1
|
Rossner C. Polymer-Grafted Gold Colloids and Supracolloids: From Mechanisms of Formation to Dynamic Soft Matter. Macromol Rapid Commun 2025; 46:e2400851. [PMID: 39783139 PMCID: PMC11884231 DOI: 10.1002/marc.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Gold nanoparticles represent nanosized colloidal entities with high relevance for both basic and applied research. When gold nanoparticles are functionalized with polymer-molecule ligands, hybrid nanoparticles emerge whose interactions with the environment are controlled by the polymer coating layer: Colloidal stability and structure formation on the single particle level as well as at the supracolloidal scale can be enabled and engineered by tailoring the composition and architecture of this polymer coating. These possibilities in controlling structure formation may lead to synergistic and/or emergent functional properties of such hybrid colloidal systems. Eventually, the responsivity of the polymer coating to external triggers also enables the formation of hybrid supracolloidal systems with specific dynamic properties. This review provides an overview of fundamentals and recent developments in this vibrant domain of materials science.
Collapse
Affiliation(s)
- Christian Rossner
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Faculty of Chemistry and Food ChemistryTechnische Universität DresdenD‐01069DresdenGermany
- Department of PolymersUniversity of Chemistry and Technology PragueTechnická 5Prague 6166 28Czech Republic
| |
Collapse
|
2
|
Nanan DAR, Lomax JT, Bentley J, Misener L, Veinot AJ, Shiu WT, Liu L, Ragogna PJ, Crudden CM. Self-Assembled Monolayers of Triazolylidenes on Gold and Mixed Gold/Dielectric Substrates. J Am Chem Soc 2025; 147:5624-5631. [PMID: 39919216 DOI: 10.1021/jacs.4c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as valuable ligands for surface chemistry. They can be used to prepare robust self-assembled monolayers (SAMs) for a variety of applications, including as small-molecule inhibitors (SMIs) for metal surfaces in the fabrication of next-generation integrated circuits with angstrom precision. However, little work has been performed to assess the effect of structural and electronic modifications to the basic NHC structure. Herein, we report the design and deposition of a series of 1,2,3-triazolylidene (Tz)-type carbenes on gold (Au) and Au/SiO2 patterned substrates. Triazolylidenes are an important class of stable carbenes that can be prepared with ease by using click chemistry. In this work, we studied the selective deposition of 1,2,3-triazolium hydrogen carbonate salts. The thermal properties of these precursors were measured and shown to be appropriate for either solution or vapor phase deposition. Tz-SAM stability was studied by time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of Tz SAMs before and after exposure to various conditions, leading to the conclusion that Tz SAMs have thermal stabilities greater than that of NHC SAMs reported to date. Tz SAMs were analyzed by using X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and contact angle measurements. High selectivity for deposition on metal regions over dielectric regions on patterned Au/SiO2 substrates enabled the use of Tzs as an entirely new class of SMIs on preventing ZnO deposition, providing considerable potential utility in microelectronics fabrication methods. Structure-property relationships were studied and provided key insight into the effectiveness of the SAM as a blocking agent.
Collapse
Affiliation(s)
- Dana A R Nanan
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
| | - Justin T Lomax
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jordan Bentley
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lindsay Misener
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Alex J Veinot
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Wai-Tung Shiu
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lijia Liu
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Paul J Ragogna
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Sullivan AI, Steele EA, Takano S, Zeinizade E, Chen J, Malola S, Siddhant K, Häkkinen H, Stamplecoskie KG, Tsukuda T, Zheng G, Crudden CM. Diving into Unknown Waters: Water-Soluble Clickable Au 13 Nanoclusters Protected with N-Heterocyclic Carbenes for Bio-Medical Applications. J Am Chem Soc 2025; 147:4230-4238. [PMID: 39841626 DOI: 10.1021/jacs.4c14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups. These clusters are highly luminescent and water soluble and are shown to be stable in biological media. Importantly, the core structure, stability, and high quantum yield of the nanoclusters were conserved after backbone modification. Depending on the nature of the halide group, clusters have high stability in simulated biofluids and resist attack by glutathione. In vivo studies show that no abnormal cellular morphology is introduced in the kidney, liver, or spleen of mice treated with [Au13(NHC)5Br2]Br3 nanoclusters protected by 1,8-dimethylnaphthyl-linked NHCs. This cluster has a blood elimination half-life of 0.68 h. Functionalization of the wingtip groups of the cluster with azide groups is demonstrated, and complete reaction of all 10 azide groups with strained alkynes is shown, highlighting the potential of these clusters in biological settings.
Collapse
Affiliation(s)
- Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily A Steele
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Elham Zeinizade
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kumar Siddhant
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kevin G Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gang Zheng
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Ukah N, Wegner HA. On-surface synthesis - Ullmann coupling reactions on N-heterocyclic carbene functionalized gold nanoparticles. NANOSCALE 2024; 16:18524-18533. [PMID: 39269035 DOI: 10.1039/d4nr03065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Organic on-surface syntheses promise to be a useful method for direct integration of organic molecules onto 2-dimensional (2D) flat surfaces. In the past years, there has been an increasing understanding of the mechanistic details of reactions on surfaces, however, mostly under ultra-high vacuum on very defined surfaces. Herein, we expand the scope to gold nanoparticles (AuNps) in solution via an Ullmann reaction of aryl halides connected via N-heterocyclic carbenes (NHCs) to AuNps. Through design and syntheses of various organic precursors, we address the influence of the contact angle, reactivity of the halogen and the proximity of the entire coupling partner on on-surface reactivities, thus, establishing general parameters governing organic on-surface syntheses on AuNps in solution, in comparison with the reactivity on defined surfaces under ultra-high vacuum. The retention of such halogenated Nps even at higher reaction temperatures holds great promise in the fields of materials engineering, nanotechnology and molecular self-assembly, while expanding the toolbox of organic chemistry synthesis in accessing various covalent architectures.
