1
|
Delmo N, Pande I, Peltola E. Key role of adsorption site abundance in the direct electrochemical co-detection of estradiol and dopamine. DISCOVER NANO 2024; 19:134. [PMID: 39196483 PMCID: PMC11358574 DOI: 10.1186/s11671-024-04092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Estradiol (E2) is a hormone that influences various aspects of women's health. Beyond its reproductive functions, E2 impacts neurotransmitter systems such as dopamine (DA). Vertically aligned carbon nanofibers (VACNFs) have shown good sensitivity, selectivity against ascorbic acid (AA) and uric acid (UA), biocompatibility, and reduced fouling in DA sensing. In this study, we explore the use of Ti-Ni-CNF electrodes with CNFs grown for 5 min and 30 min for the direct electrochemical co-detection of E2 and DA. The longer growth time led to a 142% increase in average CNF length and a 36% larger electroactive surface area. In E2 detection, the electrodes demonstrate a wide linear range of 0.05-10 µM and sensitivity of 0.016 and 0.020 µA/µM for Ti-Ni-CNF-5 min and Ti-Ni-CNF-30 min, respectively. The sensor performance remains largely unaffected even in the presence of other steroid hormones such as progesterone and testosterone. Co-detection of equimolar E2 and DA shows promising peak separation of 0.34 ± 0.01 V and repeatability after 10 measurements. A notable improvement in the E2/DA peak current ratio, from 0.53 ± 0.07 to 0.81 ± 0.16, was achieved with the increased CNF length. Our results demonstrate the influence of adsorption sites in electrochemical detection, especially for analytes such as E2 and DA that both rely on adsorption for oxidation. While detecting small and fluctuating physiological concentrations remains a challenge, these findings can be used in choosing and fabricating electrode materials for more accurate and accessible continuous hormone measurements, including the possibility of multianalyte sensing platforms.
Collapse
Affiliation(s)
- Naela Delmo
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20500, Turku, Finland
| | - Ishan Pande
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 00076, Aalto, Finland
| | - Emilia Peltola
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20500, Turku, Finland.
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 00076, Aalto, Finland.
| |
Collapse
|
2
|
Robbins E, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving Sensitivity and Longevity of In Vivo Glutamate Sensors with Electrodeposited NanoPt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40570-40580. [PMID: 39078097 PMCID: PMC11310907 DOI: 10.1021/acsami.4c06692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.
Collapse
Affiliation(s)
- Elaine
M. Robbins
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Wong
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - May Yoon Pwint
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siamak Salavatian
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Aman Mahajan
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Xinyan Tracy Cui
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United
States
| |
Collapse
|
3
|
Appiah-Ntiamoah R, Guye ME, Dabaro MD, Kim H. 1-D Carbon Nano-Coils Derived from Almond Skin: Exhibiting Density of State, Diffusivity, Electron Transfer Rate, and Dopamine Redox Modulation Properties Akin to Graphene Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310406. [PMID: 38312086 DOI: 10.1002/smll.202310406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Indexed: 02/06/2024]
Abstract
The quest to develop graphene-like biomass-carbon for advanced biomolecule redox modulation and sensing remains a challenge. The primary obstacle is the limited ability of biomass to undergo extensive graphitization during pyrolysis resulting in the formation of amorphous carbon materials with a small carbon-double-bond-carbon domain size (Lsp2), density of state (LDOS), ion diffusivity (D), and electron transfer rate constant (Ks). Herein, using almond skin (AS) the morphology of biomass is demonstrated as the key to overcoming these limitations. AS consists of 1D syringyl/guaiacyl lignin nano-coils which under H2/H2 annealing transform into pyrolytic 1D carbon nano-coils (r-gC). Spectroscopy and microscopy analyses reveal that the sheet layering structure, crystallinity, LDOS, and Lsp2 of r-gC mimic those of graphene oxide (GO). Moreover, its unique 1D morphology and profound microstructure facilitate faster charge transfer and ion diffusion than GO's planar structure, leading to better redox modulation and sensing of the neurotransmitter dopamine (DA) in physiological fluids. r-gC's DA detection limit of 3.62 nM is below the lower threshold found in humans and on par with the state-of-the-art. r-gC is also DA-selective over 14 biochemicals. This study reveals that biomasses with well-defined and compact lignin structures are best suited for developing highly electroactive graphene-like biomass carbon.
