo 11381, Egypt;
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Parco d’Orleans II, Ed. 17, 90128 Palermo, Italy;
| | | | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Parco d’Orleans II, Ed. 17, 90128 Palermo, Italy;
| | - Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - M. I. Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan;
- Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU), Dammam 31441, Saudi Arabia
| | - Elena G. Kovaleva
- Department of Technology of Organic Synthesis, Institute of Chemical Technology, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia;
| |
Collapse
|
23
|
Zhu Y, Wang A. Pickering emulsions and foams stabilization based on clay minerals. DEVELOPMENTS IN CLAY SCIENCE 2022:169-227. [DOI: 10.1016/b978-0-323-91858-9.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. FORESTS 2021. [DOI: 10.3390/f13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conserving the world’s cultural and natural heritage is considered a key contributor to achieving the targets set out in the United Nation’s Sustainable Development Goals, yet how much attention do we pay to the methods we use to conserve and protect this heritage? With a specific focus on wooden objects of cultural heritage, this review discusses the current state-of-the-art in heritage conservation in terms of sustainability, sustainable alternatives to currently used consolidants, and new research directions that could lead to more sustainable consolidants in the future. Within each stage a thorough discussion of the synthesis mechanisms and/or extraction protocols, particularly for bio-based resources is provided, evaluating resource usage and environmental impact. This is intended to give the reader a better understanding of the overall sustainability of each different approach and better evaluate consolidant choices for a more sustainable approach. The challenges facing the development of sustainable consolidants and recent research that is likely to lead to highly sustainable new consolidant strategies in the future are also discussed. This review aims to contribute to the ongoing discussion of sustainable conservation and highlight the role that consolidants play in truly sustainable heritage conservation.
Collapse
|
25
|
Wang S, Yang X, Li Y, Gao B, Jin S, Yu R, Zhang Y, Tang Y. Colloidal magnesium hydroxide Nanoflake: One-Step Surfactant-Assisted preparation and Paper-Based relics protection with Long-Term Anti-Acidification and Flame-Retardancy. J Colloid Interface Sci 2021; 607:992-1004. [PMID: 34571317 DOI: 10.1016/j.jcis.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Enhancing the interfacial dispersion and suspension stability is crucial for magnesium hydroxide (Mg(OH)2) nanomaterials in the long-term deacidification of paper-based cultural relics. However, because of the low specific surface area and the poor solvent compatibility of as-prepared large-sized Mg(OH)2, it often tends to agglomerate and settle down during the usage and storage, that is harmful for paper protection due to its unevenly deacidification and nonuniformly distribution on paper cellulose. Herein, we propose a feasible preparation of colloidal Mg(OH)2 ultrathin nanoflakes with high dispersion stability via a simple one-step surfactant-assisted strategy. The surfactant acts as both a structure-direct agent to confine the growth of Mg(OH)2 with rich active sites and a surface modifier to enhance its solvent adaptability and dispersion stability, avoiding the common fussy procedure with additional steric stabilizer. Owing to the evenly interaction with free acid species therein and the uniformly distribution on the paper fiber as alkaline reserve, the as-obtained Mg(OH)2 presents the superior paper protection performance characterized by its safer pH of 7.29 for the original aged paper (pH = 5.03) and the excellent long-term anti-acidification effect with competitive pH of 5.47 after accelerated-aging at 105 °C for 5 months. Furthermore, Mg(OH)2 nanoflakes with surfactant-modified structure also endue them as an improved flame retardant for multifunctional paper protection. The protection with Mg(OH)2 has little effect on the paper surface properties and cellulose crystallinity, in line with the principle of least intervention. This work will put forward a feasible way toward colloidal Mg(OH)2 nanoflakes with excellent paper protection performance, shedding light on the development of emerging protection materials for paper-based cultural relics.
Collapse
Affiliation(s)
- Sinong Wang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, PR China.
