1
|
Seo D, Han JW, Kim H, Kim YO, Sung HS, Kaizu R, Latag GV, Hayashi T, Lee NS, Noh J. Formation and Surface Structures of Long-Range Ordered Self-Assembled Monolayers of 2-Mercaptopyrazine on Au(111). Int J Mol Sci 2024; 26:160. [PMID: 39796018 PMCID: PMC11720539 DOI: 10.3390/ijms26010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows. This ordered phase was assigned to the (3 × √37)R43° structure, consisting of two different adsorption structures: standing-up and tilted adsorption structures. The average arial density of 2-PyzS SAMs on Au(111) at pH 8 was calculated to be 49.47 Å2/molecule, which is 1.52 times more loosely packed compared to the SAMs at pH 2 with 32.55 Å2/molecule. XPS measurements showed that 2-PyzS SAMs at pH 2 and pH 8 were mainly formed through chemical interactions between the sulfur anchoring group and the Au(111) substrates. The proposed structural models of packing structures for 2-PyzS SAMs on Au(111) at different pHs are well supported by the XPS results. The results of this study will provide new insights into the formation, surface structure, and molecular orientation of SAMs by N-heteroaromatic thiols with pyrazine molecular backbone on Au(111) at the molecular level.
Collapse
Affiliation(s)
- Dongjin Seo
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
| | - Jin Wook Han
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
| | - Hongki Kim
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
| | - Yeon O Kim
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
| | - Hyun Sun Sung
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
| | - Riko Kaizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama 226-8502, Kanagawa, Japan; (R.K.); (G.V.L.); (T.H.)
| | - Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama 226-8502, Kanagawa, Japan; (R.K.); (G.V.L.); (T.H.)
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama 226-8502, Kanagawa, Japan; (R.K.); (G.V.L.); (T.H.)
| | - Nam-Suk Lee
- National Institute for Nanomaterials Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (D.S.); (J.W.H.); (Y.O.K.); (H.S.S.)
- Research Institute for Convergence of Basic Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Siddiqui AR, N'Diaye J, Santiago-Carboney A, Martin K, Bhargava R, Rodríguez-López J. Spectroelectrochemical determination of thiolate self-assembled monolayer adsorptive stability in aqueous and non-aqueous electrolytes. Analyst 2024; 149:2842-2854. [PMID: 38600773 DOI: 10.1039/d4an00241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.
Collapse
Affiliation(s)
- Abdur-Rahman Siddiqui
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Jeanne N'Diaye
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - Kristin Martin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Rohit Bhargava
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Bioengineering and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
3
|
Ding J, Li F, Ren X, Liu Y, Li Y, Shen Z, Wang T, Wang W, Wang YG, Cui Y, Yang H, Zhang T, Liu B. Molecular tuning boosts asymmetric C-C coupling for CO conversion to acetate. Nat Commun 2024; 15:3641. [PMID: 38684736 PMCID: PMC11059391 DOI: 10.1038/s41467-024-47913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yifan Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zheng Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weijue Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Seo D, Seong S, Kim H, Oh HS, Lee JH, Kim H, Kim YO, Maeda S, Chikami S, Hayashi T, Noh J. Molecular Self-Assembly and Adsorption Structure of 2,2'-Dipyrimidyl Disulfides on Au(111) Surfaces. Molecules 2024; 29:846. [PMID: 38398598 PMCID: PMC10892263 DOI: 10.3390/molecules29040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.
Collapse
Affiliation(s)
- Dongjin Seo
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Haeri Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hyun Su Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Jun Hyeong Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hongki Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Yeon O Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Sette-Ducati J, Donnelly R, Molski AJ, Robinson ER, Canning EK, Williams DJ, Landis EC, Avila-Bront LG. Understanding the Two-Dimensional Mixing Behavior of 1-Naphthalenethiol and Octanethiol. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6531-6542. [PMID: 37057075 PMCID: PMC10084448 DOI: 10.1021/acs.jpcc.2c08822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
A two-dimensional (2D) mixture in the form of a self-assembled monolayer composed of two distinct organothiol compounds was created by sequentially depositing 1-naphthalenethiol (1NT) and octanethiol (OT) on a gold surface. By varying the sequence of deposition, two mixed surface systems were created. The surface structure of the resulting mixed monolayer was characterized with Scanning Tunneling Microscopy (STM) and showed surface disorder across all investigated domains. Elemental analysis was carried out with X-ray Photoelectron Spectroscopy (XPS) and indicated that the 1NT monolayer was prone to significant oxidation. Reductive desorption (RD) was used to characterize the binding strength and electrochemical environments of the molecular components in the mixture, and confirmed disordered molecular layers. Due to the presence of oxidized species in the 1NT monolayer, 1NT was displaced by OT resulting in a novel surface structure composed of either OT or 1NT. Monolayers of OT that were exposed to a solution of 1NT resulted in disordered surface structures with a significant amount of gold vacancy islands. To date, there is no experimental phase diagram explaining the chemical behavior of two-dimensional mixtures. This study addresses the need for an experimental understanding of the phase behavior of mixed organothiol self-assembled monolayers (SAMs).