Collapse
Affiliation(s)
- Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Meseret Ethiopia Guye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Mintesinot Dessalegn Dabaro
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
4
|
Ostertag BJ, Porshinsky EJ, Nawarathne CP, Ross AE. Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12124-12136. [PMID: 38815131 PMCID: PMC11209849 DOI: 10.1021/acs.langmuir.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we provide an optimized method for fabricating surface-roughened graphene oxide disk microelectrodes (GFMEs) with enhanced defect density to generate a more suitable electrode surface for dopamine detection with fast-scan cyclic voltammetry (FSCV). FSCV detection, which is often influenced by adsorption-based surface interactions, is commonly impacted by the chemical and geometric structure of the electrode's surface, and graphene oxide is a tunable carbon-based nanomaterial capable of enhancing these two key characteristics. Synthesized GFMEs possess exquisite electronic and mechanical properties. We have optimized an applied inert argon (Ar) plasma treatment to increase defect density, with minimal changes in chemical functionality, for enhanced surface crevices to momentarily trap dopamine during detection. Optimal Ar plasma treatment (100 sccm, 60 s, 100 W) generates crevice depths of 33.4 ± 2.3 nm with high edge plane character enhancing dopamine interfacial interactions. Increases in GFME surface roughness improve electron transfer rates and limit diffusional rates out of the crevices to create nearly reversible dopamine electrochemical redox interactions. The utility of surface-roughened disk GFMEs provides comparable detection sensitivities to traditional cylindrical carbon fiber microelectrodes while improving temporal resolution ten-fold with amplified oxidation current due to dopamine cyclization. Overall, surface-roughened GFMEs enable improved adsorption interactions, momentary trapping, and current amplification, expanding the utility of GO microelectrodes for FSCV detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Chaminda P. Nawarathne
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| |
Collapse
|
5
|
Vaněčková E, Hrdlička V, Šebera J, Hromadová M, Kocábová J, Sebechlebská T, Kolivoška V. Pencil graphite electrodes for in-situ spectroelectrochemical sensing of reaction intermediates and products in organic solvents. Anal Chim Acta 2024; 1296:342350. [PMID: 38401936 DOI: 10.1016/j.aca.2024.342350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.
Collapse
Affiliation(s)
- Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Vojtěch Hrdlička
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jakub Šebera
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jana Kocábová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Táňa Sebechlebská
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
6
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
7
|
Miller C, Keattch O, Shergill RS, Patel BA. Evaluating diverse electrode surface patterns of 3D printed carbon thermoplastic electrochemical sensors. Analyst 2024; 149:1502-1508. [PMID: 38264850 DOI: 10.1039/d3an01592k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Electrochemical sensing techniques rely on redox reactions taking place at the electrode surface. The configuration of this surface is of the utmost importance in the advancement of electrochemical sensors. The majority of previous electrode manufacturing methods, including 3D printing have produced electrodes with flat surfaces. There is a distinct potential for 3D printing to create intricate and distinctive electrode surface shapes. In the proposed work, 3D printed carbon black polylactic acid electrodes with nine different surface morphologies were made. These were compared to a flat surface electrode. To evaluate the performance of the electrodes, measurements were conducted in three different redox probes (ferrocene methanol, ferricyanide, and dopamine). Our findings highlighted that when electrodes were normalised for the geometric surface area of the electrode, the surface pattern of the electrode surface can impact the observed current and electron transfer kinetics. Electrodes that had a dome and flag pattern on the electrode surface showed the highest oxidation currents and had lower values for the difference between the anodic and cathodic peak current (ΔE). However, designs with rings had lower current values and higher ΔE values. These differences are most likely due to variations in the accessibility of conductive sites on the electrode surface due to the varying surface roughness of different patterned designs. Our findings highlight that when making electrodes using 3D printing, surface patterning of the electrode surface can be used as an effective approach to enhance the performance of the sensor for varying applications.