Collapse
Affiliation(s)
- Nathaniel Ukah
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
5
|
Ivantcova PM, Kolychev EL, Sizikov AA, Mochalova EN, Cherkasov VR, Nikitin MP. Carbene-coated metal nanoparticles for in vivo applications. Colloids Surf B Biointerfaces 2024; 242:114097. [PMID: 39067190 DOI: 10.1016/j.colsurfb.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
N-Heterocyclic carbenes (NHC) are well-recognized ligands of choice for preparing robust transition metal species. However, their use for fabrication of biomedically relevant nanoparticles has been limited to the synthesis of non-targeted particles showing increased tolerance to different aqueous coagulants. In this work, the first example of carbene-coated metal nanoparticles suitable for in vivo applications is presented. Directed design of a novel biscarbene NHC ligand allowed to prepare the first magnetite/gold (Fe3O4@AuNP@NHC) nanostructures and carbene gold (AuNP@NHC) nanoparticles with significant stability in aqueous solutions and enhanced ability to form bioconjugates. Furthermore, these nanoparticles exhibit an extraordinary property for inorganic nanoparticles: they can endure several additive-free air drying/redispersion cycles without deterioration of their colloidal behavior. Bioconjugated AuNP@NHC and multimodal Fe3O4@AuNP@NHC demonstrated a successful performance in three distinct applications: lateral flow tests, specific cancer cell targeting, and bioimaging. Thus, the results show the notable advantages of the N-heterocyclic carbene coating of inorganic nanoparticles and their utility for complex biomedical applications.
Collapse
Affiliation(s)
- Polina M Ivantcova
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation.
| | - Eugene L Kolychev
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation.
| | - Artem A Sizikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Elizaveta N Mochalova
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Vladimir R Cherkasov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Maxim P Nikitin
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
6
|
Eisen C, Keppler BK, Chin JM, Su X, Reithofer MR. Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform. Chem Sci 2024:d4sc04112g. [PMID: 39430936 PMCID: PMC11487300 DOI: 10.1039/d4sc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Rapid and precise detection of biochemical markers is vital for accurate medical diagnosis. Gold nanoparticles (AuNPs) have emerged as promising candidates for diagnostic sensing due to their biocompatibility and distinctive physical properties. However, AuNPs functionalized with selective targeting vectors often suffer from reduced stability in complex biological environments. To address this, (N)-heterocyclic carbene (NHC) ligands have been investigated for their robust binding affinity to AuNP surfaces, enhancing stability. This study outlines an optimized top-down synthesis route for highly stable, azide-terminal PEGylated NHC (PEG-NHC) functionalized AuNPs. This process employs well-defined oleylamine-protected AuNPs and masked PEGylated NHC precursors. The activation and attachment mechanisms of the masked NHCs were elucidated through the identification of intermediate AuNPs formed during incomplete ligand exchange. The resulting PEG-NHC@AuNPs exhibit exceptional colloidal stability across various biologically relevant media, showing no significant aggregation or ripening over extended periods. These particles demonstrate superior stability compared to those synthesized via a bottom-up approach. Further functionalization of azide-terminal PEG-NHC@AuNPs was achieved through copper-catalyzed click- and bioorthogonal strain-promoted azide-alkyne cycloaddition reactions. The maintained colloidal stability and successful conjugation highlight the potential of azide-functionalized PEG-NHC@AuNPs as a versatile platform for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
7
|
Kuster L, Bélanger-Bouliga M, Shaw TE, Jurca T, Nazemi A, Frenette M. Insight into the nature of carbon-metal bonding for N-heterocyclic carbenes in gold/silver complexes and nanoparticles using DFT-correlated Raman spectroscopy: strong evidence for π-backbonding. NANOSCALE 2024; 16:11052-11068. [PMID: 38619424 DOI: 10.1039/d4nr00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as promising ligands for stabilizing metallic complexes, nanoclusters, nanoparticles (NPs) and surfaces. The carbon-metal bond between NHCs and metal atoms plays a crucial role in determining the resulting material's stability, reactivity, function, and electronic properties. Using Raman spectroscopy coupled with density functional theory calculations, we investigate the nature of carbon-metal bonding in NHC-silver and NHC-gold complexes as well as their corresponding NPs. While low wavenumbers are inaccessible to standard infrared spectroscopy, Raman detection reveals previously unreported NHC-Au/Ag bond-stretching vibrations between 154-196 cm-1. The computationally efficient r2SCAN-3c method allows an excellent correlation between experimental and predicted Raman spectra which helps calibrate an accurate description of NHC-metal bonding. While π-backbonding should stabilize the NHC-metal bond, conflicting reports for the presence and absence of π-backbonding are seen in the literature. This debate led us to further investigate experimental and theoretical results to ultimately confirm and quantify the presence of π-backbonding in these systems. Experimentally, an observed decrease in the NHC's CN stretching due to the population of the π* orbital is a good indication for the presence of π-backbonding. Using energy decomposition analysis - natural orbitals for chemical valence (EDA-NOCV), our calculations concur and quantify π-backbonding in these NHC-bound complexes and NPs. Surprisingly, we observe that NPs are less stabilized by π-backbonding compared to their respective complexes-a result that partially explains the weaker NHC-NP bond. The protocol described herein will help optimize metal-carbon bonding in NHC-stabilized metal complexes, nanoparticles and surfaces.
