1
|
Kwon JH, Hong SH, Lee GR, Kim JC, Moon HC. Synergistic Dual-Cross-Linking Gelation: Exploring the Impact of Metal-Ligand Complexation on Ionogel Performance. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39440376 DOI: 10.1021/acsami.4c15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Owing to the growing interest in wearable ionotronics, the demand for ionogels with outstanding mechanical and electrochemical characteristics has increased dramatically. Nevertheless, it remains challenging to simultaneously enhance the mechanical robustness and conductivity of ionogels because of their trade-off relationship. In this work, we propose physically/chemically dual-cross-linked ionogels designed to improve the mechanical strength without reducing ionic conductivity by introducing metal-ligand complexation only within the physically cross-linked domains. In particular, the impact of metal-ligand complexation, a crucial parameter in this strategy, on ionogel performance is systematically examined using various metal ions. The mechanical resilience and thermal stability of ionogels are effectively enhanced with Co3+ having the highest coordination number, which can be explained by the highest metal-ligand complexation (i.e., chemical cross-linking) density. Additionally, there is no degradation in ionic conductivity when compared to the pristine ionogel because these complexations occur within physically cross-linking domains that are irrelevant to the ion conductive channels. The dual-cross-linked ionogels are successfully applied to alternating-current electroluminescent displays (ACEDs). Moreover, a versatile mixed-emitter strategy is suggested to improve practicality, enabling the realization of frequency-controlled multicolor ACEDs.
Collapse
Affiliation(s)
- Jin Han Kwon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seong Hyuk Hong
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Gyeong Rok Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jin Chul Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Advanced Materials & Chemical Engineering, University of Science &Technology, Daejeon 34114, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Sk MA, Kyarikwal R, Sadhu KK. Remarkable Stability of Glutathione-Based Supramolecular Gel in the Presence of Oxidative Stress from Hydrogen Peroxide. ACS APPLIED BIO MATERIALS 2024; 7:6950-6957. [PMID: 39350009 DOI: 10.1021/acsabm.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Low molecular weight 7-methoxy-3-(p-nitrophenyl)iminocoumarin (MNI) with donor and acceptor groups has been synthesized. The molecule shows typical π-stacking geometry in the crystal structure. In this study, MNI, an achiral small organic molecule, forms a nanostructured supramolecular gel along with a short peptide sequence glutathione (GSH). The self-assembly of the achiral organic coumarin component and chiral biomolecule produces a chiral gel with helical fiber structures. Interestingly, the helicities of chiral gels are controlled by the solvent ratio, where MNI in DMSO and GSH in water has been used. Variation of the solvent ratio from 6:4 to 1:9 for DMSO:H2O results in six gels (4, 5, 6, 7, 8 and 9), where the gel numbers signify the water content ratio. FE-SEM analysis shows gel fibers with right-handed helical structures, which have been further confirmed by circular dichroism (CD) with notable helicity in 4 to 6. This is the first report of controlled chiral helical nanostructured supramolecular gel formation by a solvent mixture with an organic small molecule and biomolecule. Interestingly, storage modulus (G') initially decreases from 4 to 6 and further increases up to 9. An opposite strain (%) trend was observed among these six gels. These unusual solvent-dependent gel properties have been further applied to monitor the stability of the gels in the presence of hydrogen peroxide (H2O2), which converts GSH to oxidized glutathione (GSSG) in general. The oxidative stress from H2O2 disrupts 4 to 6 gels, and precipitation occurs. It is noteworthy to mention that GSSG alone cannot form a gel with the MNI molecule and forms a precipitate. Remarkably, on the other hand, 7 to 9 remain as strong gels even after H2O2 treatment. Among all six gels, 9 shows extraordinary stability of gels even after H2O2 treatment.