Collapse
Affiliation(s)
- Chloe Miller
- School of Applied Sciences, Brighton, BN2 4GJ, UK.
- Centre for Lifelong Health, Brighton, BN2 4GJ, UK
| | | | - Ricoveer S Shergill
- School of Applied Sciences, Brighton, BN2 4GJ, UK.
- Centre for Lifelong Health, Brighton, BN2 4GJ, UK
| | - Bhavik Anil Patel
- School of Applied Sciences, Brighton, BN2 4GJ, UK.
- Centre for Lifelong Health, Brighton, BN2 4GJ, UK
| |
Collapse
|
8
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
9
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
10
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
11
|
Ficek M, Cieślik M, Janik M, Brodowski M, Sawczak M, Bogdanowicz R, Ryl J. Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Mikrochim Acta 2023; 190:410. [PMID: 37736868 PMCID: PMC10516795 DOI: 10.1007/s00604-023-05991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.
Collapse
Affiliation(s)
- Mateusz Ficek
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Cieślik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Monika Janik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Mateusz Brodowski
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mirosław Sawczak
- Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Ryl
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
12
|
Brenden CK, Iyer H, Zhang Y, Kim S, Shi W, Vlasov YA. Enhancement of faradaic current in an electrochemical cell integrated into silicon microfluidic channels. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 385:133733. [PMID: 37214161 PMCID: PMC10194083 DOI: 10.1016/j.snb.2023.133733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Implantable electrochemical sensors enable fast and sensitive detection of analytes in biological tissue, but are hampered by bio-foulant attack and are unable to be recalibrated in-situ. Herein, an electrochemical sensor integrated into ultra-low flow (nL/min) silicon microfluidic channels for protection from foulants and in-situ calibration is demonstrated. The small footprint (5 μm radius channel cross-section) of the device allows its integration into implantable sampling probes for monitoring chemical concentrations in biological tissues. The device is designed for fast scan cyclic voltammetry (FSCV) in the thin-layer regime when analyte depletion at the electrode is efficiently compensated by microfluidic flow. A 3X enhancement of faradaic peak currents is observed due to the increased flux of analytes towards the electrodes. Numerical analysis of in-channel analyte concentration confirmed near complete electrolysis in the thin-layer regime below 10 nL/min. The manufacturing approach is highly scalable and reproducible as it utilizes standard silicon microfabrication technologies.
Collapse
Affiliation(s)
| | - Hrishikesh Iyer
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yan Zhang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sungho Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weihua Shi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yurii A. Vlasov
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Zhang L, Ma Z, Sun H, Zhang R, Zhao Z, Wang J, Zhang Z, Liu Z, Li J, Du X, Hao X. A novel CNTs/QCS/BiOBr composite membrane with electron-ion transfer channel for Br - recovery in ESIX process. J Colloid Interface Sci 2023; 646:784-793. [PMID: 37229996 DOI: 10.1016/j.jcis.2023.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Based on the superior selectivity of bismuth oxybromide (BiOBr) for Br-, the excellent electrical conductivity of carbon nanotubes (CNTs), and the ion exchange capacity of quaternized chitosan (QCS), a three-dimensional network composite membrane electrode CNTs/QCS/BiOBr was constructed, in which BiOBr served as the storage space for Br-, CNTs provided the electron transfer pathway, and QCS cross-linked by glutaraldehyde (GA) was used for ion transfer. The CNTs/QCS/BiOBr composite membrane exhibits superior conductivity after the introduction of the polymer electrolyte, which is seven orders of magnitude higher than that of conventional ion-exchange membranes. Furthermore, the addition of the electroactive material BiOBr improved the adsorption capacity for Br- by a factor of 2.7 in electrochemically switched ion exchange (ESIX) system. Meanwhile, the CNTs/QCS/BiOBr composite membrane displays excellent Br- selectivity in mixed solutions of Br-, Cl-, SO42- and NO3-. Therein, the covalent bond cross-linking within the CNTs/QCS/BiOBr composite membrane endows it great electrochemical stability. The synergistic adsorption mechanism of the CNTs/QCS/BiOBr composite membrane provides a new direction for achieving more efficient ion separation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhen Ma