Collapse
Affiliation(s)
- Lucille Kuster
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Thomas E Shaw
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Ali Nazemi
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
8
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
9
|
Richstein R, Eisen C, Ge L, Chalermnon M, Mayer F, Keppler BK, Chin JM, Reithofer MR. NHC stabilized copper nanoparticles via reduction of a copper NHC complex. Chem Commun (Camb) 2023; 59:9738-9741. [PMID: 37477599 PMCID: PMC10408246 DOI: 10.1039/d3cc02745g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The bottom-up synthesis of plasmonic NHC@CuNPs from common starting reagents, via the formation of the synthetically accessible NHC-Cu(I)-Br complex and its reduction by NH3·BH3 is reported. The resulting NHC@CuNPs have been characterized in detail by XPS, TEM and NMR spectroscopy. The stability of NHC@CuNPs was investigated under both inert and ambient conditions using UV-Vis analysis. While the NHC@CuNPs are stable under inert conditions for an extended period of time, the NPs oxidize under air to form CuxO with concomitant release of the stabilizing NHC ligand.
Collapse
Affiliation(s)
- Robert Richstein
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Monnaya Chalermnon
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Florian Mayer
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| |
Collapse
|
10
|
Eisen C, Ge L, Santini E, Chin JM, Woodward RT, Reithofer MR. Hyper crosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes. NANOSCALE ADVANCES 2023; 5:1095-1101. [PMID: 36798502 PMCID: PMC9926895 DOI: 10.1039/d2na00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Highly active and selective heterogeneous catalysis driven by metallic nanoparticles relies on a high degree of stabilization of such nanomaterials facilitated by strong surface ligands or deposition on solid supports. In order to tackle these challenges, N-heterocyclic carbene stabilized gold nanoparticles (NHC@AuNPs) emerged as promising heterogeneous catalysts. Despite the high degree of stabilization obtained by NHCs as surface ligands, NHC@AuNPs still need to be loaded on support structures to obtain easily recyclable and reliable heterogeneous catalysts. Therefore, the combination of properties obtained by NHCs and support structures as NHC bearing "functional supports" for the stabilization of AuNPs is desirable. Here, we report the synthesis of hyper-crosslinked polymers containing benzimidazolium as NHC precursors to stabilize AuNPs. Following the successful synthesis of hyper-crosslinked polymers (HCP), a two-step procedure was developed to obtain HCP·NHC@AuNPs. Detailed characterization not only revealed the successful NHC formation but also proved that the NHC functions as a stabilizer to the AuNPs in the porous polymer network. Finally, HCP·NHC@AuNPs were evaluated in the catalytic decomposition of 4-nitrophenol. In batch reactions, a conversion of greater than 99% could be achieved in as little as 90 s. To further evaluate the catalytic capability of HCP·NHC@AuNP, the catalytic decomposition of 4-nitrophenol was also performed in a flow setup. Here the catalyst not only showed excellent catalytic conversion but also exceptional recyclability while maintaining the catalytic performance.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Elena Santini
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Robert T Woodward
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
11
|
Thomas SR, Yang W, Morgan DJ, Davies TE, Li JJ, Fischer RA, Huang J, Dimitratos N, Casini A. Bottom-up Synthesis of Water-Soluble Gold Nanoparticles Stabilized by N-Heterocyclic Carbenes: From Structural Characterization to Applications. Chemistry 2022; 28:e202201575. [PMID: 35801389 PMCID: PMC9804724 DOI: 10.1002/chem.202201575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/09/2023]
Abstract
N-heterocyclic carbenes (NHCs) have become attractive ligands for functionalizing gold nanoparticle surfaces with applications ranging from catalysis to biomedicine. Despite their great potential, NHC stabilized gold colloids (NHC@AuNPs) are still scarcely explored and further efforts should be conducted to improve their design and functionalization. Here, the 'bottom-up' synthesis of two water-soluble gold nanoparticles (AuNP-1 and AuNP-2) stabilized by hydrophilic mono- and bidentate NHC ligands is reported together with their characterization by various spectroscopic and analytical methods. The NPs showed key differences likely to be due to the selected NHC ligand systems. Transmission electron microscopy (TEM) images showed small quasi-spherical and faceted NHC@AuNPs of similar particle size (ca. 2.3-2.6 nm) and narrow particle size distribution, but the colloids featured different ratios of Au(I)/Au(0) by X-ray photoelectron spectroscopy (XPS). Furthermore, the NHC@AuNPs were supported on titania and fully characterized. The new NPs were studied for their catalytic activity towards the reduction of nitrophenol substrates, the reduction of resazurin and for their photothermal efficiency. Initial results on their application in photothermal therapy (PTT) were obtained in human cancer cells in vitro. The aforementioned reactions represent important model reactions towards wastewater remediation, bioorthogonal transformations and cancer treatment.
