1
|
Artico M, Roux C, Peruch F, Mingotaud AF, Montanier CY. Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. Biotechnol Adv 2023; 64:108106. [PMID: 36738895 DOI: 10.1016/j.biotechadv.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
This review aims at answering the following question: how can a researcher be sure to succeed in grafting a protein onto a polymer surface? Even if protein immobilization on solid supports has been used industrially for a long time, hence enabling natural enzymes to serve as a powerful tool, emergence of new supports such as polymeric surfaces for the development of so-called intelligent materials requires new approaches. In this review, we introduce the challenges in grafting protein on synthetic polymers, mainly because compared to hard surfaces, polymers may be sensitive to various aqueous media, depending on the pH or reductive molecules, or may exhibit state transitions with temperature. Then, the specificity of grafting on synthetic polymers due to difference of chemical functions availability or difference of physical properties are summarized. We present next the various available routes to covalently bond the protein onto the polymeric substrates considering the functional groups coming from the monomers used during polymerization reaction or post-modification of the surfaces. We also focus our review on a major concern of grafting protein, which is avoiding the potential loss of function of the immobilized protein. Meanwhile, this review considers the different methods of characterization used to determine the grafting efficiency but also the behavior of enzymes once grafted. We finally dedicate the last part of this review to industrial application and future prospective, considering the sustainable processes based on green chemistry.
Collapse
Affiliation(s)
- M Artico
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Roux
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France
| | - F Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, France
| | - A-F Mingotaud
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France.
| | - C Y Montanier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
2
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Malawska KJ, Takano S, Oisaki K, Yanagisawa H, Kikkawa M, Tsukuda T, Kanai M. Bioconjugation of Au 25 Nanocluster to Monoclonal Antibody at Tryptophan. Bioconjug Chem 2023. [PMID: 36893358 DOI: 10.1021/acs.bioconjchem.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
We report the first bioconjugation of Au25 nanocluster to a monoclonal antibody at scarcely exposed tryptophan (Trp) residues toward the development of high-resolution probes for cryogenic electron microscopy (cryo-EM) and tomography (cryo-ET). To achieve this, we improved the Trp-selective bioconjugation using hydroxylamine (ABNOH) reagents instead of previously developed N-oxyl radicals (ABNO). This new protocol allowed for the application of Trp-selective bioconjugation to acid-sensitive proteins such as antibodies. We found that a two-step procedure utilizing first Trp-selective bioconjugation for the introduction of azide groups to the protein and then strain-promoted azide-alkyne cycloaddition (SPAAC) to attach a bicyclononyne (BCN)-presenting redox-sensitive Au25 nanocluster was essential for a scalable procedure. Covalent labeling of the antibody with gold nanoclusters was confirmed by various analytical methods, including cryo-EM analysis of the Au25 nanocluster conjugates.
Collapse
Affiliation(s)
- Katarzyna Joanna Malawska
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Mirica AC, Stan D, Chelcea IC, Mihailescu CM, Ofiteru A, Bocancia-Mateescu LA. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022; 10:922772. [PMID: 35774059 PMCID: PMC9237331 DOI: 10.3389/fbioe.2022.922772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023] Open
Abstract
LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).
Collapse
Affiliation(s)
- Andreea-Cristina Mirica
- R&D Department, DDS Diagnostic, Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Dana Stan
- R&D Department, DDS Diagnostic, Bucharest, Romania
| | | | - Carmen Marinela Mihailescu
- Microsystems in Biomedical and Environmental Applications, National Institute for Research and Development in Microtechnologies, Bucharest, Romania
- Pharmaceutical Faculty, Titu Maiorescu University, Bucharest, Romania
| | | | | |
Collapse
|
5
|
Víšová I, Houska M, Vaisocherová-Lísalová H. Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst 2022; 147:2597-2614. [PMID: 35621143 DOI: 10.1039/d2an00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Hana Vaisocherová-Lísalová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
6
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
7
|
Ferrara V, Vandenabeele C, Cossement D, Snyders R, Satriano C. Enhanced plasmonic processes in amino-rich plasma polymer films for applications at the biointerface. Phys Chem Chem Phys 2021; 23:27365-27376. [PMID: 34854856 DOI: 10.1039/d1cp02271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new plasmonic biosensor was developed in a planar chip-based format by coupling the plasmonic properties of gold nanoparticles (Au NPs) with the mechanical and bioadhesive features of unconventional organic thin films deposited from plasma, namely primary amine-based plasma polymer films (PPFs). A self-assembled layer of spherical Au NPs, 12 nm in diameter, was electrostatically immobilized onto optically transparent silanised glass. In the next step, the Au NP layer was coated with an 18 nm polymeric thick PPF layer via the simultaneous polymerization/deposition of a cyclopropylamine (CPA) precursor performed by radio frequency discharge, both in pulsed and in continuous wave modes. The CPA PFF surface plays the dual role of an adsorbent towards negatively charged chemical species as well as an enhancer of plasmonic signals. The biosensor was tested in a proof-of-concept series of experiments of human serum albumin physisorption, and chosen as a model system for blood serum. The peculiar surface features of CPA PPF, before and after the exposure to buffered solution of fluorescein isothiocyanate-labelled human serum albumin (FITC-HSA), were investigated by a multi-technique approach, including UV-visible and X-ray photoelectron spectroscopies, atomic force microscopy, scanning electron microscopy, contact angle and surface free energy measurements. The results showed the very promising potentialities from both bioanalytical and physicochemical points of view in scrutinizing the macromolecule behavior at the biointerface.