| | - Xue Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, PR China
| | - Yihan Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, PR China
| | - Boxu Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, PR China
| | - Shanshan Jin
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, PR China
| | - Rong Yu
- Chinese Rare Books Department, Fudan University Library, Fudan University, Shanghai 200433, PR China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, PR China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
26
|
Broda M, Spear MJ, Curling SF, Ormondroyd GA. The Viscoelastic Behaviour of Waterlogged Archaeological Wood Treated with Methyltrimethoxysilane. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5150. [PMID: 34576374 PMCID: PMC8467558 DOI: 10.3390/ma14185150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/09/2023]
Abstract
Waterlogged wood treatment with methyltrimethoxysilane (MTMS) proved effective in stabilising wood dimensions upon drying (anti-shrink efficiency of 76-93%). Before the method can be proposed as a reliable conservation treatment, further research is required that includes the evaluation of the mechanical properties of treated wood. The aim of the study was to characterise the effect of the treatment on the viscoelastic behaviour of archaeological waterlogged elm and oak wood differing in the degree of degradation. Dynamic mechanical analysis in the temperature range from -150 to +150 °C was used for the study. To better understand the viscoelastic behaviour of the treated wood, pore structure and moisture properties were also investigated using Scanning Electron Microscopy, nitrogen sorption, and Dynamic Vapour Sorption. The results clearly show that methyltrimethoxysilane not only prevents collapse and distortions of the degraded cell walls and decreases wood hygroscopicity (by more than half for highly degraded wood), but also reinforces the mechanical strength by increasing stiffness and resistance to deformation for heavily degraded wood (with an increase in storage modulus). However, the MTMS also has a plasticising effect on treated wood, as observed in the increased value of loss modulus and introduction of a new tan δ peak). On the one hand, methyltrimethoxysilane reduces wood hygroscopicity that reflects in lower wood moisture content, thus limiting the plasticising effect of water on wood polymers, but on the other hand, as a polymer itself, it contributes to the viscous behaviour of the treated wood. Interestingly, the effect of silane differs with both the wood species and the degree of wood degradation.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
- BioComposites Centre, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK; (M.J.S.); (S.F.C.); (G.A.O.)
| | - Morwenna J. Spear
- BioComposites Centre, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK; (M.J.S.); (S.F.C.); (G.A.O.)
| | - Simon F. Curling
- BioComposites Centre, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK; (M.J.S.); (S.F.C.); (G.A.O.)
| | - Graham A. Ormondroyd
- BioComposites Centre, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK; (M.J.S.); (S.F.C.); (G.A.O.)
| |
Collapse
|
27
|
Abstract
This paper reviews the degradation, preservation and conservation of waterlogged archaeological wood. Degradation due to bacteria in anoxic and soft-rot fungi and bacteria in oxic waterlogged conditions is discussed with consideration of the effect on the chemical composition of wood, as well as the deposition of sulphur and iron within the structure. The effects on physical properties are also considered. The paper then discusses the role of consolidants in preserving waterlogged archaeological wood after it is excavated as well as issues to be considered when reburial is used as a means of preservation. The use of alum and polyethylene glycol (PEG) as consolidants is presented along with various case studies with particular emphasis on marine artefacts. The properties of consolidated wood are examined, especially with respect to the degradation of the wood post-conservation. Different consolidants are reviewed along with their use and properties. The merits and risks of reburial and in situ preservation are considered as an alternative to conservation.
Collapse
|
28
|
Jullakan S, Bunkoed O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122900. [PMID: 34418797 DOI: 10.1016/j.jchromb.2021.122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
A composite adsorbent composed of metallic copper (Cu), polypyrrole (PPy), halloysite nanotubes (HNTs) and magnetite nanoparticles (Fe3O4) was developed to extract and enrich sulfonamides by dispersive magnetic solid phase extraction. The composite could adsorb sulfonamides via hydrogen bonding and hydrophobic, π-π and π-electron-metal interactions. The extraction conditions were optimized and the developed composite adsorbent was characterized and provided a large surface area that enhanced extraction efficiency for sulfonamides. Coupled with high performance liquid chromatography, the adsorbent was used to quantitatively determine sulfonamides found in milk samples. The response of the developed method exhibited linearity from 5.0 to 150.0 μg kg-1 for sulfathiazole, and from 2.5 to 100.0 μg kg-1 for sulfamerazine, sulfamonomethoxine and sulfadimethoxine. Limits of detection were between 2.5 and 5.0 μg kg-1. Recoveries of sulfonamides in milk samples ranged from 83.0 to 99.2% with RSDs lower than 6%. The developed composite adsorbent showed good reproducibility and reusability.
Collapse
Affiliation(s)
- Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
29
|
Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Baglioni M, Poggi G, Chelazzi D, Baglioni P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021; 26:molecules26133967. [PMID: 34209620 PMCID: PMC8271397 DOI: 10.3390/molecules26133967] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.