Collapse
Affiliation(s)
- Sophie R. Thomas
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Wenjie Yang
- School of Chemical and Biomolecular EngineeringUniversity of SydneyNSW2006Australia
| | - David J. Morgan
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATU.K.
| | - Thomas E. Davies
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATU.K.
| | - Jiao Jiao Li
- Kolling InstituteFaculty of Medicine and HealthUniversity of SydneySt LeonardsNSW2065Australia
| | - Roland A. Fischer
- Chair of Inorganic and Metal–Organic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Jun Huang
- School of Chemical and Biomolecular EngineeringUniversity of SydneyNSW2006Australia
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry “Toso Montanari” Universita' degli Studi di BolognaViale Risorgimento40136BolognaItaly,Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di BolognaViale Risorgimento 440136BolognaItaly
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany,Munich Data Science Institute (MDSI)Technical University of MunichWalther-von-Dyck Strasse 1085748GarchingGermany
| |
Collapse
|
12
|
|
13
|
Lummis PA, Osten KM, Levchenko TI, Sabooni Asre Hazer M, Malola S, Owens-Baird B, Veinot AJ, Albright EL, Schatte G, Takano S, Kovnir K, Stamplecoskie KG, Tsukuda T, Häkkinen H, Nambo M, Crudden CM. NHC-Stabilized Au 10 Nanoclusters and Their Conversion to Au 25 Nanoclusters. JACS AU 2022; 2:875-885. [PMID: 35557749 PMCID: PMC9088291 DOI: 10.1021/jacsau.2c00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 05/25/2023]
Abstract
Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC-Au-X complexes (X = Cl, Br, I). The significant effect of the halide ligands on the formation, stability, and further conversions of these clusters is presented. While solutions of the chloride derivatives of Au10 show no change even upon heating, the bromide derivative readily undergoes conversion to form a biicosahedral Au25 cluster at room temperature. For the iodide derivative, the formation of a significant amount of Au25 was observed even upon the reduction of NHC-Au-I. The isolated bromide derivative of the Au25 cluster displays a relatively high (ca. 15%) photoluminescence quantum yield, attributed to the high rigidity of the cluster, which is enforced by multiple CH-π interactions within the molecular structure. Density functional theory computations are used to characterize the electronic structure and optical absorption of the Au10 cluster. 13C-Labeling is employed to assist with characterization of the products and to observe their conversions by NMR spectroscopy.
Collapse
Affiliation(s)
- Paul A. Lummis
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Kimberly M. Osten
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Tetyana I. Levchenko
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Maryam Sabooni Asre Hazer
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sami Malola
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bryan Owens-Baird
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Alex J. Veinot
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Emily L. Albright
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Gabriele Schatte
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kirill Kovnir
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Kevin G. Stamplecoskie
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Masakazu Nambo
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Cathleen M. Crudden
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Kaur G, Thimes RL, Camden JP, Jenkins DM. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem Commun (Camb) 2022; 58:13188-13197. [DOI: 10.1039/d2cc05183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved stability and higher degree of synthetic tunability has allowed N-heterocyclic carbenes to supplant thiols as ligands for gold surface functionalization. This review article summarizes the basic science and applications of NHCs on gold.
Collapse
Affiliation(s)
- Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
15
|
Flores JC, Silbestri GF, de Jesús E. Water-soluble transition-metal complexes with hydrophilic N-heterocyclic carbene ligands for aqueous-phase applications. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Eisen C, Chin JM, Reithofer MR. Catalytically Active Gold Nanomaterials Stabilized by N-heterocyclic Carbenes. Chem Asian J 2021; 16:3026-3037. [PMID: 34399027 PMCID: PMC8597167 DOI: 10.1002/asia.202100731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic 'gold rush'. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.
Collapse
Affiliation(s)
- Constantin Eisen
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Jia Min Chin
- Department of Physical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Michael R. Reithofer
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
17
|
|
18
|
N-Heterocyclic carbenes as “smart” gold nanoparticle stabilizers: State-of-the art and perspectives for biomedical applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Vaddamanu M, Sathyanarayana A, Masaya Y, Sugiyama S, Kazuhisa O, Velappan K, Nandeshwar M, Hisano K, Tsutsumi O, Prabusankar G. Acridine N-Heterocyclic Carbene Gold(I) Compounds: Tuning from Yellow to Blue Luminescence. Chem Asian J 2021; 16:521-529. [PMID: 33442961 DOI: 10.1002/asia.202001380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Indexed: 12/18/2022]
Abstract
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [(L1 )Au(Cl)] (1), [(L2 )Au(Cl)] (2), and [(L3 )Au(Cl)] (3) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N'-(n-butyl)-imidazolium chloride, (L1 .HCl)], [N-(9-acridinyl)-N'-(n-pentyl)-imidazolium chloride, (L2 .HCl)] and [N-(9-acridinyl)-N'-(n-hexyl)-imidazolium chloride, (L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1-3 with n-alkyl substituents is explored. The molecules 1-3 depicted blue emission in the solution state, while the yellow emission (for 1), greenish-yellow emission (for 2), and blue emission (for 3) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.