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Haidong Sun
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Rongzi Zhang
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Zilong Zhao
- Academia Sinica, Qinghai Salt Lake Industry Group Company Limited, Geermu 816000, China
| | - Jie Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhonglin Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhong Liu
- Qinghai Institute of Salt Lakes Chinese Academy of Sciences, Xining 810008, China
| | - Jun Li
- Qinghai Institute of Salt Lakes Chinese Academy of Sciences, Xining 810008, China
| | - Xiao Du
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaogang Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
14
|
Venegas CJ, Gutierrez FA, Reeves-McLaren N, Rivas GA, Ruiz-León D, Bollo S. In situ or Ex situ Synthesis for Electrochemical Detection of Hydrogen Peroxide-An Evaluation of Co 2SnO 4/RGO Nanohybrids. MICROMACHINES 2023; 14:mi14051059. [PMID: 37241682 DOI: 10.3390/mi14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.
Collapse
Affiliation(s)
- Constanza J Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín 8320000, Santiago, Chile
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz CP C1425FQB, Buenos Aires 2290, Argentina
| | - Nik Reeves-McLaren
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Gustavo A Rivas
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Domingo Ruiz-León
- Laboratorio de Fisicoquímica y Electroquímica del Estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins n◦ 3363, Estación Central 9160000, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
| |
Collapse
|
15
|
Ostertag B, Ross AE. Wet-Spun Porous Carbon Microfibers for Enhanced Electrochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17601-17611. [PMID: 36989172 PMCID: PMC10316334 DOI: 10.1021/acsami.3c00423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a novel copolymer-based, uniform porous carbon microfiber (PCMF) formed via wet-spinning for significantly improved electrochemical detection. Carbon fiber (CF), fabricated from a polyacrylonitrile (PAN) precursor, is commonly used in batteries or for electrochemical detection of neurochemicals due to its biplanar geometry and desirable edge plane sites with high surface free energy and defects for enhanced analyte interactions. Recently, the presence of pores within carbon materials has presented interesting electrochemistry leading to detection improvements; however, there is currently no method to uniformly create pores on a carbon microfiber surface impacting a broad range of electrochemical applications. Here, we synthesized controllable porous carbon fibers from a spinning dope of the copolymers PAN and poly(methyl methacrylate) (PMMA) in dimethylformamide via wet spinning for the first time. PMMA serves as a sacrificial block introducing macropores of increased edge-plane character on the fiber. Methods were optimized to produce porous CFs at similar dimensions to traditional CF. We prove that an increase in porosity enhances the degree of disorder on the surface, resulting in significantly improved detection capabilities with fast-scan cyclic voltammetry. Local trapping of analytes at porous geometries enables electrochemical reversibility with improved sensitivity, linear range of detection, and measurement temporal resolution. Overall, we demonstrate the utility of a copolymer synthetic method for PCMF fabrication, providing a stable, controlled macroporous fiber framework with enhanced edge plane character. This work will significantly advance fundamental investigations of how pores and edge plane sites influence electrochemical detection.
