1
|
Kikkawa Y, Tsuzuki S. Stability of n-alkanes and n-perfluoroalkanes against horizontal displacement on a graphite surface. Phys Chem Chem Phys 2024; 26:24314-24321. [PMID: 39257182 DOI: 10.1039/d4cp02418d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The stability of adsorbed molecules on surfaces is fundamental and important for various applications, such as coating, lubrication, friction, and self-assembled structure formation. In this study, we investigated the structures and interaction energies (Eint) of propane, n-pentane, n-heptane, perfluoropropane, n-perfluoropentane, and n-perfluoroheptane adsorbed on the surface of C96H24 (a model surface of graphite). The changes in Eint (ΔEint = Eint - Eint(0)) associated with the horizontal displacement from the stable position were calculated using dispersion-corrected density functional theory (DFT; B3LYP-D3), where Eint(0) is the Eint at the stable position. The maximum value of ΔEint (ΔEint(max)) associated with the horizontal displacement increased as the chain length increased. The ΔEint(max) for the three n-alkanes were 1.10, 1.82, and 2.35 kcal mol-1, respectively. The values for n-perfluoroalkanes were 0.57, 0.83, and 1.04 kcal mol-1, respectively. The ΔEint(max) values for the n-alkanes were significantly larger than those for the corresponding n-perfluoroalkanes. The Eint(max) value per carbon atom of the n-alkanes (ca. 0.30 kcal mol-1) is approximately 2.5 times as large as that of n-perfluoroalkanes (ca. 0.12 kcal mol-1). The ΔEint associated with the horizontal displacement of propane and perfluoropropane on circumcoronene (C54H18) obtained by the B3LYP-D3 calculations are close to those obtained by the second order Møller-Plesset (MP2) and dispersion-corrected double hybrid DFT calculations, suggesting the sufficient accuracy of the ΔEint obtained by the B3LYP-D3. Thus, our quantitative analysis revealed the higher stability of n-alkanes against horizontal displacement on a graphite surface than that of n-perfluoroalkanes.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
2
|
Ozawa Y, Hashimoto S, Sato Y, Sato K, Yokoyama T, Machida Y, De Feyter S, Tobe Y, Tahara K. Adsorption of Prochiral Solvent Molecules by Surface-Confined Chiral Supramolecular Assemblies: How Solvent Impacts on-Surface Chirality. Chemistry 2024; 30:e202401885. [PMID: 38977428 DOI: 10.1002/chem.202401885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
The understanding of supramolecular chirality in self-assembled molecular networks (SAMNs) on surfaces generates a lot of interest because of its relation to the production of chiral sensors, reactors, and catalysts. We herein report the adsorption of a prochiral solvent molecule in porous SAMNs formed by a chiral dehydrobenzo[12]annulene (cDBA) derivative. Through the prochirality recognition of a solvent molecule, the supramolecular chirality of the SAMN is switched: the cDBA exclusively forms a counter-clockwise pore through co-adsorption of the solvent molecule in prochiral 1,2,4-trichlorobenzene, while in 1-phenyloctane it produces the opposite chiral, clockwise pore. The prochirality recognition of the solvent molecule in the chiral SAMN pores is attributed to the adaptable conformational changes of the chiral chains of the cDBA molecule.
Collapse
Affiliation(s)
- Yu Ozawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yuta Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takumi Yokoyama
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoshihito Machida
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
3
|
Zheng Y, Zhang S, Zhao X, Miao X, Deng W. Symmetry of Pyridine Derivatives Controlled Two-Dimensional Nanostructural Diversity by Co-Assembly with Aromatic Carboxylic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6424-6431. [PMID: 38470109 DOI: 10.1021/acs.langmuir.3c04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The self-assembly behaviors of aromatic carboxylic acids are commonly investigated at the liquid/solid interfaces because of their rigid skeletons and both hydrogen-bond donors and receptors. However, self-assemblies of aromatic carboxylic acids with low symmetry and interactions between carboxylic acid and pyridine derivatives are worth exploring. In this work, the self-assembled structural transitions of a kind of low-symmetric aromatic carboxylic acid (H4QDA) are regulated by the coadsorption of two pyridine derivatives (DPE and T4PT) with different symmetry, which are investigated by scanning tunneling microscopy under ambient conditions. For the H4QDA/DPE system, the grid structure appears. For the H4QDA/T4PT system, the coassembled morphologies display an obvious concentration dependence. With the increase of solution concentration of T4PT, three coassembled patterns (network structure, chiral linear structure, and brick-like structure) are observed. Corresponding structural models suggest that the O-H···N hydrogen bonds have great contributions to stabilizing these coassembled structures. Our studies will help to explore the complexity, diversity, and functionality of multiple component systems and are conducive to further understanding the underlying mechanisms in the assembly process.
Collapse
Affiliation(s)
- Yutuo Zheng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songyao Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Peng H, Li F, Qin Y, Shi S, Ma G, Fan X, Li Y, Ma L, Liu N. Branched-Chain-Induced Host-Guest Assembly in Covalent-Organic Frameworks for Efficient Separation of No-Carrier-Added 177Lu. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9343-9354. [PMID: 38346235 DOI: 10.1021/acsami.3c19054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
No-carrier-added (NCA) 177Lu is one of the most interesting nuclides for endoradiotherapy. With the dramatically rapid development of radiopharmaceutical and nuclear medicine, there is a sharp increase in the radionuclide supply of NCA 177Lu, which has formed a great challenge to current radiochemical separation constituted on classical materials. Hence, it is of vital importance to design and prepare new functional materials able of recovering 177Lu from an irradiated target with excellent efficacy. In this work, we proposed to apply noncovalent interactions to regulate the porous properties of covalent organic frameworks (COFs) by tuning the branched chain, rendering related covalent hosts different encapsulation abilities toward a flexible guest, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507). More interestingly, we found that the noncovalent interaction has a great effect on the host-guest complexes, which can achieve efficient NCA 177Lu separation with high recovery (95.97%). A systematic mechanism combined with experimental and theoretical investigations has confirmed that the noncovalent interactions between COFs and P507 play a preeminent role in adjusting the macroscopic properties of the host-guest complexes. This work not only uncovers that noncovalent interactions can affect the basic properties of covalent organic bonded materials but also provides a strategy for the design and preparation of other new moieties with specific functionalities.
