1
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Implications of the Lipidic Ecosystem for the Membrane Binding of ApoE Signal Peptide: Importance of Sphingomyelin. Chembiochem 2024; 25:e202400469. [PMID: 39444133 DOI: 10.1002/cbic.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Indexed: 10/25/2024]
Abstract
The unidirectional movement of nascent secretory proteins in the cell is primarily assisted by the signal recognition particles (SRP). However, this does not completely justify the importance of the signal peptide (SP) which gets eliminated after the protein translocation. We have earlier demonstrated that a negatively charged lipid such as POPG plays an important role in the higher binding affinity and cholesterol-discriminating ability of the apolipoprotein E (ApoE) SP. In this present work, we aimed to understand the role of sphingomyelin, an important constituent of ER, on the membrane binding of ApoE SP. Our results demonstrate that sphingomyelin promotes membrane binding but cannot discriminate cholesterol. However, sphingomyelin shows a synergistic effect with POPG toward the membrane binding of the ApoE SP. We have further shown that the membrane domains do not have any impact on the binding of ApoE SP. Based on our results we propose that the lipid composition of the endoplasmic reticulum (ER) where ApoE translocates, enhances the binding of the ApoE signal peptide to the ER membrane.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| |
Collapse
|
2
|
Panda MS, Qazi B, Vishwakarma V, Pattnaik GP, Haldar S, Chakraborty H. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template. RSC Med Chem 2024:d4md00523f. [PMID: 39399312 PMCID: PMC11467784 DOI: 10.1039/d4md00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30-40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
Collapse
Affiliation(s)
- Manbit Subhadarsi Panda
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Bushra Qazi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Vaishali Vishwakarma
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
| | - Gourab Prasad Pattnaik
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| |
Collapse
|
3
|
Pandia S, Chakraborty H. Strategic Design of Tryptophan-Aspartic Acid-Containing Peptide Inhibitors Using Coronin 1 as a Template: Inhibition of Fusion by Enhancing Acyl Chain Order. J Phys Chem B 2024; 128:9163-9171. [PMID: 39268813 DOI: 10.1021/acs.jpcb.4c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Enveloped viruses enter the host cell by fusing at the cell membrane or entering the cell via endocytosis and fusing at the endosome. Conventional inhibitors target the viral fusion protein to inactivate it for inducing fusion. These target-specific vis-à-vis virus-specific inhibitors fail to display their inhibitory efficacy against emerging and remerging viral infections. This necessitates the need to develop broad-spectrum entry inhibitors that are effective irrespective of the virus. Using a broad range of targeting techniques, the fusion inhibitors can modify the physical characteristics of the viral membrane, making it less prone to fusion. We have previously shown that two tryptophan-aspartic acid (WD)-containing hydrophobic peptides, TG-23 and GG-21, from coronin 1, a phagosomal protein, inhibit membrane fusion by modulating membrane organization and dynamics. In the present work, we designed two WD-containing hydrophilic peptides, QG-22 and AG-22, using coronin 1 as a template and evaluated their fusion inhibitory efficacies in the absence and presence of membrane cholesterol. Our results demonstrate that QG-22 and AG-22 inhibit membrane fusion irrespective of the concentration of membrane cholesterol. Our measurements of depth-dependent membrane organization and dynamics reveal that they impede fusion by enhancing the acyl chain order. Overall, our results validate the hypothesis of designing fusion inhibitors by modulating the membrane's physical properties. In addition, it demonstrates that chain hydrophobicity might not be a critical determinant for the development of peptide-based fusion inhibitors.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
4
|
Pandia S, Mahapatra A, Chakraborty H. A Coronin 1-Derived Peptide Inhibits Membrane Fusion by Modulating Membrane Organization and Dynamics. J Phys Chem B 2024; 128:4986-4995. [PMID: 38739415 DOI: 10.1021/acs.jpcb.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
5
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Phosphatidylglycerol Acts as a Switch for Cholesterol-Dependent Membrane Binding of ApoE Signal Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8126-8132. [PMID: 38568020 DOI: 10.1021/acs.langmuir.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
6
|
Pyne S, Pyne P, Mitra RK. The explicit role of interfacial hydration during polyethylene glycol induced lipid fusion: a THz spectroscopic investigation. Phys Chem Chem Phys 2023; 25:31326-31334. [PMID: 37960951 DOI: 10.1039/d3cp04868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While the phenomenon of excipient mediated membrane fusion has been studied widely, the inherent role of interfacial hydration involved in the process has mostly remained unaddressed. Here we report the experimental validation of the fact that PEG-induced membrane fusion is associated with the dehydration of the membrane(s). We explore the explicit hydration behavior at three different lipids (DOPC, POPC and DPPC) membranes with different aliphatic tails as they undergo fusogenic transition in the presence of PEG of average molecular weight of 4000 using THz-FTIR spectroscopy in the frequency window of 1.5-13.5 THz. Dynamic light scattering and electron microscopic measurements confirm the formation of different intermediate steps of the liposomes during the fusion process: bilayer aggregation, destabilization and finally lipid fusion. We observe that membrane hydration follows a systematic trend with the lipid specificity as the fusion process sets in.