Collapse
Affiliation(s)
- Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Arruri Sathyanarayana
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Yamane Masaya
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ozaki Kazuhisa
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | | | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
20
|
Ligand effects in the stabilization of gold nanoparticles anchored on the surface of graphene: Implications in catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Bélanger-Bouliga M, Mahious R, Pitroipa PI, Nazemi A. Perylene diimide-tagged N-heterocyclic carbene-stabilized gold nanoparticles: How much ligand desorbs from surface in presence of thiols? Dalton Trans 2021; 50:5598-5606. [PMID: 33908977 DOI: 10.1039/d1dt00064k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic carbenes (NHCs) have recently emerged as viable alternatives to commonly used thiols to stabilize a variety of metal surfaces and nanoparticles. In this context, thanks to their biocompatibility and novel optical properties, NHC-stabilized gold nanoparticles (AuNPs) have been extensively studied. It has been shown that such materials exhibit improved stabilities in acidic and basic solutions, high temperatures, electrolyte solutions, cell culture media, and to some extent to nucleophilic thiols. Despite intense efforts, instability of NHC-functionalized AuNPs to thiols has been an ongoing challenge. In order to circumvent this problem, quantification of NHC desorption from nanoparticle surface by the invading thiols would constitute a necessary first step. To do this, we have first developed water-soluble azide decorated NHC-stabilized "clickable" AuNPs. Optically active perylene diimide (PDI)-tagged AuNP hybrids are then obtained by means of Cu-catalyzed alkyne-azide cycloaddition between these AuNPs and an alkyne-decorated PDI derivative. Investigation of photophysical properties of these AuNP/PDI hybrids revealed that the fluorescence of PDI molecules is effectively quenched by AuNPs in aqueous solution. The extent of NHC desorption from AuNP surface in presence of glutathione (4 mM), as a biologically relevant thiol, is then quantified by means of fluorescence emission restoration of PDI molecules upon detachment from AuNP surfaces. Our results demonstrate that while ∼20% of surface NHCs are displaced by glutathione within the first 24 h of their exposure to the thiol, ligand desorption reaches ∼45% after one week. We believe that these findings will provide more insight on true stability of NHC-stabilized materials.
Collapse
Affiliation(s)
- Marilyne Bélanger-Bouliga
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Raja Mahious
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Poulomsongo Iman Pitroipa
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
22
|
Ren J, Freitag M, Schwermann C, Bakker A, Amirjalayer S, Rühling A, Gao HY, Doltsinis NL, Glorius F, Fuchs H. A Unidirectional Surface-Anchored N-Heterocyclic Carbene Rotor. NANO LETTERS 2020; 20:5922-5928. [PMID: 32510964 DOI: 10.1021/acs.nanolett.0c01884] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A molecular rotor based on N-heterocyclic carbenes (NHCs) has been rationally designed following theoretical predictions, experimentally realized, and characterized. Utilizing the structural tunability of NHCs, a computational screening protocol was first applied to identify NHCs with asymmetric rotational potentials on a surface as a prerequisite for unidirectional molecular rotors. Suitable candidates were then synthesized and studied using scanning tunneling microscopy/spectroscopy (STM/STS), analytical theoretical models, and molecular dynamics simulations. For our best NHC rotor featuring a mesityl N substituent on one side and a chiral naphthylethyl substituent on the other, unidirectional rotation is driven by inelastic tunneling of electrons from the NHC to the STM tip. While electrons preferentially tunnel through the mesityl N substituent, the chiral naphthylethyl substituent controls the directionality. Such NHC-based surface rotors open up new possibilities for the design and construction of functionalized molecular systems with high catalytic applicability and superior stability compared with other classes of molecular rotors.
Collapse
Affiliation(s)
- Jindong Ren
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Schwermann
- Institute of Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Anne Bakker
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Andreas Rühling
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Hong-Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nikos L Doltsinis
- Institute of Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| |
Collapse
|
23
|
Bakker A, Freitag M, Kolodzeiski E, Bellotti P, Timmer A, Ren J, Schulze Lammers B, Moock D, Roesky HW, Mönig H, Amirjalayer S, Fuchs H, Glorius F. An Electron-Rich Cyclic (Alkyl)(Amino)Carbene on Au(111), Ag(111), and Cu(111) Surfaces. Angew Chem Int Ed Engl 2020; 59:13643-13646. [PMID: 32267051 PMCID: PMC7496406 DOI: 10.1002/anie.201915618] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/07/2020] [Indexed: 11/24/2022]
Abstract
The structural properties and binding motif of a strongly σ-electron-donating N-heterocyclic carbene have been investigated on different transition-metal surfaces. The examined cyclic (alkyl)(amino)carbene (CAAC) was found to be mobile on surfaces, and molecular islands with short-range order could be found at high coverage. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearing CAACs as ligands.