Collapse
Affiliation(s)
- Haiyue Peng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yilin Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Shilong Shi
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Guoquan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xisheng Fan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Cometto FP, Arisnabarreta N, Vanta R, Jacquelín DK, Vyas V, Lotsch BV, Paredes-Olivera PA, Patrito EM, Lingenfelder M. Rational Design of 2D Supramolecular Networks Switchable by External Electric Fields. ACS NANO 2024; 18:4287-4296. [PMID: 38259041 PMCID: PMC10851663 DOI: 10.1021/acsnano.3c09775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope. Assisted by density functional theory and molecular dynamics simulations, we systematically vary the molecule-to-molecule interactions, i.e., the hydrogen-bonding strength, as well as the molecule-to-substrate interactions to analyze the EEF switching effect. By tuning the building block's hydrogen-bonding ability (carboxylic acids vs aldehydes) and substrate nature and charge (graphite, graphene/Cu, graphene/SiO2), we induce or freeze the switching properties and control the final polymorphic output in the 2D network. Our results indicate that the switching ability is not inherent to any particular building block but instead relies on a synergistic combination of the relative adsorbate/adsorbate and absorbate/substrate energetic contributions under surface polarization. Furthermore, we describe the dynamics of the switching mechanism based on the rotation of carboxylic groups and proton exchange, which generate the polarizable species that are influenced by the EEF. This work provides insights into the design and control of reversible molecular assembly in 2D materials, with potential applications in a wide range of fields, including sensors and electronics.
Collapse
Affiliation(s)
- Fernando P. Cometto
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Nicolás Arisnabarreta
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Radovan Vanta
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
| | - Daniela K. Jacquelín
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Vijay Vyas
- Max
Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Stuttgart D-70569, Germany
- Department
of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Patricia A. Paredes-Olivera
- Departamento
de Química Teórica y Computacional, Facultad de Ciencias
Químicas, Universidad Nacional de
Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - E. Martín Patrito
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Magalí Lingenfelder
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
| |
Collapse
|
6
|
Tanaka H, Taniguchi M. Self-Assembled Monolayers of Gemini-Type Amphiphilic Hexabenzocoronenes on Gold: Contribution of Their Triethylene Glycol Side Chains to Self-Assembly Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15078-15084. [PMID: 37824836 DOI: 10.1021/acs.langmuir.3c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We report on a two-dimensional self-assembled structure of a supramolecule with hydrophilic oligoethylene glycol (EG) units, which are capable of stronger electrostatic interactions than van der Waals (vdW) interactions between alkyl chains. For this purpose, hexabenzocoronene (HBC) with two hydrophobic dodecyl chains on one side of the HBC core and two hydrophilic triethylene glycol (TEG) chains on the other side of the HBC core (HBCGemini) and HBCGemini with a trinitrofluorenone (TNF) added to the end of one TEG chain (HBCTNFGemini) were employed. Scanning tunneling microscopy (STM) revealed the presence of multiple two-dimensional self-assembled structures in each of HBCGemini and HBCTNFGemini deposited on the gold substrate in vacuum. The role of polar functional groups in these observations is discussed based on semiempirical molecular orbital simulations. Two types of 2D organized structures of HBC-TEG were observed: one with rectangular and relatively dense unit cells and the other with nearly square and relatively sparse unit cells. In both organized structures, the phenyl group TEG units and alkyl chains were considered to be the main molecular interactions with each other. On the other hand, in HBCTNFGemini, three types of organized structures were observed, which could be explained by the mechanism of interdigitation of the TEG-containing side-chain moieties to form a dimeric core. The EG units are more flexible than the alkyl chains and thus can interact flexibly with the hydrophobic HBC core, and the glycol side chains facilitate the intermolecular interactions as well as the alkyl chains.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
7
|
Liu S, Norikane Y, Kikkawa Y. Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:872-892. [PMID: 37674543 PMCID: PMC10477993 DOI: 10.3762/bjnano.14.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.
Collapse
Affiliation(s)
- Suyi Liu
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8571, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Kikkawa Y, Nagasaki M, Norikane Y. Two-dimensional self-assemblies of azobenzene derivatives: effects of methyl substitution of azobenzene core and alkyl chain length. Phys Chem Chem Phys 2022; 24:29757-29764. [PMID: 36458744 DOI: 10.1039/d2cp05097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elucidating the correlation between the molecular arrangement and physical properties of organic compounds is critical to facilitating the development of advanced functional materials. X-ray structural analyses are generally performed to clarify this relationship. Several attempts have been made to ascertain the links between three-dimensional (3D) crystals and their two-dimensional (2D) structures, which can be revealed by scanning tunnelling microscopy (STM) at the molecular level. Thus, 2D self-assemblies of a series of azobenzene derivatives were investigated in this study, and the effects of methyl substitution of the azobenzene core and alkyl chain length on the 2D molecular arrangements at the solid/liquid interface were revealed. Three types of azobenzene derivatives were prepared; these contained azobenzene (Az), 3-methyl azobenzene (MAz), or 3,3'-dimethyl azobenzene (DAz) as cores and alkyloxy chains of different lengths (C8-13) at their 4,4' positions. The 2D structures of the Az and DAz compounds were found to be modulated owing to the odd-even effect of the alkyl chains in a specific chain-length range; this effect was only weakly exhibited by the MAz compounds. This result suggests that only the methyl-group substitution of the azobenzene core significantly affected the 2D structures. The 2D structural features have been discussed in terms of molecular conformation, as well as their correlation with the photo-melting behaviour of the azobenzene derivatives, particularly the MAz compounds.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
9
|
Lei P, Ma L, Zhang S, Li J, Gan L, Deng K, Duan W, Li W, Zeng Q. The self-assembly and structural regulation of a hydrogen-bonded dimeric building block formed by two N-H…O hydrogen bonds on HOPG. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Meng T, Lei P, Zhang Y, Deng K, Xiao X, Zeng Q. Coronene and bipyridine derivatives inducing diversified structural transitions of carboxylic acids at the liquid/solid interface. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
- College of Materials and Chemical Engineering Ningbo University of Technology Ningbo 315211 China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yufei Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xunwen Xiao