Collapse
Affiliation(s)
- Vittorio Ferrara
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy.
| | | | - Damien Cossement
- Materia Nova Research Center, avenue N. Copernic 1, 7000 Mons, Belgium
| | - Rony Snyders
- ChIPS, Université de Mons, Place du Parc 23, 7000 Mons, Belgium. .,Materia Nova Research Center, avenue N. Copernic 1, 7000 Mons, Belgium
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
8
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
9
|
A highly sensitive and dual-readout immunoassay for norfloxacin in milk based on QDs-FM@ALP-SA and click chemistry. Talanta 2021; 234:122703. [PMID: 34364497 DOI: 10.1016/j.talanta.2021.122703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
A dual-readout immunoassay based on QDs-FM@ALP-SA and click chemistry was developed for quick and sensitive detection of norfloxacin (NOR), which is an important fluoroquinolone antibiotic. In the system, the NOR-biotin conjugate (NOR-Biotin) was synthesized by click chemistry for signal transformation, and alkaline phosphatase-labeled streptavidin (ALP-SA) was attached to quantum dot fluorescence microspheres (QDs-FM) by an activated ester method to form QDs-FM@ALP-SA for signal amplification. Here, QDs-FM was a dual-functional carrier: it was used not only as a chemiluminescence signal amplification carrier but also as a fluorescent signal due to its fluorescence character. The NOR antibody was coated on a 96-well chemiluminescence microtiter plate, and NOR-Biotin was bound to the antibody specifically. Then, QDs-FM@ALP-SA was combined with NOR-Biotin to develop a direct competition chemiluminescence/fluorescence immunoassay (dc-CLIA/FIA). The IC50 values were 0.345 and 1.206 ng/mL for dc-CLIA/FIA, respectively. The linear range was 0.013-12.48 ng/mL and 0.042-39.86 ng/mL, respectively. The recovery from the standard fortified blank milk samples was in the range of 86.44%-101.3%. Therefore, this method could be a useful tool for routine screening of NOR residues in milk.
Collapse
|
10
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
11
|
Manoto SL, El-Hussein A, Malabi R, Thobakgale L, Ombinda-Lemboumba S, Attia YA, Kasem MA, Mthunzi-Kufa P. Exploring optical spectroscopic techniques and nanomaterials for virus detection. Saudi J Biol Sci 2021; 28:78-89. [PMID: 32868971 PMCID: PMC7449958 DOI: 10.1016/j.sjbs.2020.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Viral infections pose significant health challenges globally by affecting millions of people worldwide and consequently resulting in a negative impact on both socioeconomic development and health. Corona virus disease 2019 (COVID-19) is a clear example of how a virus can have a global impact in the society and has demonstrated the limitations of detection and diagnostic capabilities globally. Another virus which has posed serious threats to world health is the human immunodeficiency virus (HIV) which is a lentivirus of the retroviridae family responsible for causing acquired immunodeficiency syndrome (AIDS). Even though there has been a significant progress in the HIV biosensing over the past years, there is still a great need for the development of point of care (POC) biosensors that are affordable, robust, portable, easy to use and sensitive enough to provide accurate results to enable clinical decision making. The aim of this study was to present a proof of concept for detecting HIV-1 pseudoviruses by using anti-HIV1 gp41 antibodies as capturing antibodies. In our study, glass substrates were treated with a uniform layer of silane in order to immobilize HIV gp41 antibodies on their surfaces. Thereafter, the HIV pseudovirus was added to the treated substrates followed by addition of anti-HIV gp41 antibodies conjugated to selenium nanoparticle (SeNPs) and gold nanoclusters (AuNCs). The conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies was characterized using UV-vis spectroscopy, transmission electron microscopy (TEM) and zeta potential while the surface morphology was characterized by fluorescence microscopy, atomic force microscopy (AFM) and Raman spectroscopy. The UV-vis and zeta potential results showed that there was successful conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies and fluorescence microscopy showed that antibodies immobilized on glass substrates were able to capture intact HIV pseudoviruses. Furthermore, AFM also confirmed the capturing HIV pseudoviruses and we were able to differentiate between substrates with and without the HIV pseudoviruses. Raman spectroscopy confirmed the presence of biomolecules related to HIV and therefore this system has potential in HIV biosensing applications.