Collapse
Affiliation(s)
- Md Azimuddin Sk
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Reena Kyarikwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Hen N, Josef E, Davidovich-Pinhas M, Levenberg S, Bianco-Peled H. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. ACS Biomater Sci Eng 2024; 10:6734-6750. [PMID: 39344029 DOI: 10.1021/acsbiomaterials.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
Collapse
Affiliation(s)
- Noy Hen
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Elinor Josef
- Technion─Israel Institute of Technology, Atlit, 12th Nahal Galim, 3033980, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
4
|
Ma B, Wang H, Jiang S, Chen M, Zhang L. Development and Performance Evaluation of a New Conformance Control Agent Gel. Gels 2024; 10:618. [PMID: 39451271 PMCID: PMC11507374 DOI: 10.3390/gels10100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular-polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular-polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 104 mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- China University of Geosciences (Wuhan), Wuhan 430074, China; (B.M.); (S.J.); (M.C.)
| |
Collapse
|
5
|
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024; 10:507. [PMID: 39195036 DOI: 10.3390/gels10080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Mariangela Rosa
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Célio Fernandes
- Transport Phenomena Research Centre (CEFT), Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Liu X, Kong K, Wang J, Liu Z, Tang R. Molecular Weight-Dependent Physiochemical Behaviors of Calcium Carbonate Chains. J Phys Chem Lett 2024; 15:5905-5913. [PMID: 38809103 DOI: 10.1021/acs.jpclett.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The regulation of physiochemical behaviors by changing molecular weights is an important cornerstone of polymer physics. However, similar correlations between molecular weights and properties have not been discovered in inorganic ionic compounds. In this work, we prepared a calcium carbonate specimen with a semiflexible chain topology analogous to those of polymers. The molecular weights of the calcium carbonate chains, which ranged from 3400 to 54 100 Da, were directly correlated to their physiochemical behaviors, including gel point, zero shear viscosity, and plateau modulus. The calcium carbonate chains showed similar polymeric characteristics, including shear thinning, thixotropy, entropic elasticity, and viscoelasticity. These features agreed with recent theories and formulas in polymer physics textbooks. On the basis of this understanding, the mechanical properties of calcium carbonate-based gels could be altered by changing their molecular weights. This study could represent a fusion of inorganic chemistry and polymer physics with similar molecular weight-dependent behaviors and material properties, establishing an alternative pathway for designing future inorganic materials.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Li Q, Yu X, Zhang S, Xu M, Yang Y, Wan Z, Yang X. All-Natural, Robust, and pH-Responsive Glycyrrhizic Acid-Based Double Network Hydrogels for Controlled Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43633-43647. [PMID: 37695942 DOI: 10.1021/acsami.3c10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Supramolecular hydrogels self-assembled from naturally occurring small molecules (e.g., glycyrrhizic acid, GA) are promising materials for controlled bioactive delivery due to their facile fabrication processes, excellent biocompatibility, and versatile stimuli-responsive behaviors. However, most of these natural hydrogels suffer from poor mechanical strength and processability for practical applications. In this work, through adopting a multicomponent gel approach, we developed a novel mechanically robust GA-based hydrogel with an interpenetrating double network (DN) that is composed of a Ca2+-enhanced hydrogen-bond supramolecular GA nanofibril (GN) network and a Ca2+cross-linked natural polysaccharide sodium alginate (ALG) network. Compared to the single GN network (SN) hydrogel, the GN-ALG hybrid hydrogels (GN-ALG-DN) with the hierarchical double-network structure possess excellent mechanical properties and shaping adaptation, encouraging small and large amplitude oscillatory shear (SAOS and LAOS) rheological performances, better thermal stability, higher resistance to large compression deformations, and lower swelling behaviors. Furthermore, the GN-ALG-DN hydrogels exhibit a pH-responsive and sustained release behavior of nutrients (i.e., vitamin B12, VB12), showing a faster VB12 release rate with a higher swelling ratio in an alkaline condition (pH 7.5) than in an acidic condition (pH 2.5). This is ascribed to the fact that the higher dissociation degree of carboxylic groups in GA and ALG molecules in an alkaline environment induces the erosion and looseness of the self-assembled GN network and the ionic-cross-linked ALG network, which can lead to the decomposition of the hybrid hydrogels and thereby increases the release of nutrients. Cytotoxicity tests further demonstrate the excellent biocompatibility of the GN-ALG-DN hydrogels. This study highlights the design of robust shaped and structured supramolecular hydrogels from natural herb small molecules, which can serve as solid, edible, and stimuli-responsive active cargo delivery platforms for food, biomedical, and sustainable applications.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, Wageningen 6708WG, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