Collapse
Affiliation(s)
- Sumana Pyne
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| | - Partha Pyne
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
7
|
Mishra S, Chakraborty H. Phosphatidylethanolamine and Cholesterol Promote Hemifusion Formation: A Tug of War between Membrane Interfacial Order and Intrinsic Negative Curvature of Lipids. J Phys Chem B 2023; 127:7721-7729. [PMID: 37644708 DOI: 10.1021/acs.jpcb.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane fusion is an important process for the survival of eukaryotes. The shape of lipids plays an important role in fusion by stabilizing nonlamellar fusion intermediates. Lipids with intrinsic positive curvature such as lysophosphatidylcholine and others inhibit hemifusion formation, whereas lipids having intrinsic negative curvature, e.g., phosphatidylethanolamine and cholesterol (CH), are known to promote hemifusion formation. In this work, we have measured the effect of dioleoylphosphatidylethanolamine (DOPE) and CH on the depth-dependent organization, dynamics, and fusion of dioleoylphosphatidylcholine membranes. Both DOPE and CH promote hemifusion formation despite their ability to order the interfacial and acyl chain region of the membrane and block water percolation at these regions. Generally, membrane ordering and inhibition of water percolation at the acyl chain region are detrimental to membrane fusion. This clearly emphasizes the importance of intrinsic negative curvature of lipids in membrane fusion. Interestingly, DOPE and CH show differential effects on the rate of hemifusion formation, which might be owing to their ability to induce order at the interfacial region and intrinsic negative curvature. Overall, our result is significant in understanding the role of lipidic shape in membrane fusion.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
8
|
Joardar A, Chakraborty H. Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on the Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4439-4449. [PMID: 36931902 DOI: 10.1021/acs.langmuir.3c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane fusion is a common course in innumerable biological processes that helps in the survival of eukaryotes. Enveloped viruses utilize this process to enter the host cells. Generally, the membrane lipid compositions play an important role in membrane fusion by modulating the membrane's physical properties and the behavior of membrane proteins in the cellular milieu. In this work, we have demonstrated the role of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, on the organization, dynamics, and fusion of homogeneous and heterogeneous membranes. We have exploited arrays of steady-state and time-resolved fluorescence spectroscopic methods and polyethylene glycol-induced membrane fusion assay to elucidate the behavior of EPA and DHA on dioleoyl phosphatidylcholine (DOPC)/cholesterol (CH) homogeneous and DOPC/sphingomyelin/CH heterogeneous membranes. Our results suggest that EPA and DHA display differential effects on two different membranes. The effects of PUFAs in homogeneous membranes are majorly attributed to their flexible chain dynamics, whereas the ability of PUFA-induced cholesterol transfer from the lo to the ld phase rules their behavior in heterogeneous membranes. Overall, our results provide detailed information on the effect of PUFAs on homogeneous and heterogeneous membranes.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
9
|
Joardar A, Pandia S, Chakraborty H. Effect of polyunsaturated free fatty acids on the membrane fusion mechanism. SOFT MATTER 2023; 19:733-742. [PMID: 36617878 DOI: 10.1039/d2sm01474b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fusion is one of the important processes for the survival of eukaryotic cells and the entry of enveloped viruses into the host cells. Lipid composition plays a crucial role by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. The diversity of the lipid acyl chain in its length and degree of unsaturation originates from the variation in free fatty acids (FFAs). We have studied the effect of linoleic (LA) and alpha-linolenic (ALA) acids on the depth-dependent organization, dynamics, and fusion of DOPC/DOPE (70/30 mol%) membranes utilizing steady-state and time-resolved fluorescence spectroscopic methods. Our results suggest that membranes with 5 mol% LA stabilize the stalk-intermediate and promote lipid mixing at the early stage of the process, i.e., the fusion follows the classical stalk model. Conversely, the extents of lipid and content mixing at the stalk intermediate are similar in the presence of 5 mol% of ALA, indicating the fusion mechanism as a nonclassical one like in the DOPC/DOPE (70/30 mol%) membranes. Our results provide an in-depth insight into the effect of the increasing degree of fatty acid tail unsaturation on membrane organization and dynamics and their impact on the membrane fusion mechanism.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| | - Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India.