Collapse
|
6
|
Sang H, Mao C, Wu Y, Wei Y. Study on the Effect of Gamma-Ray Irradiation on the Adsorption of 99Tc and Re by a Silica-Based Pyridine Resin. TOXICS 2022; 10:638. [PMID: 36355930 PMCID: PMC9696359 DOI: 10.3390/toxics10110638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A silica-based anion exchange resin was synthesized and used to remove 99Tc from real radioactive liquid waste. The adsorbent had a uniform particle size and exhibited good thermal stability up to 100 °C, which is promising for large-scale column experiments. In accordance with the chemical similarity with Tc, Re was used as a surrogate in this study. The N 1s high-resolution XPS spectra of the adsorbent before and after the adsorption of Re indicated that the ion exchange reaction was the controlling mechanism in the process. After γ-ray irradiation, the changing trend of the Kd was consistent, which showed that the competitive adsorption of NO3- led to a decrease in Kd. The adsorption capacity for the Re decreased slightly from 35.8 to 31.9 mg/g with the increase in the absorbed dose from 0 to 50 kGy. The separation and recovery of Re and the coexisting ions were achieved by chromatographic separation experiments, and the recovery percentage of Re was 86%. In real radioactive liquid waste, N3/SiO2 exhibited good selectivity toward 99Tc over the coexisting metals, namely, 90Sr, 137Cs, 241Am, and U, and the decontamination efficiency of 99Tc attained 65%.
Collapse
|
7
|
Karunarathne DJ, Aminifazl A, Abel TE, Quepons KL, Golden TD. Corrosion Inhibition Effect of Pyridine-2-Thiol for Brass in An Acidic Environment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196550. [PMID: 36235087 PMCID: PMC9573544 DOI: 10.3390/molecules27196550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this study, the inhibitive performance of pyridine-2-thiol added to a corrosive solution was investigated for brass using potentiodynamic polarization, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical experiments were performed with different inhibitor concentrations in 0.5 M H2SO4 as the corrosive medium. For potentiodynamic polarization, icorr values decreased significantly for the inhibited solutions in contrast with the uninhibited solution. Pyridine-2-thiol had an optimum inhibition concentration of 0.25 mM, giving an icorr value of 1.8 µA/cm2 compared to 26 µA/cm2 for the blank solution. EIS data indicated that Rp and Rct values increased substantially after the addition of the corrosion inhibitor and corrosion inhibition efficiencies of more than 85% was achieved for the majority of the inhibited solutions. Scanning electron microscopy showed defect free and less scale formation for the inhibited surface but the bare brass surface had larger amounts of scale formation. X-ray photoelectron spectroscopy and UV-vis spectroscopy was used to investigate surface chemical composition and inhibitor structural changes over time.
Collapse
|
8
|
Marchi D, Cara E, Lupi FF, Hönicke P, Kayser Y, Beckhof B, Castellino M, Klapetek P, Zoccante A, Laus M, Cossi M. Structure and stability of 7-mercapto-4-methylcoumarin self-assembled monolayers on gold: an experimental and computational analysis. Phys Chem Chem Phys 2022; 24:22083-22090. [PMID: 36073159 DOI: 10.1039/d2cp03103e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities. This result was refined by computing the monolayer chemical potential as a function of the density with the bennet acceptance ratio method, based again on MD simulations. The monolayer density was also measured with GIXRF, which provided the absolute quantification of the number of sulfur atoms in a dense self-assembled monolayer (SAM) on flat gold surfaces. The sulfur core level binding energies in the same monolayers were measured by XPS, fitting the recorded spectra with the binding energies proposed in the literature for free or adsorbed thiols and thiyls, to get insight on the nature of the molecular species present in the layer. The comparison of theoretical and experimental SAM densities, and the XPS analysis strongly support the picture of a monolayer formed by chemisorbed, dissociated thiyls.
