1
|
Fu Y, Frechette J. Distinct Contributions of Particle Adsorption and Interfacial Compression to the Surface Pressure of a Fluid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24471-24483. [PMID: 39514300 PMCID: PMC11580387 DOI: 10.1021/acs.langmuir.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Particle-laden interfaces stabilize emulsions and foams and can serve as a platform for multiscale materials. Favorable wetting of a particle to a fluid interface reduces the apparent interfacial tension through area replacement with a linear relationship between the apparent surface pressure and the particle area fraction. The area replacement model is widely employed, often up to particle area fraction reaching the maximum hexagonal packing. However, data directly supporting the area replacement model are limited, and the description ignores contributions from particle-particle interactions and does not describe the surface pressure during the compression of a particle-laden interface. This work reports on the direct validation of the area replacement model through the direct measurement of the adsorption energy, surface pressure, and area fraction of adsorbed particles. Experiments combining tensiometry and confocal imaging during the adsorption of colloidal particles to the oil-water interface confirm the area replacement model within the observed range of area fraction, but only when the drop area is kept constant. Results highlight the importance of keeping the droplet area constant during particle adsorption to extract the adsorbed amount from tensiometry experiments. As particles adsorb to the interface, the droplet area tends to change and compresses or expands the interface. This change in area is associated with an increase in area fraction at nearly constant surface pressure, which deviates from the area replacement model. In contrast to particle adsorption, slow compression of the fluid interface leads to a negligible change in surface pressure up to an area fraction of η ∼ 0.26 for the materials systems investigated. Increase in surface pressure during compression is due to particle-particle interactions, while compression at higher strain rates introduces additional contributions from interfacial rheology.
Collapse
Affiliation(s)
- Yu Fu
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| | - Joelle Frechette
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
- Energy
Conversion Group, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Kumar C, Bhattacharjee S, Srivastava S. Shape anisotropy induced jamming of nanoparticles at liquid interfaces: a tensiometric study. NANOSCALE ADVANCES 2024; 6:4683-4692. [PMID: 39263396 PMCID: PMC11386127 DOI: 10.1039/d4na00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The intersection of nanotechnology and interfacial science has opened up new avenues for understanding complex phenomena occurring at liquid interfaces. The assembly of nanoparticles at liquid/liquid interfaces provides valuable insights into their interactions with fluid interfaces, essential for various applications, including drug delivery. In this study, we focus on the shape and concentration effects of nanoscale particles on interfacial affinity. Using pendant drop tensiometry, we monitor the real-time interfacial tension between an oil droplet and an aqueous solution containing nanoparticles. We measure two different types of nanoparticles: spherical gold nanoparticles (AuNPs) and anisotropic gold nanorods (AuNRs), each functionalized with surfactants to facilitate interaction at the interface. We observe that the interface equilibrium behaviour is mediated by kinetic processes, namely, diffusion, adsorption and rearrangement of particles. For anisotropic AuNRs, we observe shape-induced jamming of particles at the interface, as evidenced by their slower diffusivity and invariant rearrangement rate. In contrast, the adsorption of spherical AuNPs is dynamic and requires more time to reach equilibrium, indicating weaker interface affinity. By detailed analysis of the interfacial tension data and interaction energy calculations, we show that the anisotropic particle shape achieves stable equilibrium inter-particle separation compared to the isotropic particles. Our findings demonstrate that anisotropic particles are a better design choice for drug delivery applications as they provide better affinity for fluid interface attachment, a crucial requirement for efficient drug transport across cell membranes. Additionally, anisotropic shapes can stabilize interfaces at low particle concentrations compared to isotropic particles, thus minimizing side effects associated with biocompatibility and toxicity.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| | - Suman Bhattacharjee
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay Mumbai 400 076 India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| |
Collapse
|
5
|
Adamu H, Haruna A, Zango ZU, Garba ZN, Musa SG, Yahaya SM, IbrahimTafida U, Bello U, Danmallam UN, Akinpelu AA, Ibrahim AS, Sabo A, Aljunid Merican ZM, Qamar M. Microplastics and Co-pollutants in soil and marine environments: Sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. CHEMOSPHERE 2024; 362:142630. [PMID: 38897321 DOI: 10.1016/j.chemosphere.