Collapse
Affiliation(s)
- Sello Lebohang Manoto
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Rudzani Malabi
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Lebogang Thobakgale
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Saturnin Ombinda-Lemboumba
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Yasser A. Attia
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Mohamed A. Kasem
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Patience Mthunzi-Kufa
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
12
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
13
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
14
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
15
|
Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting. Curr Pharm Biotechnol 2019; 20:526-541. [DOI: 10.2174/1389201020666190417125101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Targeted drug delivery, also known as smart drug delivery or active drug delivery, is a subcategory of nanomedicine. Using this strategy, the medication is delivered into the infected organs in the patient’s body or to the targeted sites inside the cells. In order to improve therapeutic efficiency and pharmacokinetic characteristics of the active pharmaceutical agents, conjugation of biomacromolecules such as proteins, nucleic acids, monoclonal antibodies, aptamers, and nanoparticulate drug carriers, has been mostly recommended by scientists in the last decades. Several covalent conjugation pathways are used for biomacromolecules coupling with nanomaterials in nanomedicine including carbodiimides and “click” mediated reactions, thiol-mediated conjugation, and biotin-avidin interactions. However, choosing one or a combination of these methods with suitable coupling for application to advanced drug delivery is essential. This review focuses on new and high impacted published articles in the field of nanoparticles and biomacromolecules coupling studies, as well as their advantages and applications.
Collapse
Affiliation(s)
- Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Kashanian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
16
|
Wu Y, Chen Z, Zhang P, Zhou L, Jiang T, Chen H, Gong P, Dimitrov DS, Cai L, Zhao Q. Recombinant-fully-human-antibody decorated highly-stable far-red AIEdots for in vivo HER-2 receptor-targeted imaging. Chem Commun (Camb) 2018; 54:7314-7317. [PMID: 29904764 DOI: 10.1039/c8cc03037e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed highly bright and stable far-red emissive AIEdots by using a new kind of click-functional PEG grafted amphiphilic polymer to coat hydrophobic AIE-active polymers (PDFDP). Furthermore, an anti-HER2 recombinant fully human antibody was produced and conjugated on the AIEdots via metal-free click chemistry to fabricate in vivo tumor-targeting nanoprobes.
Collapse
Affiliation(s)
- Yayun Wu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amiri S, Ahmadi R, Salimi A, Navaee A, Hamd Qaddare S, Amini MK. Ultrasensitive and highly selective FRET aptasensor for Hg2+ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform. NEW J CHEM 2018. [DOI: 10.1039/c8nj02781a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy was proposed for the determination of Hg2+ in water, foods, and living organisms based on the quenching and recovery of the fluorescence of CDs-ssDNA through the FRET process induced by AuNPs-cDNA. The results showed a wide response range, pM detection limit, and high selectivity.