Collapse
Affiliation(s)
- Davide Marchi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121, Alessandria, Italy.
| | - Eleonora Cara
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135, Torino, Italy
| | - Federico Ferrarese Lupi
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135, Torino, Italy
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Burkhard Beckhof
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Petr Klapetek
- Department of Nanometrology, Czech Metrology Institute, Okružní 31, 638 00, Brno, Czech Republic
| | - Alberto Zoccante
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121, Alessandria, Italy.
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121, Alessandria, Italy.
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121, Alessandria, Italy.
| |
Collapse
|
9
|
Saha S, Dutta B, Ghosh M, Chowdhury J. Adsorption of 4-Mercapto Pyridine with Gold Nanoparticles Embedded in the Langmuir-Blodgett Film Matrix of Stearic Acid: SERS, XPS Studies Aided by Born-Oppenheimer on the Fly Dynamics, Time-Resolved Wavelet Transform Theory, and DFT. ACS OMEGA 2022; 7:27818-27830. [PMID: 35990435 PMCID: PMC9386704 DOI: 10.1021/acsomega.1c07321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper reports the adsorptive behavior of the 4-mercaptopyridine (4MPy) molecule soaked in gold nanoparticles (AuNPs) that remain embedded in the bilayer Langmuir-Blodgett (LB) film matrix of stearic acid (SA) for various soaking times (STs). The as-fabricated substrate proved to be an efficient SERS sensing platform that can sense the analyte 4MPy molecules at trace concentrations of ∼1.0 × 10-9 M. The XPS study not only reveals the adsorption of 4Mpy molecules with AuNPs via a sulfur atom but also suggests partial degradation of the analyte molecule upon adsorption. This observation is further substantiated from the SERS spectral profile, which shows unusual broadening of the enhanced Raman bands of the molecule at higher STs. The experimental observations are supported by Born-Oppenheimer on-the-fly molecular dynamics (BO-OF-MD), time-resolved wavelet transform theory (WT), and the DFT calculations based on adcluster models. Selective enhancements of Raman bands in the SERS spectra further suggest the involvement of charge transfer (CT) interaction to the overall enhancements of Raman bands of the analyte molecule. The molecule → CT contribution has been estimated from electron density difference calculations and the corresponding CT distance; the amount of CT is also envisaged.
Collapse
Affiliation(s)
- Somsubhra Saha
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| | - Bipan Dutta
- Department of Physics, Sammilani Mahavidyalaya, Baghajatin Station, E. M. Bypass, Kolkata 700094, India
| | - Manash Ghosh
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joydeep Chowdhury
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| |
Collapse
|
10
|
Creissen CE, Rivera de la Cruz JG, Karapinar D, Taverna D, Schreiber MW, Fontecave M. Molecular Inhibition for Selective CO
2
Conversion. Angew Chem Int Ed Engl 2022; 61:e202206279. [DOI: 10.1002/anie.202206279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Charles E. Creissen
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| | | | - Dilan Karapinar
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| | - Dario Taverna
- Institut de Minéralogie et de Physique des Milieux Condensés UMR 7590 CNRS Sorbonne Universités UPMC Univ Paris 06 4 place Jussieu 75005 Paris France
| | - Moritz W. Schreiber
- Total Research and Technology Refining and Chemicals Division CO2 Conversion Feluy 7181 Seneffe Belgium
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| |
Collapse
|
11
|
Creissen CE, Rivera de la Cruz JG, Karapinar D, Taverna D, schreiber MW, Fontecave M. Molecular Inhibition for Selective CO2 Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Dario Taverna
- Sorbonne University: Sorbonne Universite chemistry FRANCE
| | | | - Marc Fontecave
- College de France Chimie 11 place Marcellin Berthelot 75005 Paris FRANCE
| |
Collapse
|
12
|
Hermann JM, Müller H, Daccache L, Adler C, Keller S, Metzler M, Jacob T, Kibler LA. Formic acid oxidation reaction on Au(111) electrodes modified with 4-mercaptopyridine SAM. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Aragonès AC, Martín‐Rodríguez A, Aravena D, Puigmartí‐Luis J, Amabilino DB, Aliaga‐Alcalde N, González‐Campo A, Ruiz E, Díez‐Pérez I. Tuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions. Angew Chem Int Ed Engl 2020; 59:19193-19201. [PMID: 33448538 PMCID: PMC7590179 DOI: 10.1002/anie.202007237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/29/2022]
Abstract
Nature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.