Collapse
Affiliation(s)
- Anne Bakker
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Matthias Freitag
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Elena Kolodzeiski
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- Center for Multiscale Theory and ComputationWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Peter Bellotti
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Alexander Timmer
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- nanoAnalytics GmbHHeisenbergstrasse 1148149MünsterGermany
| | - Jindong Ren
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Bertram Schulze Lammers
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Daniel Moock
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Herbert W. Roesky
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Harry Mönig
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Saeed Amirjalayer
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- Center for Multiscale Theory and ComputationWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Harald Fuchs
- Physikalisches InstitutWestfälische Wilhelms-UniversitätWilhelm-Klemm-Strasse 1048149MünsterGermany
- Center for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
24
|
Gou X, Liu T, Wang Y, Han Y. Ultrastable and Highly Catalytically Active N‐Heterocyclic‐Carbene‐Stabilized Gold Nanoparticles in Confined Spaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing‐Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Tong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
25
|
Gou XX, Liu T, Wang YY, Han YF. Ultrastable and Highly Catalytically Active N-Heterocyclic-Carbene-Stabilized Gold Nanoparticles in Confined Spaces. Angew Chem Int Ed Engl 2020; 59:16683-16689. [PMID: 32533619 DOI: 10.1002/anie.202006569] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Controlling the size and surface functionalization of nanoparticles (NPs) can lead to improved properties and applicability. Herein, we demonstrate the efficiency of the metal-carbene template approach (MCTA) to synthesize highly robust and soluble three-dimensional polyimidazolium cages (PICs) of different sizes, each bearing numerous imidazolium groups, and use these as templates to synthesize and stabilize catalytically active, cavity-hosted, dispersed poly-N-heterocyclic carbene (NHC)-anchored gold NPs. Owing to the stabilization of the NHC ligands and the effective confinement of the cage cavities, the as-prepared poly-NHC-shell-encapsulated AuNPs displayed promising stability towards heat, pH, and chemical regents. Most notably, all the Au@PCCs (PCC=polycarbene cage) exhibited excellent catalytic activities in various chemical reactions, together with high stability and durability.
Collapse
Affiliation(s)
- Xing-Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Tong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
26
|
Bakker A, Freitag M, Kolodzeiski E, Bellotti P, Timmer A, Ren J, Schulze Lammers B, Moock D, Roesky HW, Mönig H, Amirjalayer S, Fuchs H, Glorius F. Ein elektronenreiches cyclisches (Alkyl)(amino)carben auf Au(111)‐, Ag(111)‐ und Cu(111)‐Oberflächen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anne Bakker
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
| | - Matthias Freitag
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Elena Kolodzeiski
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
- Center for Multiscale Theory and Computation Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Alexander Timmer
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Deutschland
| | - Jindong Ren
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
| | - Bertram Schulze Lammers
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
| | - Daniel Moock
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Herbert W. Roesky
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Harry Mönig
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
| | - Saeed Amirjalayer
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
- Center for Multiscale Theory and Computation Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Harald Fuchs
- Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology Heisenbergstraße 11 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
27
|
DeJesus JF, Sherman LM, Yohannan DJ, Becca JC, Strausser SL, Karger LFP, Jensen L, Jenkins DM, Camden JP. A Benchtop Method for Appending Protic Functional Groups to N‐Heterocyclic Carbene Protected Gold Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joseph F. DeJesus
- Department of ChemistryUniversity of Tennessee Knoxville TN 37996 USA
| | - Lindy M. Sherman
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Darius J. Yohannan
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Jeffrey C. Becca
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | | | - Leonhard F. P. Karger
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| | - Lasse Jensen
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | - David M. Jenkins
- Department of ChemistryUniversity of Tennessee Knoxville TN 37996 USA
| | - Jon P. Camden
- Department of Chemistry and BiochemistryUniversity of Notre Dame South Bend IN 46556 USA
| |
Collapse
|
28
|
DeJesus JF, Sherman LM, Yohannan DJ, Becca JC, Strausser SL, Karger LFP, Jensen L, Jenkins DM, Camden JP. A Benchtop Method for Appending Protic Functional Groups to N-Heterocyclic Carbene Protected Gold Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7585-7590. [PMID: 32092219 DOI: 10.1002/anie.202001440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/29/2022]
Abstract
The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2 -protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC-Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC, we form an amine-NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC-functionalized noble metal surfaces.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Darius J Yohannan
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Jeffrey C Becca
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Leonhard F P Karger
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
29
|
Hao T, Tan H, Li S, Wang Y, Zhou Z, Yu C, Zhou Y, Yan D. Multilayer onion‐like vesicles self‐assembled from amphiphilic hyperbranched multiarm copolymers via simulation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tongfan Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Haina Tan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
30
|
Dery S, Berg I, Kim S, Cossaro A, Verdini A, Floreano L, Toste FD, Gross E. Strong Metal-Adsorbate Interactions Increase the Reactivity and Decrease the Orientational Order of OH-Functionalized N-Heterocyclic Carbene Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:697-703. [PMID: 31762273 DOI: 10.1021/acs.langmuir.9b02401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fundamental understanding of the correlation between the structure and reactivity of chemically addressable N-heterocyclic carbene (NHC) molecules on various surfaces is essential for the design of functional NHC-based self-assembled monolayers. In this work, we identified the ways by which the deposition of chemically addressable OH-NHCs on Au(111) or Pt(111) surfaces modified the anchoring geometry and chemical reactivity of surface-anchored NHCs. The properties of surface-anchored NHCs were probed by conducting X-ray photoelectron spectroscopy and polarized near-edge X-ray absorption fine structure measurements. While no preferred orientation was identified for OH-NHCs on Pt(111), the anchored molecules adopted a preferred flat-lying position on Au(111). Dehydrogenation and aromatization of the imidazoline ring along with partial hydroxyl oxidation were detected in OH-NHCs that were anchored on Au(111). The dehydrogenation and aromatization reactions were facilitated, along with partial decomposition, for OH-NHCs that were anchored on Pt(111). The spectroscopic results reveal that stronger metal-adsorbate interactions increase the reactivity of surface-anchored OH-NHCs while decreasing their molecular orientational order.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | - Iris Berg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | - Suhong Kim
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Albano Cossaro
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Alberto Verdini
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Luca Floreano
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - F Dean Toste
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Elad Gross
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
31
|
Fernández G, Bernardo L, Villanueva A, Pleixats R. Gold nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the synthesis of propargylamines and the cycloisomerization of γ-alkynoic acids. NEW J CHEM 2020. [DOI: 10.1039/d0nj00284d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-soluble gold nanoparticles prepared in the presence of PEG-tagged tris-imidazolium bromide, containing Au(0) and Au(i) species, are reusable catalysts.