9
|
Tuning the pea protein gel network to mimic the heterogenous microstructure of animal protein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Du H, Liu J, Pan B, Yang HY, Liu GB, Lu K. Fabrication of the low molecular weight peptide-based hydrogels and analysis of gelation behaviors. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
12
|
Du H, Wang L, Lu K, Pan B, Liu J. YAFAF-Based Hydrogel: Characterization, Mechanism, and Factors Influencing Micro-organization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10669-10679. [PMID: 35976795 DOI: 10.1021/acs.jafc.2c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The YAFAF-based hydrogel was a three-dimensional network cross-linked by grooved fiber bundles. The fiber bundles were formed by entanglement of fibrils with a diameter of 2 nm, and the surface of the fibrils also presented grooves. Spectroscopic analysis revealed that the main secondary structures were β-sheets and β-turns, which led to the grooved feature of fibrils. In comparison of the nuclear magnetic resonance spectra of peptide solutions at 313 and 277 K, the nuclear Overhauser effects can be clearly observed, indicating that hydrogen-bondings and π-π stacking interactions play important roles in self-assembly. The micro-organization of the self-assemblies was affected by the ratio of solvents (xA) remarkably. Unexpectedly, xA of 0.05 produced hollow spherical aggregates. The result of these investigations on the mechanism and organization of the YAFAF-based hydrogel can contribute to the development of strategies using hydrogels in the food industry.
Collapse
Affiliation(s)
- Heng Du
- Food Science and Technology, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Lan Wang
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Kui Lu
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Boyuan Pan
- Peptides Chemistry, School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Jun Liu
- Chemical Analysis, College of Food Science and Engineering, Institute of Grain and Oil Standardization, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
13
|
Electronic charge transport phenomena directed smart fabrication of Metal-Semiconductor based electronic junction device by a supramolecular Mn(II)-Metallogel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Maeda R, Shinohara Y, Kawakami H, Isoda Y, Kanazawa I, Mitsuishi M. The conducting fibrillar networks of a PEDOT:PSS hydrogel and an organogel prepared by the gel-film formation process. NANOTECHNOLOGY 2021; 32:135403. [PMID: 33291090 DOI: 10.1088/1361-6528/abd1a9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a practical conducting polymer. The gel-film formation process produces a PEDOT:PSS organogel with a structure between a PEDOT:PSS water dispersion and a dried film. We found that this film has a high water-swelling ratio and thickens by a hitherto unreported factor of approximately 6600% as its swells to form a hydrogel. In this study, we investigated the drying behaviour of a hydrogel and an organogel with electrical properties to elucidate the internal structures of the gel responsible for the swelling and shrinkage behaviour with high expansion and contraction ratios. SEM revealed that the gel is composed of a 3D fibrillar network consisting of fibrils that are 4.6 ± 1.6 μm long and 0.63 ± 0.29 μm in diameter. This network plays a pivotal role in the conduction of electricity and swelling behaviour with high expansion ratios. The thickness of the gel decreased to 1/66 of its original value after drying on a substrate, while the total electrical resistance decreased by only 20%. The organogel exhibited the same drying behaviour as the hydrogel, which indicates that the network forms first in the organogel and is maintained in the subsequent swelling and drying processes. The electrical conductivity of the hydrogel increased from 9.0 ± 0.1 to 346.4 ± 1.2 S cm-1 under anisotropic shrinking from 3.1 ± 0.2 mm to 77.4 ± 3.3 μm. The network plays an important role as an enhanced swelling framework by providing effective pathways for the conduction of electricity.
Collapse
Affiliation(s)
- Ryota Maeda
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshikazu Shinohara
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hiroshi Kawakami
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yukihiro Isoda
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ikuzo Kanazawa
- Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|