1
|
Henshaw CA, Dundas AA, Cuzzucoli Crucitti V, Alexander MR, Wildman R, Rose FRAJ, Irvine DJ, Williams PM. Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants. Molecules 2021; 26:3302. [PMID: 34072733 PMCID: PMC8197901 DOI: 10.3390/molecules26113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.
Collapse
Affiliation(s)
- Charlotte A. Henshaw
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
| | - Adam A. Dundas
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
| | - Ricky Wildman
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Felicity R. A. J. Rose
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Derek J. Irvine
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Philip M. Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques. Adv Colloid Interface Sci 2020; 281:102177. [PMID: 32417568 DOI: 10.1016/j.cis.2020.102177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
To generate the desired effect in the human body, the active pharmaceutical ingredient usually needs to interact with a receptor located on the cell membrane or inside the cell. Thus, understanding membrane interactions is of great importance when it comes to the development and testing of new drug molecules or new drug delivery systems. Nowadays, there is a tremendous selection of both model cell membranes and of techniques that can be used to characterize interactions between selected model cell membranes and a drug molecule, an excipient, or a drug delivery system. Having such a wide selection of model cell membranes and techniques available makes it sometimes challenging to select the optimal combination for a specific study. Furthermore, it is difficult to compare results obtained using different model cell membranes and techniques, and not all in vitro studies translate as well to an estimation of the in vivo biological activity or understanding of mode of action. This review provides an overview of the available lipid bilayer-based model cell membranes and of the most widely employed techniques for studying membrane interactions. Finally, the need for employing complimentary characterization techniques in order to acquire more reliable and in-depth information is highlighted.
Collapse
|
3
|
Micro-Surface and -Interfacial Tensions Measured Using the Micropipette Technique: Applications in Ultrasound-Microbubbles, Oil-Recovery, Lung-Surfactants, Nanoprecipitation, and Microfluidics. MICROMACHINES 2019; 10:mi10020105. [PMID: 30717224 PMCID: PMC6413238 DOI: 10.3390/mi10020105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
This review presents a series of measurements of the surface and interfacial tensions we have been able to make using the micropipette technique. These include: equilibrium tensions at the air-water surface and oil-water interface, as well as equilibrium and dynamic adsorption of water-soluble surfactants and water-insoluble and lipids. At its essence, the micropipette technique is one of capillary-action, glass-wetting, and applied pressure. A micropipette, as a parallel or tapered shaft, is mounted horizontally in a microchamber and viewed in an inverted microscope. When filled with air or oil, and inserted into an aqueous-filled chamber, the position of the surface or interface meniscus is controlled by applied micropipette pressure. The position and hence radius of curvature of the meniscus can be moved in a controlled fashion from dimensions associated with the capillary tip (~5–10 μm), to back down the micropipette that can taper out to 450 μm. All measurements are therefore actually made at the microscale. Following the Young–Laplace equation and geometry of the capillary, the surface or interfacial tension value is simply obtained from the radius of the meniscus in the tapered pipette and the applied pressure to keep it there. Motivated by Franklin’s early experiments that demonstrated molecularity and monolayer formation, we also give a brief potted-historical perspective that includes fundamental surfactancy driven by margarine, the first use of a micropipette to circuitously measure bilayer membrane tensions and free energies of formation, and its basis for revolutionising the study and applications of membrane ion-channels in Droplet Interface Bilayers. Finally, we give five examples of where our measurements have had an impact on applications in micro-surfaces and microfluidics, including gas microbubbles for ultrasound contrast; interfacial tensions for micro-oil droplets in oil recovery; surface tensions and tensions-in-the surface for natural and synthetic lung surfactants; interfacial tension in nanoprecipitation; and micro-surface tensions in microfluidics.