Collapse
Affiliation(s)
- Guillem Fernández
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- 08193-Cerdanyola del Vallès
- Spain
| | - Laura Bernardo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- 08193-Cerdanyola del Vallès
- Spain
| | - Ana Villanueva
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- 08193-Cerdanyola del Vallès
- Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- 08193-Cerdanyola del Vallès
- Spain
| |
Collapse
|
32
|
Young AJ, Eisen C, Rubio GM, Chin JM, Reithofer MR. pH responsive histidin-2-ylidene stabilized gold nanoparticles. J Inorg Biochem 2019; 199:110707. [DOI: 10.1016/j.jinorgbio.2019.110707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
|
33
|
Ventura-Espinosa D, Martín S, Mata JA. The non-innocent role of graphene in the formation/immobilization of ultra-small gold nanoparticles functionalized with N-heterocyclic carbene ligands. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Young AJ, Sauer M, Rubio GMDM, Sato A, Foelske A, Serpell CJ, Chin JM, Reithofer MR. One-step synthesis and XPS investigations of chiral NHC-Au(0)/Au(i) nanoparticles. NANOSCALE 2019; 11:8327-8333. [PMID: 30984947 DOI: 10.1039/c9nr00905a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although N-heterocyclic carbenes (NHCs) have been demonstrated as suitable ligands for the stabilisation of gold nanoparticles (AuNPs) through a variety of methods, the manner in which such AuNPs form is yet to be fully elucidated. We report a simple and fast one-step synthesis of uniform chiral (l/d)-histidin-2-ylidene stabilised gold nanoparticles using the organometallic Au(i) complex as a well defined starting material. The resulting nanoparticles have an average size of 2.35 ± 0.43 nm for the L analog whereas an average size of 2.25 ± 0.39 nm was found for the D analog. X-ray photoelectron spectroscopy analyses reveal the presence of Au(i) and Au(0) in all NHC stabilised AuNPs. In contrast, measured X-ray photoelectron spectra of dodecanethiol protected gold nanoparticles showed only the presence of a Au(0) species. This observation leads us to postulate that AuNPs synthesised from organometallic NHC-Au(i) complexes exhibit a monolayer of Au(i) surrounding a Au(0) core. This work highlights the importance of synthetic method choice for NHC-stabilized AuNPs, as this could determine Au oxidation states and resulting AuNP properties such as catalytic activities and stabilities.
Collapse
Affiliation(s)
- Adam J Young
- Gray Centre for Advanced Materials, School of Mathematics and Physical Sciences, University of Hull, Cottingham Road, Hull, East Riding of Yorkshire, HU6 7RX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li CH, Crudden CM. N-Heterocyclic Carbenes in Materials Chemistry. Chem Rev 2019; 119:4986-5056. [PMID: 30938514 DOI: 10.1021/acs.chemrev.8b00514] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have become one of the most widely studied class of ligands in molecular chemistry and have found applications in fields as varied as catalysis, the stabilization of reactive molecular fragments, and biochemistry. More recently, NHCs have found applications in materials chemistry and have allowed for the functionalization of surfaces, polymers, nanoparticles, and discrete, well-defined clusters. In this review, we provide an in-depth look at recent advances in the use of NHCs for the development of functional materials.
Collapse
Affiliation(s)
- Christene A Smith
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Mina R Narouz
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Paul A Lummis
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ishwar Singh
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ali Nazemi
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Chien-Hung Li
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Cathleen M Crudden
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6.,Institute of Transformative Bio-Molecules, ITbM-WPI , Nagoya University , Nagoya , Chikusa 464-8601 , Japan
| |
Collapse
|
36
|
An Y, Yu J, Han Y. Recent Advances in the Chemistry of
N
‐Heterocyclic‐Carbene‐Functionalized Metal‐Nanoparticles and Their Applications. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
| | - Jian‐Gang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
- College of Chemical and Material Engineering, Quzhou University Quzhou, Zhejiang 324000 China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
37
|
Trujillo MJ, Strausser SL, Becca JC, DeJesus JF, Jensen L, Jenkins DM, Camden JP. Using SERS To Understand the Binding of N-Heterocyclic Carbenes to Gold Surfaces. J Phys Chem Lett 2018; 9:6779-6785. [PMID: 30350991 DOI: 10.1021/acs.jpclett.8b02764] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Surface functionalization is an essential component of most applications of noble-metal surfaces. Thiols and amines are traditionally employed to attach molecules to noble-metal surfaces, but they have limitations. A growing body of research, however, suggests that N-heterocyclic carbenes (NHCs) can be readily employed for surface functionalization with superior chemical stability compared with thiols. We demonstrate the power of surface-enhanced Raman scattering combined with theory to present a comprehensive picture of NHC binding to gold surfaces. In particular, we synthesize a library of NHC isotopologues and use surface-enhanced Raman scattering to record the vibrational spectra of these NHCs while bound to gold surfaces. Our experimental data are compared with first-principles theory, yielding numerous new insights into the binding of NHCs to gold surfaces. In addition to these insights, we expect our approach to be a general method for probing the local surface properties of NHC-functionalized surfaces for their expanding use in sensing applications.