Collapse
|
31
|
Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modified halloysite nanotubes (HNTs-Cl) were synthesized by a coupling reaction with (3-chloropropyl) trimethoxysilane (CPTMS). The incorporation of chloro-silane onto HNTs surface creates HNTs-Cl, which has great chemical activity and is considered a good candidate as an active site that reacts with other active molecules in order to create new materials with great applications in chemical engineering and nanotechnology. The value of this work lies in the fact that improving the degree of grafting of chloro-silane onto the HNT’s surface has been accomplished by incorporation of HNTs with CPTMS under different experimental conditions. Many parameters, such as the dispersing media, the molar ratio of HNTs/CPTMS/H2O, refluxing time, and the type of catalyst were studied. The greatest degree of grafting was accomplished by using toluene as a medium for the grafting process, with a molar ratio of HNTs/CPTMS/H2O of 1:1:3, and a refluxing time of 4 h. The addition of 7.169 mmol of triethylamine (Et3N) and 25.97 mmol of ammonium hydroxide (NH4OH) led to an increase in the degree of grafting of CPTMS onto the HNT’s surface.
Collapse
|
32
|
Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules 2021; 26:molecules26113468. [PMID: 34200367 PMCID: PMC8201363 DOI: 10.3390/molecules26113468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, the naturally occurring polysaccharides, such as chitosan and pectin, have gained great attention having potential applications in different sectors, from biomedical to new generation packaging. Currently, the chitosan and pectic have been proposed as suitable materials also for the formulation of films and coatings for cultural heritage protection, as well as packaging films. Therefore, the formulation of biopolymer films, considering only naturally occurring polymers and additives, is a current challenging trend. This work reports on the formulation of chitosan (CS), pectin (PC), and chitosan:pectin (CS:PC) films, also containing natural crosslinking and reinforcement agents, such as citric acid (CA) and halloysite nanotubes (HNT), through the solvent casting technique. The produced films are characterized through water contact angle measurements, infrared and UV–visible spectroscopy and tensile test, while the durability of the CS:PC films is evaluated subjecting the film to accelerated UVB exposure and monitoring the photo-oxidation degradation in time though infrared spectroscopy. All obtained results suggest that both crosslinking and reinforcement agents have beneficial effects on the wettability, rigidity, and photo-oxidation resistance of biopolymer films. Therefore, these biopolymer films, also containing naturally occurring additives, have good properties and performance and they are suitable as coverage films for cultural heritage protection.
Collapse
|
33
|
Abstract
Conservation of wooden artefacts that are exposed outdoors, mainly in open-air museums, is a very complex and difficult issue that aims to preserve both the integrity and aesthetics of valuable objects. Unceasingly subjected to several factors, such as alternating weather conditions and the activities of microorganisms, algae, and insects, they undergo continuous changes and inevitable deterioration. Their biological and physical degradation often results in the formation of gaps and cracks in the wooden tissue, which creates a need not only for wood consolidation, but also for using specialist materials to fill the holes and prevent further degradation of an object. To ensure effective protection for a wooden artefact, a filling material must both protect the wood against further degradation and adapt to changes in wood dimensions in response to humidity variations. A variety of substances, both organic and inorganic, have been used for conservation and gap filling in historic wooden objects over the years. The filling compounds typically consist of two components, of which one is a filler, and the second a binder. In the case of inorganic fillers, plaster has been traditionally used, while the most popular organic fillers were wood powder, wood shavings, and powdered cork. As with binders, mainly natural substances have been used, such as animal glues or waxes. Nowadays, however, due to the lower biodegradability and better physicochemical properties, synthetic materials are gaining popularity. This article discusses the types of filling compounds currently used for gap filling in wooden artefacts exposed outdoors, outlining their advantages and drawbacks, as well as future perspective compounds. It appears that particularly composite materials based on natural polymers deserve attention as promising filling materials due to their high elasticity, as well as similarity and good adhesion to the wooden surface. Their main shortcomings, such as susceptibility to biodegradation, could be eliminated by using some modern, bio-friendly preservatives, providing effective protection for historic wooden artefacts.