Collapse
|
4
|
Andersson J, Roger K, Larsson M, Sparr E. The Impact of Nonequilibrium Conditions in Lung Surfactant: Structure and Composition Gradients in Multilamellar Films. ACS CENTRAL SCIENCE 2018; 4:1315-1325. [PMID: 30410969 PMCID: PMC6202641 DOI: 10.1021/acscentsci.8b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 05/06/2023]
Abstract
The lipid-protein mixture that covers the lung alveoli, lung surfactant, ensures mechanical robustness and controls gas transport during breathing. Lung surfactant is located at an interface between water-rich tissue and humid, but not fully saturated, air. The resulting humidity difference places the lung surfactant film out of thermodynamic equilibrium, which triggers the buildup of a water gradient. Here, we present a millifluidic method to assemble multilamellar interfacial films from vesicular dispersions of a clinical lung surfactant extract used in replacement therapy. Using small-angle X-ray scattering, infrared, Raman, and optical microscopies, we show that the interfacial film consists of several coexisting lamellar phases displaying a substantial variation in water swelling. This complex phase behavior contrasts to observations made under equilibrium conditions. We demonstrate that this disparity stems from additional lipid and protein gradients originating from differences in their transport properties. Supplementing the extract with cholesterol, to levels similar to the endogenous lung surfactant, dispels this complexity. We observed a homogeneous multilayer structure consisting of a single lamellar phase exhibiting negligible variations in swelling in the water gradient. Our results demonstrate the necessity of considering nonequilibrium thermodynamic conditions to study the structure of lung surfactant multilayer films, which is not accessible in bulk or monolayer studies. Our reconstitution methodology also opens avenues for lung surfactant pharmaceuticals and the understanding of composition, structure, and property relationships at biological air-liquid interfaces.
Collapse
Affiliation(s)
- Jenny
Marie Andersson
- Physical
Chemistry, Lund University, Lund SE-221 00, Sweden
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, Institut
National Polytechnique de Toulouse, Université
Paul Sabatier, Toulouse 31330, France
| | - Kevin Roger
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, Institut
National Polytechnique de Toulouse, Université
Paul Sabatier, Toulouse 31330, France
- E-mail:
| | - Marcus Larsson
- Department
of Pediatrics/Neonatology, Medical Faculty, Lund University, Lund SE-221 00, Sweden
| | - Emma Sparr
- Physical
Chemistry, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
5
|
Utoft A, Kinoshita K, Bitterfield DL, Needham D. Manipulating Single Microdroplets of NaCl Solutions: Solvent Dissolution, Microcrystallization, and Crystal Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3626-3641. [PMID: 29510057 DOI: 10.1021/acs.langmuir.7b03977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new "three-micropipette manipulation technique" for forming, dehydrating, crystallizing, and resolvating nanograms of salt material has been developed to study supersaturated single microdroplets and microcrystals. This is the first report of studies that have measured in situ both supersaturation (as homogeneous nucleation) and saturation (as microcrystal redissolution) for single microdroplets of NaCl solution using the micropipette technique. This work reports a measure of the critical supersaturation concentration for homogeneous nucleation of NaCl (10.3 ± 0.3 M) at a supersaturation fraction of S = 1.9, the saturation concentration of NaCl in aqueous solution as measured with nanograms of material (5.5 ± 0.1 M), the diffusion coefficient for water in octanol, D = (1.96 ± 0.10) × 10-6 cm2/s, and the effect of the solvent's activity on dissolution kinetics. It is further shown that the same Epstein-Plesset (EP) model, which was originally developed for diffusion-controlled dissolution and uptake of gas, and successfully applied to liquid-in-liquid dissolution, can now also be applied to describe the diffusion-controlled uptake of water from a water-saturated environment using the extended activity-based model of Bitterfield et al. This aspect of the EP model has not previously been tested using single microdroplets. Finally, it is also reported how the water dissolution rate, rate of NaCl concentration change, resulting crystal structure, and the time frame of initial crystal growth are affected by changing the bathing medium from octanol to decane. A much slower loss of water-solvent and concomitant slower up-concentration of the NaCl solute resulted in a lower tendency to nucleate and slower crystal growth because much less excess material was available at the onset of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane. These new techniques and analyses can now also be used for any other system where all relevant parameters are known. An example of this is control of drug/hydrogel/emulsion particle size change due to solvent uptake.
Collapse
Affiliation(s)
- Anders Utoft
- Center for Single Particle Science and Engineering (SPSE), Health Sciences , University of Southern Denmark , Odense 5230 , Denmark
| | - Koji Kinoshita
- Center for Single Particle Science and Engineering (SPSE), Health Sciences , University of Southern Denmark , Odense 5230 , Denmark
| | | | - David Needham
- Center for Single Particle Science and Engineering (SPSE), Health Sciences , University of Southern Denmark , Odense 5230 , Denmark
- Department of Mechanical Engineering and Materials Science , Duke University , Durham , North Carolina 27708 , United States
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
6
|
From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation) from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres. Processes (Basel) 2016. [DOI: 10.3390/pr4040049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water. J Colloid Interface Sci 2016; 488:166-179. [PMID: 27825061 DOI: 10.1016/j.jcis.2016.10.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022]
Abstract
Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10-6cm2/s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10-6cm2/s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins.
Collapse
|