Collapse
Affiliation(s)
- Michael J Trujillo
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Shelby L Strausser
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Jeffrey C Becca
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802-4615 , United States
| | - Joseph F DeJesus
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Lasse Jensen
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802-4615 , United States
| | - David M Jenkins
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
38
|
Tegeder P, Freitag M, Chepiga KM, Muratsugu S, Möller N, Lamping S, Tada M, Glorius F, Ravoo BJ. N‐Heterocyclic Carbene‐Modified Au–Pd Alloy Nanoparticles and Their Application as Biomimetic and Heterogeneous Catalysts. Chemistry 2018; 24:18682-18688. [DOI: 10.1002/chem.201803274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Tegeder
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Matthias Freitag
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Kathryn M. Chepiga
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Satoshi Muratsugu
- Nagoya UniversityDepartment of Chemistry, Graduate School of Science Furo-cho, Chikusa Nagoya Aichi 464-8602 Japan
| | - Nadja Möller
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Sebastian Lamping
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Mizuki Tada
- Nagoya UniversityDepartment of Chemistry, Graduate School of Science Furo-cho, Chikusa Nagoya Aichi 464-8602 Japan
- Research Center for Materials Science (RCMS) and Integrated Research, Consortium on Chemical Sciences (IRCCS)Nagoya University Furo-cho, Chikusa Nagoya Aichi 464-8602 Japan
| | - Frank Glorius
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Westfälische Universität MünsterOrganisch-Chemisches Institut Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
39
|
Bakker A, Timmer A, Kolodzeiski E, Freitag M, Gao HY, Mönig H, Amirjalayer S, Glorius F, Fuchs H. Elucidating the Binding Modes of N-Heterocyclic Carbenes on a Gold Surface. J Am Chem Soc 2018; 140:11889-11892. [DOI: 10.1021/jacs.8b06180] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Bakker
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Alexander Timmer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Hong Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| |
Collapse
|
40
|
Bridonneau N, Hippolyte L, Mercier D, Portehault D, Desage-El Murr M, Marcus P, Fensterbank L, Chanéac C, Ribot F. N-Heterocyclic carbene-stabilized gold nanoparticles with tunable sizes. Dalton Trans 2018; 47:6850-6859. [PMID: 29725678 DOI: 10.1039/c8dt00416a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and straightforward synthesis of N-heterocyclic carbene (NHC)-protected gold nanoparticles is derived from (benz)imidazolium-AuX4 complexes and NaBH4 only. The proposed method allows size tuning, from 3 to 6 nm, by adding (benz)imidazolium bromide. Changing the reducing agent to tBuNH2BH3 shifts the size range to ca. 6-12 nm. A one pot protocol is also reported from AuCl, (benz)imidazolium bromides and NaBH4, thereby providing an even more straightforward way of producing NHC-capped gold nanoparticles. In addition, X-ray photoelectron spectroscopy (XPS) is used to unambiguously evidence, on the nanoparticles, the covalent bond formed between the NHC and the surface gold atoms.
Collapse
Affiliation(s)
- N Bridonneau
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rakers L, Martínez-Prieto LM, López-Vinasco AM, Philippot K, van Leeuwen PWNM, Chaudret B, Glorius F. Ruthenium nanoparticles ligated by cholesterol-derived NHCs and their application in the hydrogenation of arenes. Chem Commun (Camb) 2018; 54:7070-7073. [DOI: 10.1039/c8cc02833h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present ruthenium nanoparticles (Ru-NPs) stabilized with two rigid NHC ligands derived from cholesterol.
Collapse
Affiliation(s)
- Lena Rakers
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Luis M. Martínez-Prieto
- LPCNO
- Laboratoire de Physique et Chimie des Nano-Objets
- UMR5215 INSA-CNRS-UPS
- Institut des Sciences Appliquées
- F-31077 Toulouse
| | - Angela M. López-Vinasco
- LPCNO
- Laboratoire de Physique et Chimie des Nano-Objets
- UMR5215 INSA-CNRS-UPS
- Institut des Sciences Appliquées
- F-31077 Toulouse
| | | | - Piet W. N. M. van Leeuwen
- LPCNO
- Laboratoire de Physique et Chimie des Nano-Objets
- UMR5215 INSA-CNRS-UPS
- Institut des Sciences Appliquées
- F-31077 Toulouse
| | - Bruno Chaudret
- LPCNO
- Laboratoire de Physique et Chimie des Nano-Objets
- UMR5215 INSA-CNRS-UPS
- Institut des Sciences Appliquées
- F-31077 Toulouse
| | - Frank Glorius
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|