Collapse
|
34
|
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Cavallaro G, Micciulla S, Chiappisi L, Lazzara G. Chitosan-based smart hybrid materials: a physico-chemical perspective. J Mater Chem B 2021; 9:594-611. [PMID: 33305783 DOI: 10.1039/d0tb01865a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-chemical properties of chitosan-based materials, including solubility, mechanical resistance, barrier properties, and thermal behaviour, and provide a link to the chemical peculiarities of chitosan, such as its intrinsic low solubility, high rigidity, large charge separation, and strong tendency to form intra- and inter-molecular hydrogen bonds.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
36
|
Restoration of a XVII Century’s predella reliquary: From Physico-Chemical Characterization to the Conservation Process. FORESTS 2021. [DOI: 10.3390/f12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on the restoration of a XVII century’s predella reliquary, which is a part of a larger setup that includes a wall reliquary and a wooden crucified Christ, both belonging to the church of “Madre Maria SS. Assunta”, in Polizzi Generosa, Sicily, Italy. The historical/artistic and paleographic research was flanked successfully by the scientific objective characterization of the materials. The scientific approach was relevant in the definition of the steps for the restoration of the artefact. The optical microscopy was used for the identification of the wood species. Electron microscopy and elemental mapping by energy-dispersive X-ray (EDX) was successful in the identification of the layered structure for the gilded surface. The hyperspectral imaging method was successfully employed for an objective chemical mapping of the surface composition. We proved that the scientific approach is necessary for a critical and objective evaluation of the conservation state and it is a necessary step toward awareness of the historical, liturgical, spiritual and artistic value. In the second part of this work, we briefly describe the conservation protocol and the use of a weak nanocomposite glue. In particular, a sustainable approach was considered and therefore mixtures of a biopolymer from natural resources, such as funori from algae, and naturally occurring halloysite nanotubes were considered. Tensile tests provided the best composition for this green nanocomposite glue.
Collapse
|
37
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
38
|
Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. Int J Biol Macromol 2020; 162:1849-1861. [DOI: 10.1016/j.ijbiomac.2020.08.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
40
|
Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers (Basel) 2020; 12:polym12091973. [PMID: 32878027 PMCID: PMC7564337 DOI: 10.3390/polym12091973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
In the last decade, the interest toward the formulation of polymer films for cultural heritage protection continuously grew, and these films must be imperatively transparent, removable, and should not react/interact with surface of the artworks. In this research, bionanocomposite films, based on chitosan (Ch) and pectin (P) and containing naturally occurring fillers and antioxidants, were formulated by solvent casting methods and were accurately characterized. The natural halloysite nanotubes (HNT) have a two-fold role, specifically, physical compatibilizer and antioxidant carrier. Therefore, the theoretical solubility between Ch and P was estimated considering Hoy’s method for solubility of polymers, while the optimum ratio between biopolymer constituents was assessed by ζ-potential measurements. The transparency, wettability, and mechanical behavior of Ch:P films, also in presence of HNT without and with antioxidants, were investigated. The beneficial effects of natural antioxidants, such as vanillic acid (VA) and quercetin (Q), on Ch:P/HNT durability were found.
Collapse
|
41
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin. Polymers (Basel) 2020; 12:E1766. [PMID: 32784604 PMCID: PMC7464246 DOI: 10.3390/polym12081766] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium on the coating efficiency of the clay nanotubes was investigated. The surface charge properties of HNT/khellin and chitosan/HNT/khellin nanomaterials were determined by ζ potential experiments, while their morphology was explored through Scanning Electron Microscopy (SEM). Water contact angle experiments were conducted to explore the influence of the chitosan coating on the hydrophilic/hydrophobic character of halloysite external surface. Thermogravimetry (TG) experiments were conducted to study the thermal behavior of the composite nanomaterials. The amounts of loaded khellin and coated chitosan in the hybrid nanostructures were estimated by a quantitative analysis of the TG curves. The release kinetics of khellin were studied in aqueous solvents at different pH conditions (acidic, neutral and basic) and the obtained data were analyzed by the Korsmeyer-Peppas model. The release properties were interpreted on the basis of the TG and ζ potential results. In conclusion, this study demonstrates that halloysite nanotubes wrapped by chitosan layers can be effective as drug delivery systems.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
42
|
Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The past two decades have been marked by an increased interest in the synthesis and the properties of geoinspired hydrosilicate nanoscrolls and nanotubes. The present review considers three main representatives of this group: halloysite, imogolite and chrysotile. These hydrosilicates have the ability of spontaneous curling (scrolling) due to a number of crystal structure features, including the size and chemical composition differences between the sheets, (or the void in the gibbsite sheet and SiO2 tetrahedron, in the case of imogolite). Mineral nanoscrolls and nanotubes consist of the most abundant elements, like magnesium, aluminium and silicon, accompanied by uncontrollable amounts of impurities (other elements and phases), which hinder their high technology applications. The development of a synthetic approach makes it possible to not only to overcome the purity issues, but also to enhance the chemical composition of the nanotubular particles by controllable cation doping. The first part of the review covers some principles of the cation doping approach and proposes joint criteria for the semiquantitative prediction of morphological changes that occur. The second part focuses on some doping-related properties and applications, such as morphological control, uptake and release, magnetic and mechanical properties, and catalysis.
Collapse
|