- College of Materials and Chemical Engineering Ningbo University of Technology Ningbo 315211 China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Yan Q, Meng T, Luo W, Sun L, Zeng Q, Xu H. Co-assembly Behaviors of Flavonol Derivatives Induced by a Pyridine Derivative on HOPG via Hydrogen Bonding and Van der Waals Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8651-8656. [PMID: 35797253 DOI: 10.1021/acs.langmuir.2c01076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, two new flavonol derivatives, 2-(4-(dodecyloxy)phenyl)-3-hydroxyflavone (DHF) and 2-(3,5-bis(dodecyloxy)phenyl)-3-hydroxyflavone (BDHF), were synthesized to investigate the respective self-assembly behaviors at the liquid/solid interface by scanning tunneling microscopy. In addition, a linear pyridine derivative with acetylene groups called BisPy was added to regulate the assembly of DHF and BDHF, individually. However, only BDHF molecules successfully co-assembled into grid structures with BisPy molecules. Furthermore, the assembly and co-assembly behavior mechanism of flavonol derivatives and BisPy molecules were further studied by density functional theory calculations. This work will lay a foundation for investigating the self-assembly of flavonol derivatives and the co-assembly regulated by pyridine derivatives at the liquid-solid interface.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| |
Collapse
|
12
|
Hu Y, Lei P, Luo W, Song J, Zeng Q, Xiao X. The effect of hydrogen bond or halogen bond on assemblies of TTF derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Meng T, Lu Y, Lei P, Li S, Deng K, Xiao X, Ogino K, Zeng Q. Self-Assembly of Triphenylamine Macrocycles and Co-assembly with Guest Molecules at the Liquid-Solid Interface Studied by STM: Influence of Different Side Chains on Host-Guest Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3568-3574. [PMID: 35276043 DOI: 10.1021/acs.langmuir.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The side chains of macrocyclic molecules have a non-negligible effect on the two-dimensional (2D) supramolecular networks at the liquid-solid interface. In this study, we investigate the self-assembly behaviors of two conjugated triphenylamine macrocycles modified with different alkyl chains and construct the host-guest supramolecular nanopatterns on the highly oriented pyrolytic graphite with a scanning tunneling microscope. In combination with density functional theory calculations, how different side chains affect the host-guest interaction is discussed. This work provides insights into constructing a 2D host-guest dynamic co-assembly on the surface.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yingbo Lu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. Water-driven solid self-assembled catalysis. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kikkawa Y, Nagasaki M, Tsuzuki S, Fouquet TNJ, Nakamura S, Takenaka Y, Norikane Y, Hiratani K. Well-organised two-dimensional self-assembly controlled by in situ formation of a Cu(II)-coordinated rufigallol derivative: a scanning tunnelling microscopy study. Chem Commun (Camb) 2022; 58:1752-1755. [PMID: 35029616 DOI: 10.1039/d1cc05991b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two-dimensional self-assembly of rufigallol derivatives and their metal coordination were studied by scanning tunnelling microscopy. Ex situ Cu(II)-coordinated rufigallol derivatives exhibited columnar structures with some defects, whereas regular and linear structures were formed upon in situ metal coordination at solid/liquid interfaces.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Thierry N J Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Sayaka Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yasumasa Takenaka
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
16
|
Kikkawa Y, Nagasaki M, Koyama E, Ito S, Tsuzuki S. Halogen bond-directed self-assembly in bicomponent blends at the solid/liquid interface: Effect of the alkyl chain substitution position. Phys Chem Chem Phys 2022; 24:17088-17097. [DOI: 10.1039/d2cp02206k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of well-organised molecular assemblies on surfaces is fundamental for the creation of functional molecular systems applicable to nanoelectronics and molecular devices. In this study, we investigated the effect...
Collapse
|
17
|
Kasahara Y, Hisaki I, Akutagawa T, Takeda T. Fluorescent molecular glass based on hexadehydrotribenzo[12]annulene. Chem Commun (Camb) 2021; 57:5374-5377. [PMID: 33973596 DOI: 10.1039/d1cc01356d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared octylbenzoate-substituted [12]DBA (C8[12]DBA) as an organic molecular glass material. Even with a central large, planar π unit of [12]DBA, which is generally advantageous for the formation of a crystalline/liquid crystalline state, this compound formed a thermally stable glass state due to its small intermolecular π contact between [12]DBA units and twisted geometries around the terminal benzoate units. C8[12]DBA showed a unique dielectric anomaly and isolated fluorescence properties in the glass state.
Collapse
Affiliation(s)
- Yotaro Kasahara
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Ichiro Hisaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomoyuki Akutagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan. and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| | - Takashi Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan. and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
18
|
Li X, Li J, Ma C, Chen C, Zhang S, Tu B, Duan W, Zeng Q. Selective adsorption behaviors of guest molecules COR in the hexamer host networks at liquid/solid interface. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Zhang S, Cheng L, Chen C, Li J, Li X, Zhang M, Cheng F, Xiao X, Deng K, Zeng Q. Controlled Construction of an Exquisite Three-Component Co-assembly Supramolecular Structure at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2153-2160. [PMID: 33527825 DOI: 10.1021/acs.langmuir.0c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-component supramolecular co-assembly structure formed at the liquid-solid interface by employing a shape-persistent π-conjugated macrocycle (16mer) and two guest molecules (COR and C60) is demonstrated. Scanning tunneling microscopy (STM) observations revealed that 16mer can serve as a versatile host molecule that can co-assemble with both COR and C60 guest molecules to form stable two-component structures, where the COR guest molecule filled in the gap between the side chains of adjacent 16mer molecules, and the C60 guest molecule entered the inner cavity of 16mer. It was found that the adding sequence of COR and C60 guest molecules is crucial to the resulting co-adsorption structure in the three-component system. To obtain the intriguing 16mer-COR-C60 three-component co-assembly structure, the 16mer and COR two-component co-assembly structure should first be constructed on a HOPG surface, followed by addition of C60. Based on the analysis of the STM results and the density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Linxiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Chen Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Xiaokang Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Tobe Y, Tahara K, De Feyter S. Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. Chem Commun (Camb) 2021; 57:962-977. [PMID: 33432944 DOI: 10.1039/d0cc07374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chirality in two dimensions (2D) has attracted increasing attention with regard to interesting fundamental aspects as well as potential applications. This article reports several aspects of supramolecular chirality control as exemplified by self-assembled monolayer networks (SAMNs) formed by a class of chiral building blocks consisting of a triangular conjugated core and alkoxy chains on the periphery. It highlights 2D chirality induction phenomena through a classic "sergeants-and-soldiers" mechanism, in which the inducer is incorporated into a network component, as well as through a "supramolecular host-guest" mechanism, in which the inducer is entrapped in the porous space, leading to counterintuitive chirality reversal. Stereochemical control can be extended to three dimensions too, based on interlayer hydrogen bonding of the same class of building blocks bearing hydroxy groups, exhibiting diastereospecific bilayer formation at both single molecule level and supramolecular level arising from orientation between the top and bottom layers. Finally, we showcase that homochiral SAMNs can also be used as templates for the grafting of in situ generated aryl radicals, by covalent bond formation to the basal graphitic surface, thereby yielding topologically chiral functionalized graphite, and thus extending the potential of chiral SAMNs.