Collapse
Affiliation(s)
- Shole Amiri
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Rezgar Ahmadi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Abdollah Salimi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
- Department of Chemistry
| | - Aso Navaee
- Department of Chemistry
- University of Kurdistan
- Sanandaj 66177-15175
- Iran
| | | | | |
Collapse
|
18
|
Han L, Liu Q, Yang L, Ye T, He Z, Jia L. Facile Oriented Immobilization of Histidine-Tagged Proteins on Nonfouling Cobalt Polyphenolic Self-Assembly Surfaces. ACS Biomater Sci Eng 2017; 3:3328-3337. [PMID: 33445373 DOI: 10.1021/acsbiomaterials.7b00691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a completely green and facile protocol to oriented immobilization of histidine-tagged (His-tagged) proteins based on plant polyphenolic tannic acid (TA) is described. This is the first time that TA has been applied as ionic chelators to immobilize His-tagged proteins. To reduce the nonspecific interactions between the TA and immobilized proteins, we assembled nonfouling zwitterionic poly(sulfobetaine methacrylate) (PSBMA) on the TA surface. The use of PSBMA could maintain the high activity of the His-tagged proteins and inhibit the adsorption of untagged protein to the TA surface. Subsequently, the obtained TA/PSBMA film was further chelated with CoII for specific binding to a His-tagged protein. As CoIII is more stable and inert than CoII, the chelated CoII was oxidized to CoIII. Using this approach, His-tagged Chitinase was anchored to TA/PSBMA/CoIII film as a catalyst for the hydrolysis of chitin. The loading capacity of the film for the His-tagged Chitinase can reach ∼4.0 μg/cm2. Moreover, the oriented immobilized Chitinase had high catalytic activity and excellent thermal and storage stability as well as being more resistant to proteolytic digestion by papain. This low-cost and green protein-oriented immobilization strategy may serve as a versatile platform for a range of applications, such as biomaterials, biocatalysis, sensors, drug delivery, and so on.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qi Liu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Liwei Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tong Ye
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Zhien He
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Greene MK, Richards DA, Nogueira JCF, Campbell K, Smyth P, Fernández M, Scott CJ, Chudasama V. Forming next-generation antibody-nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem Sci 2017; 9:79-87. [PMID: 29629076 PMCID: PMC5869316 DOI: 10.1039/c7sc02747h] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Enabling oriented installation of non-engineered antibody fragments on nanoparticle surfaces to create next-generation antibody–nanoparticle conjugates.
The successful development of targeted nanotherapeutics is contingent upon the conjugation of therapeutic nanoparticles to target-specific ligands, with particular emphasis being placed on antibody-based ligands. Thus, new methods that enable the covalent and precise installation of targeting antibodies to nanoparticle surfaces are greatly desired, especially those which do not rely on costly and time-consuming antibody engineering techniques. Herein we present a novel method for the highly controlled and oriented covalent conjugation of non-engineered antibody F(ab) fragments to PLGA–PEG nanoparticles using disulfide-selective pyridazinedione linkers and strain-promoted alkyne–azide click chemistry. Exemplification of this method with trastuzumab and cetuximab showed significant improvements in both conjugation efficiency and antigen binding capability, when compared to commonly employed strategies for antibody–nanoparticle construction. This new approach paves the way for the development of antibody-targeted nanomedicines with improved paratope availability, reproducibility and uniformity to enhance both biological activity and ease of manufacture.
Collapse
Affiliation(s)
- Michelle K Greene
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | | | | | - Katrina Campbell
- Institute for Global Food Security , School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Peter Smyth
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | - Marcos Fernández
- Department of Chemistry , University College London , London , UK .
| | - Christopher J Scott
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | - Vijay Chudasama
- Department of Chemistry , University College London , London , UK . .,Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
20
|
Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017; 12:1873-1889. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.
Collapse
Affiliation(s)
- Geoffrey A Pietersz
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Burnet Institute, Centre for Biomedical Research, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Xiaowei Wang
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| | - May Lin Yap
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Bock Lim
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Karlheinz Peter
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
Yaakov N, Chaikin Y, Wexselblatt E, Tor Y, Vaskevich A, Rubinstein I. Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry 2017; 23:10148-10155. [DOI: 10.1002/chem.201701511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Noga Yaakov
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yulia Chaikin
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Alexander Vaskevich
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
22
|
Giziński D, Goszewska I, Zieliński M, Lisovytskiy D, Nikiforov K, Masternak J, Zienkiewicz-Machnik M, Śrębowata A, Sá J. Chemoselective flow hydrogenation of α,β – Unsaturated aldehyde with nano-nickel. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017; 116:95-111. [PMID: 27876681 PMCID: PMC5374010 DOI: 10.1016/j.ymeth.2016.11.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| | - James Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 060
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
24
|
Krishnakumar S, Gopidas KR. Covalent Functionalization of Organic Nanoparticles Using Aryl Diazonium Chemistry and Their Solvent-Dependent Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1162-1170. [PMID: 28061527 DOI: 10.1021/acs.langmuir.6b03269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple method for covalent functionalization of Fréchet-type dendron nanoparticles (FDNs) using tris-bipyridylruthenium(II) is described. Covalent functionalization is achieved by chemically reducing the diazo derivative of a ruthenium(II)bipyridine complex in the presence of FDNs wherein the radical species generated gets covalently linked to the nanoparticle surface. Simplicity, rapidity, and robustness are the advantages offered by the present approach. The nanoparticles, post functionalization, were characterized using transmission electron microscopy, thermogravimetric analysis, and infrared, energy-dispersive X-ray, UV-visible, and nuclear magnetic resonance spectroscopic techniques. Depending on the solvent, the ruthenium complex-linked FDN displays a range of morphologies, including nanoparticles, fiber-networks, and nanocapsules. In the nanocapsules and fiber-networks observed in organic solvents, the ruthenium complex is confined within the interior domain of the aggregate, whereas in the nanoparticles observed in water, it is present on the periphery. The formation of predictable morphologies in different solvents plays a key role in using such self-assembled structures for various applications such as sensing, catalysis, and light harvesting. Characterization of these nanoaggregates using different spectroscopic and microscopic techniques is also described.