Collapse
Affiliation(s)
- Blaise Ostertag
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
16
|
Chen Y, Zhang G, Liu H, Wang Y, Chen Z, Ji Q, Lan H, Liu R, Qu J. Tip-Intensified Interfacial Microenvironment Reconstruction Promotes an Electrocatalytic Chlorine Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
18
|
Pascual LF, Pande I, Kousar A, Rantataro S, Laurila T. Nanoscale engineering to control mass transfer on carbon-based electrodes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Cao Q, Shao Z, Hensley D, Venton BJ. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters. Faraday Discuss 2022; 233:303-314. [PMID: 34889344 PMCID: PMC8983598 DOI: 10.1039/d1fd00053e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon nanoelectrodes enable the detection of neurotransmitters at the level of single cells, vesicles, synapses and small brain structures. Previously, the etching of carbon fibers and 3D printing based on direct laser writing have been used to fabricate carbon nanoelectrodes, but these methods lack the ability of mass manufacturing. In this paper, we mass fabricate carbon nanoelectrodes by growing carbon nanospikes (CNSs) on metal wires. CNSs have a short, dense and defect-rich surface that produces remarkable electrochemical properties, and they can be mass fabricated on almost any substrate without using catalysts. Tungsten wires and niobium wires were electrochemically etched in batch to form sub micrometer sized tips, and a layer of CNSs was grown on the metal wires using plasma-enhanced chemical vapor deposition (PE-CVD). The thickness of the CNS layer was controlled by the deposition time, and a thin layer of CNSs can effectively cover the entire metal surface while maintaining the tip size within the sub micrometer scale. The etched tungsten wires produced tapered conical nanotips, while the etched niobium wires were long and thin. Both showed excellent sensitivity for the detection of outer sphere ruthenium hexamine and the inner sphere test compound ferricyanide. The CNS nanosensors were used for the measurement of dopamine, serotonin, ascorbic acid and DOPAC with fast-scan cyclic voltammetry. The CNS nanoelectrodes had a large surface area and numerous defect sites, which improved the sensitivity, electron transfer kinetics and adsorption. Finally, the CNS nanoelectrodes were compared with other nanoelectrode fabrication methods, including flame etching, 3D printing, and nanopipettes, which are slower to make and more difficult for mass fabrication. Thus, CNS nanoelectrodes are a promising strategy for the mass fabrication of nanoelectrode sensors for neurotransmitters.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| | - Dale Hensley
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| |
Collapse
|
20
|
Li Y, Jarosova R, Weese-Myers ME, Ross AE. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Anal Chem 2022; 94:4803-4812. [PMID: 35274933 DOI: 10.1021/acs.analchem.1c05637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we have synthesized and characterized graphene-fiber microelectrodes (GFME's) for subsecond detection of neurochemicals with fast-scan cyclic voltammetry (FSCV) for the first time. GFME's exhibited extraordinary properties including faster electron transfer kinetics, significantly improved sensitivity, and ease of tunability that we anticipate will have major impacts on neurochemical detection for years to come. GF's have been used in the literature for various applications; however, scaling their size down to microelectrodes and implementing them as neurochemical microsensors is significantly less developed. The GF's developed in this paper were on average 20-30 μm in diameter and both graphene oxide (GO) and reduced graphene oxide (rGO) fibers were characterized with FSCV. Neat GF's were synthesized using a one-step dimension-confined hydrothermal strategy. FSCV detection has traditionally used carbon-fiber microelectrodes (CFME's) and more recently carbon nanotube fiber electrodes; however, uniform functionalization and direct control of the 3D surface structure of these materials remain limited. The expansion to GFME's will certainly open new avenues for fine-tuning the electrode surface for specific electrochemical detection. When comparing to traditional CFME's, our GFME's exhibited significant increases in electron transfer, redox cycling, fouling resistance, higher sensitivity, and frequency independent behavior which demonstrates their incredible utility as biological sensors.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Romana Jarosova
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
21
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|
22
|