Collapse
Affiliation(s)
- Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
21
|
Heideman GH, Berrocal JA, Stöhr M, Meijer EW, Feringa BL. Stepwise Adsorption of Alkoxy-Pyrene Derivatives onto a Lamellar, Non-Porous Naphthalenediimide-Template on HOPG. Chemistry 2021; 27:207-211. [PMID: 32893412 PMCID: PMC7821129 DOI: 10.1002/chem.202004008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 01/07/2023]
Abstract
The development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC33 -NDI-uC33 , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene (PyrOR) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC33 -NDI-uC33 template enabled control over molecular interactions and facilitated adsorption. The PyrOR deposition restructured the initial uC33 -NDI-uC33 monolayer, causing an expansion in two dimensions to accommodate the guests. As far as we know, this represents the first example of a non-porous or non-metal complex-bearing monolayer that allows the stepwise formation of multicomponent supramolecular architectures on surfaces.
Collapse
Affiliation(s)
- G Henrieke Heideman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.,Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
22
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Fouquet T, Hiratani K. Dynamic host-guest behavior in halogen-bonded two-dimensional molecular networks investigated by scanning tunneling microscopy at the solid/liquid interface. NANOSCALE ADVANCES 2020; 2:4895-4901. [PMID: 36132910 PMCID: PMC9419264 DOI: 10.1039/d0na00616e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/14/2023]
Abstract
The fabrication of supramolecularly engineered two-dimensional (2D) networks using simple molecular building blocks is an effective means for studying host-guest chemistry at surfaces toward the potential application of such systems in nanoelectronics and molecular devices. In this study, halogen-bonded molecular networks were constructed by the combination of linear halogen-bond donor and acceptor ligands, and their 2D structures at the highly oriented pyrolytic graphite/1-phenyloctane interface were studied by scanning tunneling microscopy. The bi-component blend of the molecular building blocks possessing tetradecyloxy chains formed a lozenge structure via halogen bonding. Upon the introduction of an appropriate guest molecule (e.g., coronene) into the system, the 2D structure transformed into a hexagonal array, and the central pore of this array was occupied by the guest molecules. Remarkably, the halogen bonding of the original structure was maintained after the introduction of the guest molecule. Thus, the halogen-bonded molecular networks are applicable for assembling guest species on the substrate without the requirement of the conventional rigid molecular building blocks with C 3 symmetry.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
23
|
Zhu GH, Huang WM, Li YY, Wu XH, Niu YY, Zang SQ. Two Nanometer-Sized High-Nuclearity Homometallic Bromide Clusters (M26Br38)12– (M = Cu, Ag): Syntheses, Crystal Structures, and Efficient Adsorption Properties. Inorg Chem 2020; 59:9579-9586. [DOI: 10.1021/acs.inorgchem.0c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gai-Hong Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Wen-Ming Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yuan-Yuan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Xiao-Hui Wu
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, People’s Republic of China
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Shuang-Quan Zang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
24
|
Fang Y, Lindner BD, Destoop I, Tsuji T, Zhang Z, Khaliullin RZ, Perepichka DF, Tahara K, Feyter SD, Tobe Y. Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. J Am Chem Soc 2020; 142:8662-8671. [PMID: 32306725 DOI: 10.1021/jacs.0c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereocontrolled multilayer growth of supramolecular porous networks at the interface between graphite and a solution was investigated. For this study, we designed a chiral dehydrobenzo[12]annulene (DBA) building block bearing alkoxy chains substituted at the 2 position with hydroxy groups, which enable van der Waals stabilization in a layer and potential hydrogen-bonding interactions between the layers. Bias voltage-dependent scanning tunneling microscopy (STM) experiments revealed the diastereospecificity of the bilayer with respect to both the intrinsic chirality of the building blocks and the supramolecular chirality of the self-assembled networks. Top and bottom layers within the same crystalline domain were composed of the same enantiomers but displayed opposite supramolecular chiralities.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Benjamin D Lindner
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Ibaraki, Osaka 567-0047, Japan
| | - Iris Destoop
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Takashi Tsuji
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Ibaraki, Osaka 567-0047, Japan
| | - Zhenzhe Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Ibaraki, Osaka 567-0047, Japan.,Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Ibaraki, Osaka 567-0047, Japan.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
25
|
Tobe Y. A Lucky Encounter that Triggered a Leap. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshito Tobe
- The Institute of Scientific and Industrial Research, Osaka University
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
26
|
Advances in self-assembly and regulation of aromatic carboxylic acid derivatives at HOPG interface. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Iritani K, Takeda H, Kather M, Yokoi M, Moeglen M, Ikeda M, Otsubo Y, Ozawa Y, Tahara K, Hirose K, De Feyter S, Tobe Y. Electrostatically Driven Guest Binding in Self-Assembled Molecular Network of Hexagonal Pyridine Macrocycle at the Liquid/Solid Interface: Symmetry Breaking Induced by Coadsorbed Solvent Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15051-15062. [PMID: 31671263 DOI: 10.1021/acs.langmuir.9b02748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present here the construction of a self-assembled two-dimensional network at the liquid/solid interface using a hexagonal pyridine macrocycle which binds an organic cation in its intrinsic porous space by electrostatic interactions. For this purpose, a hexagonal pyridinylene-butadiynylene macrocycle (PyBM) having six octyloxymethyl groups, PyBM-C8, was synthesized. As guests, tropylium (Tr) tetrafluoroborate and trioxatriangulenium (TOTA) hexafluorophosphate were used. In this study, we focused on (i) the network patterns of PyBM-C8 which change in response to its concentration and (ii) the position of the guest immobilized in the porous space of the macrocycle. Scanning tunneling microscopy (STM) observations at the interface of 1,2,4-trichlorobenzene (TCB) and highly oriented pyrolytic graphite (HOPG) revealed that PyBM-C8 formed four different polymorphs, oblique, loose hexagonal, linear, and rectangular, depending on the solute concentration and annealing treatment. Solvent TCB molecules are likely coadsorbed to not only the intrinsically porous space of PyBM-C8 (internal TCB) but also the space outside of the macrocycle between its alkyl chains (external TCB) in most of the cases. Upon adding the guest cation, whereas small Tr was not visualized in the pore due to size mismatching, larger TOTA was clearly observed in each pore. In addition, based on high-resolution STM images of the rhombus packing pattern of PyBM-C8, we revealed experimentally that TOTA was placed at an off-center position of the deformed hexagonal macrocyclic core in the rhombus pattern. On the basis of the molecular mechanics calculations, we hypothesize that the off-center location of TOTA is due to deformation of the hexagonal macrocycle through interaction with two external TCB molecules located at opposite edges of the macrocyclic core. Symmetry breaking of the macrocyclic host framework induced by coadsorbed surrounding solvent molecules thus plays a significant role in host-guest complexation at the liquid/solid interface.