| |
Collapse
|
10
|
Lipid composition dependent binding of apolipoprotein E signal peptide: Importance of membrane cholesterol in protein trafficking. Biophys Chem 2022; 291:106907. [DOI: 10.1016/j.bpc.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
11
|
Chng CP, Hsia KJ, Huang C. Modulation of lipid vesicle-membrane interactions by cholesterol. SOFT MATTER 2022; 18:7752-7761. [PMID: 36093613 DOI: 10.1039/d2sm00693f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale lipid vesicles are attractive vehicles for drug delivery. Although often considered as soft nanoparticles in terms of mechanical deformability, the fluidic nature of the lipid membrane makes their interactions with another lipid membrane much more complex. Cholesterol is a key molecule that not only effectively stiffens lipid bilayer membranes but also induces membrane fusion. As such, how cholesterol modulates lipid vesicle-membrane interactions during endocytosis remains elusive. Through systematic molecular dynamics simulations, we find that membrane stiffening upon incorporating cholesterol reduces vesicle wrapping by a planar membrane, hindering endocytosis. Membrane fusion is also accelerated when either the vesicle or the planar membrane is cholesterol-rich, but fusion becomes minimal when both the vesicle and planar membrane are cholesterol-rich. This study provides insights into vesicle-membrane interactions in the presence of cholesterol and enlightens how cholesterol may be used to direct the cellular uptake pathways of nanoliposomes.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| |
Collapse
|
12
|
Membrane cholesterol modulates the dynamics and depth of penetration of κ-casein. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Effects of Cholesterol on Lipid Vesicle Fusion Mediated by Infectious Salmon Anaemia Virus Fusion Peptides. Colloids Surf B Biointerfaces 2022; 217:112684. [DOI: 10.1016/j.colsurfb.2022.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
14
|
Joardar A, Pattnaik GP, Chakraborty H. Combination of Oleic Acid and the gp41 Fusion Peptide Switches the Phosphatidylethanolamine-Induced Membrane Fusion Mechanism from a Nonclassical to a Classical Stalk Model. J Phys Chem B 2022; 126:3673-3684. [PMID: 35580344 DOI: 10.1021/acs.jpcb.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane fusion is considered to be one of the crucial processes for the existence of eukaryotes and the entry of enveloped viruses into host cells. The fusion mechanism depends on the lipid composition of the membrane as well as the properties of fusion proteins or peptides. The gp41 fusion peptide from the human immunodeficiency virus (HIV) is known to catalyze membrane fusion by altering the physical properties of the membrane. Earlier, we demonstrated that a membrane containing 30 mol % phosphatidylethanolamine (PE) circumvents the classical stalk model because of its intrinsic negative curvature. In this work, we demonstrated how the gp41 fusion peptide influences the fusion mechanism of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phos-pho¬ethanolamine (DOPE) (70/30 mol %) membranes. We further evaluated the effect of the same peptide on the mechanism of fusion for membranes containing 30 mol % PE and a fatty acid with an intrinsic positive curvature (oleic acid (OA)). Our results show that gp41 switches the fusion mechanism from a nonclassical to a classical stalk model when membranes contain OA, but fails to do so for DOPC/DOPE membranes. This could be due to the extreme influence of the intrinsic negative curvature of PE, which is partially downregulated in the presence of OA.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
15
|
Joardar A, Pattnaik GP, Chakraborty H. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J Membr Biol 2022; 255:211-224. [PMID: 35435451 PMCID: PMC9014786 DOI: 10.1007/s00232-022-00233-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid–protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
16
|
Joardar A, Pattnaik GP, Chakraborty H. Effect of Phosphatidylethanolamine and Oleic Acid on Membrane Fusion: Phosphatidylethanolamine Circumvents the Classical Stalk Model. J Phys Chem B 2021; 125:13192-13202. [PMID: 34839659 DOI: 10.1021/acs.jpcb.1c08044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane fusion is one of the most important processes for the survival of eukaryotic cells and entry of enveloped viruses to the host cells. Lipid composition plays a crucial role in the process by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. Phosphatidylethanolamine (PE), a lipid molecule with intrinsic negative curvature, promotes membrane fusion by stabilizing the non-lamellar intermediate structures in the fusion process. Conversely, oleic acid (OA), with intrinsic positive curvature, inhibits membrane fusion. The current study aimed to investigate polyethylene glycol-mediated lipid mixing, content mixing, content leakage, and depth-dependent membrane organization and dynamics, using arrays of steady-state and time-resolved fluorescence techniques, to determine the causative role of PE and OA in membrane fusion. The results demonstrated that the presence of 30 mol % PE in the membrane promotes membrane fusion through a mechanism that circumvents the classical stalk model. On the contrary, membranes containing OA showed reduced rate and extent of fusion, despite following the same mechanism. Collectively, our findings in terms of membrane organization and dynamics indicated a plausible role of PE and OA in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|