Collapse
Affiliation(s)
- Sreedevi Krishnakumar
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR) , Trivandrum 695019, India
| | - Karical R Gopidas
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR) , Trivandrum 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus , Thiruvananthapuram 695019, India
| |
Collapse
|
25
|
Filbrun SL, Filbrun AB, Lovato FL, Oh SH, Driskell EA, Driskell JD. Chemical modification of antibodies enables the formation of stable antibody–gold nanoparticle conjugates for biosensing. Analyst 2017; 142:4456-4467. [DOI: 10.1039/c7an01496a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-modified gold nanoparticles (AuNPs) are central to many novel and emerging biosensing technologies due to the specificity provided by antibody–antigen interactions and the unique properties of nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Soon H. Oh
- Department of Pathobiology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | | | | |
Collapse
|
26
|
Sola L, Damin F, Gagni P, Consonni R, Chiari M. Synthesis of Clickable Coating Polymers by Postpolymerization Modification: Applications in Microarray Technology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10284-10295. [PMID: 27632284 DOI: 10.1021/acs.langmuir.6b02816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we report on the postpolymerization modification (PPM) of a polymer to introduce new functionalities that enable click chemistry reactions for microarray applications. The parent polymer, named copoly(DMA-NAS-MAPS), is composed of N,N-dimethylacrylamide (DMA), a monomer that self-adsorbs onto different materials through weak interactions such as hydrogen bonding or van der Waals forces, 3-(trimethoxysilyl)propyl methacrylate (MAPS) that strengthens the stability of the coating through the formation of covalent bonds with siloxane groups on the surface to be coated, and N-acryloyloxysuccinimide (NAS), an active ester group, highly reactive toward nucleophiles, which enables bioprobe immobilization. This copolymer has been widely exploited to coat surfaces for microarray applications but exhibits some limitations because of the potential hydrolysis of the active ester (NHS ester). The degradation of the NHS ester hampers the use of this coating in some situations, for example, when probe immobilization cannot be accomplished through a microspotting situation, but in large volumes, for example, in microchannel derivatization or micro-/nanoparticle functionalization. To overcome the limitations of NHS esters, we have developed a family of polymers that originate from the common copolymer precursor, by reacting the active ester contained in the polymer chain with a bifunctional amine. In particular, the functional groups introduced in the polymer using PPM enable click chemistry reactions such as azide/alkyne or thiol/maleimide "click" reactions, with suitably modified biomolecules. The advantages of such reactions are quantitative yields, orthogonality of functional groups, and insensitivity of the reaction to pH. The new click functionalities, inserted with quantitative yields, improve the stability of the coating, enabling the attachment of biomolecules directly from a solution and avoiding the spotting of reduced volumes (pL) of probes. Finally, we have demonstrated the applicability of the click surfaces in a highly effective solid-phase PCR for the genotyping of the G12D KRAS mutation.
Collapse
Affiliation(s)
- Laura Sola
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy
| | - Francesco Damin
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy
| | - Roberto Consonni
- Istituto per lo Studio delle Macromolecole, CNR , Via Corti 12, 20133 Milano, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
27
|
Mandl A, Filbrun SL, Driskell JD. Asymmetrically Functionalized Antibody–Gold Nanoparticle Conjugates to Form Stable Antigen-Assembled Dimers. Bioconjug Chem 2016; 28:38-42. [DOI: 10.1021/acs.bioconjchem.6b00459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandra Mandl
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Seth L. Filbrun
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D. Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|