Collapse
Affiliation(s)
- Kohei Iritani
- Department of Applied Chemistry, School of Engineering , Tokyo University of Technology , Hachioji, Tokyo 192-0982 , Japan
| | | | | | | | | | | | | | - Yu Ozawa
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | | | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Yoshito Tobe
- The Institute of Scientific and Industrial Research , Osaka University , 8-1, Mihogaoka , Ibaraki Osaka 567-0047 , Japan
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Hsueh Road , Hsinchu 30010 Taiwan
| |
Collapse
|
28
|
Dobscha JR, Castillo HD, Li Y, Fadler RE, Taylor RD, Brown AA, Trainor CQ, Tait SL, Flood AH. Sequence-Defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-Assembled 2D Arrays. J Am Chem Soc 2019; 141:17588-17600. [PMID: 31503483 PMCID: PMC7461245 DOI: 10.1021/jacs.9b06410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anfinsen's dogma that sequence dictates structure is fundamental to understanding the activity and assembly of proteins. This idea has been applied to all manner of oligomers but not to the behavior of cyclic oligomers, aka macrocycles. We do this here by providing the first proofs that sequence controls the hierarchical assembly of nonbiological macrocycles, in this case, at graphite surfaces. To design macrocycles with one (AAA), two (AAB), or three (ABC) different carbazole units, we needed to subvert the synthetic preferences for one-pot macrocyclizations. We developed a new stepwise synthesis with sequence-defined targets made in 11, 17, and 22 steps with 25, 10, and 5% yields, respectively. The linear build up of primary sequence (1°) also enabled a thermal Huisgen cycloaddition to proceed regioselectively for the first time using geometric control. The resulting macrocycles are planar (2° structure) and form H-bonded dimers (3°) at surfaces. Primary sequences encoded into the suite of tricarb macrocycles were shown by scanning-tunneling microscopy (STM) to impact the next levels of supramolecular ordering (4°) and 2D crystalline polymorphs (5°) at solution-graphite interfaces. STM imaging of an AAB macrocycle revealed the formation of a new gap phase that was inaccessible using only C3-symmetric macrocycles. STM imaging of two additional sequence-controlled macrocycles (AAD, ABE) allowed us to identify the factors driving the formation of this new polymorph. This demonstration of how sequence controls the hierarchical patterning of macrocycles raises the importance of stepwise syntheses relative to one-pot macrocyclizations to offer new approaches for greater understanding and control of hierarchical assembly.
Collapse
Affiliation(s)
- James R. Dobscha
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Henry D. Castillo
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yan Li
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rachel E. Fadler
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rose D. Taylor
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Andrew A. Brown
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Colleen Q. Trainor
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Steven L. Tait
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Molecular Materials Design Laboratory, Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
29
|
Cetin MM, Beldjoudi Y, Roy I, Anamimoghadam O, Bae YJ, Young RM, Krzyaniak MD, Stern CL, Philp D, Alsubaie FM, Wasielewski MR, Stoddart JF. Combining Intra- and Intermolecular Charge Transfer with Polycationic Cyclophanes To Design 2D Tessellations. J Am Chem Soc 2019; 141:18727-18739. [PMID: 31580664 DOI: 10.1021/jacs.9b07877] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fehaid M. Alsubaie
- Joint Center of Excellence in Integrated Nanosystems, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
| | | | - J. Fraser Stoddart
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Keller TJ, Bahr J, Gratzfeld K, Schönfelder N, Majewski MA, Stępień M, Höger S, Jester SS. Nanopatterns of arylene-alkynylene squares on graphite: self-sorting and intercalation. Beilstein J Org Chem 2019; 15:1848-1855. [PMID: 31467606 PMCID: PMC6693369 DOI: 10.3762/bjoc.15.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022] Open
Abstract
Supramolecular nanopatterns of arylene–alkynylene squares with side chains of different lengths are investigated by scanning tunneling microscopy at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Self-sorting leads to the intermolecular interdigitation of alkoxy side chains of identical length. Voids inside and between the squares are occupied by intercalated solvent molecules, which numbers depend on the sizes and shapes of the nanopores. In addition, planar and non-planar coronoid polycyclic aromatic hydrocarbons (i.e., butyloxy-substituted kekulene and octulene derivatives) are found to be able to intercalate into the intramolecular nanopores.
Collapse
Affiliation(s)
- Tristan J Keller
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Joshua Bahr
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Kristin Gratzfeld
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Nina Schönfelder
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Marcin A Majewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Stefan-S Jester
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
31
|
Porter AG, Ouyang T, Hayes TR, Biechele-Speziale J, Russell SR, Claridge SA. 1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Cheng L, Tu B, Xiao X, Feringán B, Giménez R, Li X, Fang Q, Sierra T, Li Y, Zeng Q, Wang C. On-Surface Crystallization Behaviors of H-Bond Donor-Acceptor Complexes at Liquid/Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8935-8942. [PMID: 31189309 DOI: 10.1021/acs.langmuir.9b01350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) crystallization behaviors of A-TPC n ( n = 4, 6, 10), T3C4, and hydrogen-bonded complexes T3C4@TPC n ( n = 4, 6, 10) are investigated by means of scanning tunneling microscope (STM) observations and density functional theory (DFT) calculations. The STM observations reveal that A-TPC4, A-TPC10, and T3C4 self-organize into dumbbell-shaped structures, well-ordered bright arrays, and zigzag structures, respectively. Interestingly, T3C4@TPC10 fails to form the cage-ball structure, whereas T3C4@TPC4 and T3C4@TPC6 co-assemble into cage-ball structures with the same lattice parameters. The filling rates of the balls of these two kinds of cage-ball structures depend heavily on the deposition sequence. As a result, the filling rates of the cages in T3C4/A-TPC n ( n = 4, 6) with deposition of T3C4 anterior to A-TPC n are higher than those in A-TPC n/T3C4 ( n = 4, 6) with the opposite deposition sequence. Furthermore, lattice defects formed by T3C4 coexist with the cage-ball structures. Moreover, the similar energy per unit area of lattice defects (-0.101 kcal mol-1 Å-2) and the two cage-ball networks (-0.194 and -0.208 kcal mol-1 Å-2, respectively), illustrating the similar stabilities of lattice defects and cage-ball networks, demonstrates the rationality of lattice defects. Combining STM investigations and DFT calculations, this work could provide a useful approach to investigate the 2D crystallization mechanisms of supramolecular liquid crystals on surfaces.