Collapse
Affiliation(s)
- Albert C. Aragonès
- Department of ChemistryFaculty of Natural & Mathematical SciencesKing's College LondonBritannia House, 7 Trinity StreetLondonSE1 1DBUK
- Current address: Molecular Spectroscopy DepartmentMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Alejandro Martín‐Rodríguez
- Departament de Química Inorgànica i OrgànicaDiagonal 64508028BarcelonaSpain
- Institut de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Daniel Aravena
- Departamento de Química de los MaterialesFacultad de Química y BiologíaUniversidad de Santiago de Chile (USACH)Casilla 40, Correo 33SantiagoChile
| | - Josep Puigmartí‐Luis
- Institute of Chemical and BioengineeringETH ZurichVladimir Prelog Weg 18093ZurichSwitzerland
| | - David B. Amabilino
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryThe University of NottinghamTriumph RoadNottinghamNG7 2TUUK
| | - Núria Aliaga‐Alcalde
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona)Campus de la Universitat Autònoma de Barcelona08193BellaterraSpain
- ICREA (Institució Catalana de Recerca i Estudis Avançats)Passeig Lluis Companys 2308010BarcelonaSpain
| | - Arántzazu González‐Campo
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona)Campus de la Universitat Autònoma de Barcelona08193BellaterraSpain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i OrgànicaDiagonal 64508028BarcelonaSpain
- Institut de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Ismael Díez‐Pérez
- Department of ChemistryFaculty of Natural & Mathematical SciencesKing's College LondonBritannia House, 7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
14
|
Aragonès AC, Martín‐Rodríguez A, Aravena D, Puigmartí‐Luis J, Amabilino DB, Aliaga‐Alcalde N, González‐Campo A, Ruiz E, Díez‐Pérez I. Tuning Single‐Molecule Conductance in Metalloporphyrin‐Based Wires via Supramolecular Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Albert C. Aragonès
- Department of Chemistry Faculty of Natural & Mathematical Sciences King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
- Current address: Molecular Spectroscopy Department Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Alejandro Martín‐Rodríguez
- Departament de Química Inorgànica i Orgànica Diagonal 645 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Daniel Aravena
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Casilla 40, Correo 33 Santiago Chile
| | - Josep Puigmartí‐Luis
- Institute of Chemical and Bioengineering ETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| | - David B. Amabilino
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Núria Aliaga‐Alcalde
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona) Campus de la Universitat Autònoma de Barcelona 08193 Bellaterra Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats) Passeig Lluis Companys 23 08010 Barcelona Spain
| | - Arántzazu González‐Campo
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona) Campus de la Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica Diagonal 645 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Ismael Díez‐Pérez
- Department of Chemistry Faculty of Natural & Mathematical Sciences King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
15
|
Wattanavichean N, Casey E, Nichols RJ, Arnolds H. Discrimination between hydrogen bonding and protonation in the spectra of a surface-enhanced Raman sensor. Phys Chem Chem Phys 2018; 20:866-871. [PMID: 29238769 DOI: 10.1039/c7cp06943j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adsorbed mercaptopyridine can sense hydrogen-bonding because the ring breathing mode has a different frequency from bare and protonated species.
Collapse
Affiliation(s)
| | - Ella Casey
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | | | - Heike Arnolds
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| |
Collapse
|
16
|
Hötger D, Carro P, Gutzler R, Wurster B, Chandrasekar R, Klyatskaya S, Ruben M, Salvarezza RC, Kern K, Grumelli D. Polymorphism and metal-induced structural transformation in 5,5′-bis(4-pyridyl)(2,2′-bispyrimidine) adlayers on Au(111). Phys Chem Chem Phys 2018; 20:15960-15969. [DOI: 10.1039/c7cp07746g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of iron to a self-assembled molecular network can lift polymorphism and leads to the expression of one single metal–organic structure on a surface.
Collapse
Affiliation(s)
- Diana Hötger
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Pilar Carro
- Área de Química Física
- Departamento de Química, Facultad de Ciencias
- Universidad de La Laguna
- Instituto de Materiales y Nanotecnología
- Tenerife
| | - Rico Gutzler
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Benjamin Wurster
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Rajadurai Chandrasekar
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- IPCMS-CNRS, Université de Strasbourg
| | - Roberto C. Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| | - Klaus Kern
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
- Institut de Physique
- École polytechnique fédérale de Lausanne
| | - Doris Grumelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| |
Collapse
|