Shao Z, Venton BJ. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:026506. [PMID: 35221350 PMCID: PMC8871592 DOI: 10.1149/1945-7111/ac4d67] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanotube yarn microelectrodes (CNTYMEs) have micron-scale surface crevices that momentarily trap molecules. CNTYMEs improve selectivity among cationic catecholamines because secondary reactions are enhanced, but no anions have been studied. Here, we compared fast-scan cyclic voltammetry (FSCV) of dopamine and anionic interferents 3,4 dihydroxyphenylacetic acid (DOPAC) and L-ascorbic acid (AA) at CNTYMEs and carbon fiber microelectrodes (CFMEs). At CFMEs, dopamine current decreases with increasing FSCV repetition frequency at pH 7.4, whereas DOPAC and AA have increasing currents with increasing frequency, because of less repulsion at the negative holding potential. Both DOPAC and AA have side reactions after being oxidized, which are enhanced by trapping. At pH 4, the current increases for DOPAC and AA because they are not repelled. In addition, AA has a different oxidation pathway at pH 4, and an extra peak in the CV is enhanced by trapping effects at CNTYMEs. At pH 8.5, co-detection of dopamine in the presence of DOPAC and AA is enhanced at 100 Hz frequency because of differences in secondary peaks. Thus, the trapping effects at CNTYMEs affects anions differently than cations and secondary peaks can be used to identify dopamine in mixture of AA and DOPAC with FSCV.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| |
Collapse
|
23
|
An insight into the thin-layer diffusion phenomena within a porous electrode: Gallic acid at a single-walled carbon nanotubes-modified electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Kousar A, Peltola E, Laurila T. Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes. ACS OMEGA 2021; 6:26391-26403. [PMID: 34660997 PMCID: PMC8515610 DOI: 10.1021/acsomega.1c03666] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 05/31/2023]
Abstract
Electrode fouling is a major factor that compromises the performance of biosensors in in vivo usage. It can be roughly classified into (i) electrochemical fouling, caused by the analyte and its reaction products, and (ii) biofouling, caused by proteins and other species in the measurement environment. Here, we examined the effect of electrochemical fouling [in phosphate buffer saline (PBS)], biofouling [in cell-culture media (F12-K) with and without proteins], and their combination on the redox reactions occurring on carbon-based electrodes possessing distinct morphologies and surface chemistry. The effect of biofouling on the electrochemistry of an outer sphere redox probe, [Ru(NH3)6]3+, was negligible. On the other hand, fouling had a marked effect on the electrochemistry of an inner sphere redox probe, dopamine (DA). We observed that the surface geometry played a major role in the extent of fouling. The effect of biofouling on DA electrochemistry was the worst on planar pyrolytic carbon, whereas the multiwalled carbon nanotube/tetrahedral amorphous carbon (MWCNT/ta-C), possessing spaghetti-like morphology, and carbon nanofiber (CNF/ta-C) electrodes were much less seriously affected. The blockage of the adsorption sites for DA by proteins and other components of biological media and electrochemical fouling components (byproducts of DA oxidation) caused rapid surface poisoning. PBS washing for 10 consecutive cycles at 50 mV/s did not improve the electrode performance, except for CNF/ta-C, which performed better after PBS washing. Overall, this study emphasizes the combined effect of biological and electrochemical fouling to be critical for the evaluation of the functionality of a sensor. Thus, electrodes possessing composite nanostructures showed less surface fouling in comparison to those possessing planar geometry.
Collapse
Affiliation(s)
- Ayesha Kousar
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Emilia Peltola
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Tomi Laurila
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
25
|
Kaliyaraj Selva Kumar A, Miao R, Li D, Compton RG. Do carbon nanotubes catalyse bromine/bromide redox chemistry? Chem Sci 2021; 12:10878-10882. [PMID: 34476067 PMCID: PMC8372536 DOI: 10.1039/d1sc02434e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The redox chemistries of both the bromide oxidation and bromine reduction reactions are studied at single multi-walled carbon nanotubes (MWCNTs) as a function of their electrical potential allowing inference of the electron transfer kinetics of the Br2/Br− redox couple, widely used in batteries. The nanotubes are shown to be mildly catalytic compared to a glassy carbon surface but much less as inferred from conventional voltammetry on porous ensembles of MWCNTs where the mixed transport regime masks the true catalytic response. Schematic of a carbon nanotube impact in bromide solution.![]()
Collapse
Affiliation(s)
- Archana Kaliyaraj Selva Kumar
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Ruiyang Miao
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Danlei Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|