Collapse
Affiliation(s)
- Linxiu Cheng
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | - Xunwen Xiao
- College of Chemical Engineering , Ningbo University of Technology , Ningbo 315016 , P. R. China
| | - Beatriz Feringán
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Raquel Giménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Xiaokang Li
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | | | - Teresa Sierra
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Yibao Li
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Qingdao Zeng
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | |
Collapse
|
33
|
Xu H, Shi H, Liu Y, Song J, Lu X, Gros CP, Deng K, Zeng Q. Assembly structures and electronic properties of truxene-porphyrin compounds studied by STM/STS. Dalton Trans 2019; 48:8693-8701. [PMID: 31089664 DOI: 10.1039/c9dt01078e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The self-assembly of functional molecules into uniform nanostructures with innovational properties has attracted extensive research interest. In the present work, the assembly structures and electronic properties of a novel type of truxene derivative, e.g. truxene-porphyrin derivatives, were studied, for the first time, on a highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscopy (STM) images revealed that the truxene-porphyrin compounds could be parallelly arranged into long-ranged lamellar patterns. Density functional theory (DFT) calculations helped explain the assembly mechanisms further. Besides, order distribution of the smaller compound 1T1P in the 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) host network was achieved, which is a reflection of the dimensional effect in the host-guest assembly. Furthermore, together with theoretical analyses, scanning tunneling spectroscopy (STS) measurements were conducted to investigate the electronic properties of truxene-porphyrin compounds. Results showed that the metalation of the porphyrin units could have a significant effect on the band gap and the position of the gap center. The study enhances our understanding of the assembly mechanism of truxene derivatives at the molecular level and paves the way towards fabricating truxene-based functional nanodevices.
Collapse
Affiliation(s)
- Haijun Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Xinchun Lu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR UB-CNRS 6302), 9, Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
34
|
Huan J, Zhang X, Zeng Q. Two-dimensional supramolecular crystal engineering: chirality manipulation. Phys Chem Chem Phys 2019; 21:11537-11553. [PMID: 31115407 DOI: 10.1039/c9cp02207d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dimensional (2D) supramolecular crystal engineering, one of the most important strategies towards nanotechnology, is both a science and an industry. In the present review, the recent advances in 2D supramolecular crystal engineering through chirality manipulation on solid surfaces are summarized, with the aid of the scanning tunneling microscopy technique. On-surface chirality manipulation includes surface confined structural chirality formation, chirality transformation, chirality separation as well as chirality elimination, by using component exchange and different external stimuli. Under this principle, host-guest supramolecular interactions, solvent induction, temperature regulation and STM-tip driven orientation control and reorientation effects under equilibrium or out-of-equilibrium conditions, towards the generation of the best-adapted chiral or achiral 2D nanostructures, are mainly described and highlighted. Future challenges and opportunities in this exciting area are also then discussed.
Collapse
Affiliation(s)
- Jinwen Huan
- Business School of Hohai University, #8 West Focheng Road, Jiangning District, Nanjing, Jiangsu 210098, P. R. China
| | | | | |
Collapse
|
35
|
Wang J, Wang LM, Lu C, Yan HJ, Wang SX, Wang D. Formation of multicomponent 2D assemblies of C 2v-symmetric terphenyl tetracarboxylic acid at the solid/liquid interface: recognition, selection, and transformation. RSC Adv 2019; 9:11659-11663. [PMID: 35516988 PMCID: PMC9063306 DOI: 10.1039/c9ra01493d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
We report on the two-dimensional self-assembly of C2v-symmetric [1,1′:3′,1′′-terphenyl]-3,3′′,5,5′′-tetracarboxylic acid (TPTA) at the solid/liquid interface by using scanning tunneling microscopy (STM). Two kinds of different self-assembly structure, i.e. a close-packed and porous rosette structure, are formed by TPTA molecules through intermolecular hydrogen bonds. When adding coronene (COR) as a guest into the TPTA assembly, structural transformation from a densely packed row structure to a rosette network structure is observed. It was found that two kinds of cavities with different sizes in the rosette network structure can be used to realize the selective co-adsorption of guest molecules with appropriate shape and size. Three-component 2D host–guest structures were successfully constructed by using 1,2,3,4,5,6-hexakis(4-bromophenyl)benzene (HBPBE) and copper phthalocyanine (CuPc) as guest molecules. The formation process of multicomponent 2D assemblies of C2v-symmetric terphenyl tetracarboxylic acid on a surface.![]()
Collapse
Affiliation(s)
- Jie Wang
- College of Environmental and Chemical Engineering, Dalian Jiaotong University Dalian 116028 P. R. China .,CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Li-Mei Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Cheng Lu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Hui-Juan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Shao-Xu Wang
- College of Environmental and Chemical Engineering, Dalian Jiaotong University Dalian 116028 P. R. China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| |
Collapse
|
36
|
Vu TH, Wandlowski T. Self-assembly of 8-; 5- and 2-hydroxylquinolines on Au(111) single crystal in perchloric acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Ferreira Q, Delfino CL, Morgado J, Alcácer L. Bottom-Up Self-Assembled Supramolecular Structures Built by STM at the Solid/Liquid Interface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E382. [PMID: 30691079 PMCID: PMC6384807 DOI: 10.3390/ma12030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
One of the lines of research on organic devices is focused on their miniaturization to obtain denser and faster electronic circuits. The challenge is to build devices adding atom by atom or molecule by molecule until the desired structures are achieved. To do this job, techniques able to see and manipulate matter at this scale are needed. Scanning tunneling microscopy (STM) has been the selected technique by scientists to develop smart and functional unimolecular devices. This review article compiles the latest developments in this field giving examples of supramolecular systems monitored and fabricated at the molecular scale by bottom-up approaches using STM at the solid/liquid interface.
Collapse
Affiliation(s)
- Quirina Ferreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Catarina L Delfino
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Department of Bioengineering , Instituto Superior Técnico, University of Lisbon, Av.Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Luís Alcácer
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
38
|
Wang L, Liu R, Gu J, Song B, Wang H, Jiang X, Zhang K, Han X, Hao XQ, Bai S, Wang M, Li X, Xu B, Li X. Self-Assembly of Supramolecular Fractals from Generation 1 to 5. J Am Chem Soc 2018; 140:14087-14096. [PMID: 30289702 PMCID: PMC6348470 DOI: 10.1021/jacs.8b05530] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the seeking of molecular expression of fractal geometry, chemists have endeavored in the construction of molecules and supramolecules during the past few years, while only a few examples were reported, especially for the discrete architectures. We herein designed and constructed five generations of supramolecular fractals (G1-G5) based on the coordination-driven self-assembly of terpyridine ligands. All the ligands were synthesized from triphenylamine motif, which played a central role in geometry control. Different approaches based on direct Sonogashira coupling and/or ⟨tpy-Ru(II)-tpy⟩ connectivity were employed to prepare complex Ru(II)-organic building blocks. Fractals G1-G5 were obtained in high yields by precise coordination of organic or Ru(II)-organic building blocks with Zn(II) ions. Characterization of those architectures were accomplished by 1D and 2D NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), traveling-wave ion mobility mass spectrometry (TWIM-MS), and transmission electron microscopy (TEM). Furthermore, the two largest fractals also hierarchically self-assemble into ordered supramolecular nanostructures either at solid/liquid interface or in solution on the basis of their well-defined scaffolds.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Ran Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics , Shandong Normal University , Jinan 250358 , China
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Jiali Gu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Keren Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Xin Han
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
39
|
Galanti A, Diez-Cabanes V, Santoro J, Valášek M, Minoia A, Mayor M, Cornil J, Samorì P. Electronic Decoupling in C3-Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. J Am Chem Soc 2018; 140:16062-16070. [DOI: 10.1021/jacs.8b06324] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Agostino Galanti
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Jasmin Santoro
- Karlsruhe Institute of Technology KIT, Institute for Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Michal Valášek
- Karlsruhe Institute of Technology KIT, Institute for Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Marcel Mayor
- Karlsruhe Institute of Technology KIT, Institute for Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
40
|
Cui D, MacLeod JM, Rosei F. Probing functional self-assembled molecular architectures with solution/solid scanning tunnelling microscopy. Chem Commun (Camb) 2018; 54:10527-10539. [PMID: 30079923 DOI: 10.1039/c8cc04341h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past two decades, solution/solid STM has made clear contributions to our fundamental understanding of the thermodynamic and kinetic processes that occur in molecular self-assembly at surfaces. As the field matures, we provide an overview of how solution/solid STM is emerging as a tool to elucidate and guide the use of self-assembled molecular systems in practical applications, focusing on small molecule device engineering, molecular recognition and sensing and electronic modification of 2D materials.
Collapse
Affiliation(s)
- Daling Cui
- INRS-Energy, Materials and Telecommunications and Center for Self-Assembled Chemical Structures, Varennes, Quebec J3X 1S2, Canada.
| | | | | |
Collapse
|
41
|
Shi H, Lu X, Liu Y, Song J, Deng K, Zeng Q, Wang C. Nanotribological Study of Supramolecular Template Networks Induced by Hydrogen Bonds and van der Waals Forces. ACS NANO 2018; 12:8781-8790. [PMID: 30059613 DOI: 10.1021/acsnano.8b05045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotribology has been given increasing attention by researchers in pursuing the nature of friction. In the present work, an approach that combines the supramolecular assembly and nanotribology is introduced. Herein, the nanotribological study was carried out on seven supramolecular template networks [namely, hydrogen bond induced tricarboxylic acids and van der Waals force induced hexaphenylbenzene (HPB) derivatives]. The template networks, as well as the host-guest assemblies of template molecules induced by different forces, were constructed on the highly oriented pyrolytic graphite (HOPG) surface and explicitly characterized using scanning tunneling microscopy (STM). Meanwhile, the nanotribological properties of the template networks were measured using atomic force microscopy (AFM). Together with the theoretical calculation using the density functional theory (DFT) method, it was revealed that the friction coefficients were positively correlated with the interaction strength. The frictional energy dissipation mainly derives from both the intermolecular interaction energy and the interaction energy between molecules and the substrate. The efforts not only help us gain insight into the competitive mechanisms of hydrogen bond and van der Waals force in supramolecular assembly but also shed light on the origin of friction and the relationship between the assembly structures and the nanotribological properties at the molecular level.
Collapse
Affiliation(s)
- Hongyu Shi
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Xinchun Lu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Yuhong Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Jian Song
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| |
Collapse
|
42
|
Iritani K, Ikeda M, Yang A, Tahara K, Anzai M, Hirose K, De Feyter S, Moore JS, Tobe Y. Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6036-6045. [PMID: 29717878 DOI: 10.1021/acs.langmuir.8b00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
Collapse
Affiliation(s)
- Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Motoki Ikeda
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Anna Yang
- Departments of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | - Masaru Anzai
- Department of Applied Chemistry, School of Science and Technology , Meiji University , Kawasaki , Kanagawa 214-8571 , Japan
| | - Keiji Hirose
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Steven De Feyter
- Department of Chemistry , KU Leuven-University of Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Jeffrey S Moore
- Departments of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
- The Institute of Scientific and Industrial Research , Osaka University , 8-1, Mihogaoka , Osaka 567-0047 , Ibaraki , Japan
| |
Collapse
|
43
|
Cheng KY, Lee SL, Kuo TY, Lin CH, Chen YC, Kuo TH, Hsu CC, Chen CH. Template-Assisted Proximity for Oligomerization of Fullerenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5416-5421. [PMID: 29676918 DOI: 10.1021/acs.langmuir.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Demonstrated herein is an unprecedented porous template-assisted reaction at the solid-liquid interface involving bond formation, which is typically collision-driven and occurs in the solution and gas phases. The template is a TMA (trimesic acid) monolayer with two-dimensional pores that host fullerenes, which otherwise exhibit an insignificant affinity to an undecorated graphite substrate. The confinement of C84 units in the TMA pores formulates a proximity that is ideal for bond formation. The oligomerization of C84 is triggered by an electric pulse via a scanning tunneling microscope tip. The spacing between C84 moieties becomes 1.4 nm, which is larger than the edge-to-edge diameter of 1.1-1.2 nm of C84 due to the formation of intermolecular single bonds. In addition, the characteristic mass-to-charge ratios of dimers and trimers are observed by mass spectrometry. The experimental findings shed light on the active role of spatially tailored templates in facilitating the chemical activity of guest molecules.
Collapse
Affiliation(s)
- Kum-Yi Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Shern-Long Lee
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ting-Yang Kuo
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Chih-Hsun Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Yen-Chen Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| |
Collapse
|
44
|
Baruah JB. Predominantly ligand guided non-covalently linked assemblies of inorganic complexes and guest inclusions. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1458-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Zhu X, Geng Y, Xiao H, Cheng L, Shi H, Zhao F, Hu K, Guo X, Tu B, Zeng Q. Surface Separation and in Situ Structural Regulation of Photosensitive Oligomer in a Flexible Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5169-5173. [PMID: 29652152 DOI: 10.1021/acs.langmuir.7b04293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-selective adsorption and separation are very important for the application of surface functional materials. In this study, a photosensitive diazo-macrocycle has been synthesized by the solvent method with a very low yield, which can adsorb onto the substrate surface modified with a template molecule. By using this flexible template on the graphite surface, a simple separation strategy for the macrocyclic molecule with specific shape and size from reaction mixtures was developed. Additionally, one of the two azo units in this trapped photosensitive macrocycle could convert from trans to cis conformation under UV irradiation due to the steric effect. Our results provide a new way to construct functional nanodevices using a surface flexible template as the separation and regulation medium.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Hongjun Xiao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Linxiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Hongyu Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Fengying Zhao
- Jiangxi College of Applied Technology , Ganzhou 341000 , P. R. China
| | - Kandong Hu
- Jiangxi College of Applied Technology , Ganzhou 341000 , P. R. China
| | - Xuan Guo
- Jiangxi College of Applied Technology , Ganzhou 341000 , P. R. China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , P. R. China
| |
Collapse
|
46
|
Kim S, Castillo HD, Lee M, Mortensen RD, Tait SL, Lee D. From Foldable Open Chains to Shape-Persistent Macrocycles: Synthesis, Impact on 2D Ordering, and Stimulated Self-Assembly. J Am Chem Soc 2018. [DOI: 10.1021/jacs.8b01805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Soobin Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Henry D. Castillo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Milim Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Riley D. Mortensen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Steven L. Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
47
|
Xiang F, Gemeinhardt A, Schneider MA. Competition between Dehydrogenative Organometallic Bonding and Covalent Coupling of an Unfunctionalized Porphyrin on Cu(111). ACS NANO 2018; 12:1203-1210. [PMID: 29336554 DOI: 10.1021/acsnano.7b06998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We studied the formation of linked porphyrin oligomers from 5,15-diphenylporphyrin (2H-DPP) by thermal, substrate-assisted organometallic and dehydrogenation coupling on Cu(111) by scanning tunneling microscopy. In the range of 300-620 K, we find three distinct stages, at 300 K, the intact 2H-DPP molecules self-assemble into linear structures held together by van der Waals forces. Increasing the substrate temperature, self-metalation and intramolecular ring-closing reactions result in planar and isolated DPP species on the surface. By C-H cleavage, porphyrin oligomers bonded by organometallic and covalent bonds between the modified DPP are formed. The amount of covalently bonded DPP oligomers increases strongly with annealing time and temperature, and they become the dominant species at 570 K. In contrast, the number of organometallically bonded DPP oligomers increases moderately even up to 620 K, indicating that in this case the organometallic bond is no precursor of the covalent bond.
Collapse
Affiliation(s)
- Feifei Xiang
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Staudtstr. 7, 91058 Erlangen, Germany
| | - Anja Gemeinhardt
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Staudtstr. 7, 91058 Erlangen, Germany
| | - M Alexander Schneider
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Staudtstr. 7, 91058 Erlangen, Germany
| |
Collapse
|
48
|
Hipps KW, Mazur U. Kinetic and Thermodynamic Control in Porphyrin and Phthalocyanine Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3-17. [PMID: 28929771 DOI: 10.1021/acs.langmuir.7b02672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyrins and phthalocyanines are ubiquitous in modern science and technology. Their stability, redox properties, and photoresponse make them candidates for numerous applications. Many of these applications rely on thin films, and these are critically dependent on the first monolayer. In this article, we focus on noncovalently bound self-assembled monolayers of porphyrins and phthalocyanines at the solution-solid interface with special emphasis on the kinetic and thermodynamic processes that define the films and their reaction chemistry. We first discuss the difference between film-formation kinetics and desorption kinetics from fully formed films. We then present evidence that many of these monolayers are controlled by adsorption kinetics and are not in thermodynamic equilibrium. Measurement of the solution-solid interface desorption energy by scanning tunneling microscopy is discussed, and data is presented for cobalt, nickel, and free base octaethylporphyrin. The activation energy for the desorption of these compounds into phenyloctane is about half of the computed desorption energy in vacuum, and this is discussed in terms of the role of the solvent. Preexponential factors are very low compared to desorption into vacuum, and this is attributed to a reduction in the entropy of activation due to the participation of solvent in the transition state. An example of the use of relative desorption kinetics to create a new binary surface structure is given. It is suggested that this is a synthesis route that may have been missed because of the large difference in solution concentrations required to drive binary film formation. Attention then turns to the axial reaction chemistry of metalloporphyrins and metallophthalocyanines supported on conducting surfaces. We show several examples of chemistry unique to the supported complexes: cases where the metal binds ligands more readily and cases where the substrate induces ligand loss. Understanding this new axial coordination chemistry is of great importance in catalysis, sensing, and the growth of 3D materials from a self-assembled template.
Collapse
Affiliation(s)
- K W Hipps
- Department of Chemistry and Materials Science & Engineering Program, Washington State University , Pullman, Washington 99163-4630, United States
| | - Ursula Mazur
- Department of Chemistry and Materials Science & Engineering Program, Washington State University , Pullman, Washington 99163-4630, United States
| |
Collapse
|
49
|
Claridge SA. Standing, lying, and sitting: translating building principles of the cell membrane to synthetic 2D material interfaces. Chem Commun (Camb) 2018; 54:6681-6691. [DOI: 10.1039/c8cc02596g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lessons can be drawn from cell membranes in controlling noncovalent functionalization of 2D materials to optimize interactions with the environment.
Collapse
Affiliation(s)
- S. A. Claridge
- Department of Chemistry and Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
50
|
Aitchison H, Lu H, Ortiz de la Morena R, Cebula I, Zharnikov M, Buck M. Self-assembly of 1,3,5-benzenetribenzoic acid on Ag and Cu at the liquid/solid interface. Phys Chem Chem Phys 2018; 20:2731-2740. [DOI: 10.1039/c7cp06160a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Big difference: molecules of benzenetribenzoic acid are disordered on Cu but highly organised on Ag, forming a monopodal row structure.
Collapse
Affiliation(s)
- Hannah Aitchison
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - Hao Lu
- Angewandte Physikalische Chemie
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | | | - Izabela Cebula
- Department of Chemical and Process Engineering
- University of Strathclyde
- James Weir Building
- Glasgow G1 1XJ
- UK
| | - Michael Zharnikov
- Angewandte Physikalische Chemie
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Manfred Buck
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| |
Collapse
|