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) and their co-pollutants pose significant threats to soil and marine environments, necessitating understanding of their colonization processes to combat the plastic pandemic and protect ecosystems. MPs can act as invisible carriers, concentrating and transporting pollutants, leading to a more widespread and potentially toxic impact than the presence of either MPs or the pollutants alone. Analyzing the sorption and desorption dynamics of MPs is crucial for understanding pollutants amplification and predicting the fate and transport of pollutants in soil and marine environments. This review provides an in-depth analysis of the sorption and desorption dynamics of MPs, highlighting the importance of considering these dynamics in ecotoxicological risk assessment of MPs pollution. The review identifies limitations of current frameworks that neglect these interactions and proposes incorporating sorption and desorption data into robust frameworks to improve the ability to predict ecological risks posed by MPs and co-pollutants in soil and marine environments. However, failure to address the interplay between sorption and desorption can result in underestimation of the true impact of MPs and co-pollutants, affecting livelihoods and agro-employments, and exacerbate poverty and community disputes (SDGs 1, 2, 3, 8, 9, and 16). It can also affect food production and security (SDG 2), life below water and life on land (DSGs 14 and 15), cultural practices, and natural heritage (SDG 11.4). Hence, it is necessary to develop new approaches to ecotoxicological risk assessment that consider sorption and desorption processes in the interactions between the components in the framework to address the identified limitations.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Zaharadden N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria
| | - Suleiman Gani Musa
- Department of Chemistry, Al-Qalam University, 2137, Katsina, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | | | - Adeola Akeem Akinpelu
- Center of Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Sadiq Ibrahim
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Ahmed Sabo
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Chen W, Geng X, Ding B, Liu W, Jiang K, Xu Q, Guan B, Peng L, Peng H. A Comparative Study of Surfactant Solutions Used for Enhanced Oil Recovery in Shale and Tight Formations: Experimental Evaluation and Numerical Analysis. Molecules 2024; 29:3293. [PMID: 39064872 PMCID: PMC11279025 DOI: 10.3390/molecules29143293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Applying chemical enhanced oil recovery (EOR) to shale and tight formations is expected to accelerate China's Shale Revolution as it did in conventional reservoirs. However, its screening and modeling are more complex. EOR operations are faced with choices of chemicals including traditional surfactant solutions, surfactant solutions in the form of micro-emulsions (nano-emulsions), and nano-fluids, which have similar effects to surfactant solutions. This study presents a systematic comparative analysis composed of laboratory screening and numerical modeling. It was conducted on three scales: tests of chemical morphology and properties, analysis of micro-oil-displacing performance, and simulation of macro-oil-increasing effect. The results showed that although all surfactant solutions had the effects of reducing interfacial tension, altering wettability, and enhancing imbibition, the nano-emulsion with the lowest hydrodynamic radius is the optimal selection. This is attributed to the fact that the properties of the nano-emulsion match well with the characteristics of these shale and tight reservoirs. The nano-emulsion is capable of integrating into the tight matrix, interacting with the oil and rock, and supplying the energy for oil to flow out. This study provides a comprehensive understanding of the role that surfactant solutions could play in the EOR of unconventional reservoirs.
Collapse
Affiliation(s)
- Weidong Chen
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Xiangfei Geng
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Bin Ding
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Weidong Liu
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Ke Jiang
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Qinglong Xu
- National Key Laboratory of Continental Shale Oil, PetroChina Daqing Oilfield Research Institute of Petroleum Exploration & Development, Daqing 163000, China
| | - Baoshan Guan
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Lin Peng
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Huan Peng
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation, Beijing 100083, China; (X.G.); (W.L.); (L.P.)
| |
Collapse
|
7
|
Wang K, Zhang J, Li M, Zhu S, Pan T. From Antagonism to Enhancement: Triton X-100 Surfactant Affects Phenanthrene Interfacial Biodegradation by Mycobacteria through a Shift in Uptake Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11106-11115. [PMID: 38745419 DOI: 10.1021/acs.langmuir.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as persistent environmental pollutants, often reside in nonaqueous-phase liquids (NAPLs). Mycobacterium sp. WY10, boasting highly hydrophobic surfaces, can adsorb to the oil-water interface, stabilizing the Pickering emulsion and directly accessing PAHs for biodegradation. We investigated the impact of Triton X-100 (TX100) on this interfacial uptake of phenanthrene (PHE) by Mycobacteria, using n-tetradecane (TET) and bis-(2-ethylhexyl) phthalate (DEHP) as NAPLs. Interfacial tension, phase behavior, and emulsion stability studies, alongside confocal laser scanning microscopy and electron microscope observations, unveiled the intricate interplay. In surfactant-free systems, Mycobacteria formed stable W/O Pickering emulsions, directly degrading PHE within the NAPLs because of their intimate contact. Introducing low-dose TX100 disrupted this relationship. Preferentially binding to the cells, the surfactant drastically increased the cell hydrophobicity, triggering desorption from the interface and phase separation. Consequently, PAH degradation plummeted due to hindered NAPL access. Higher TX100 concentrations flipped the script, creating surfactant-stabilized O/W emulsions devoid of interfacial cells. Surprisingly, PAH degradation remained efficient. This paradox can be attributed to NAPL emulsification, driven by the surfactant, which enhanced mass transfer and brought the substrate closer to the cells, despite their absence at the interface. This study sheds light on the complex effect of surfactants on Mycobacteria and PAH uptake, revealing an antagonistic effect at low concentrations that ultimately leads to enhanced degradation through emulsification at higher doses. These findings offer valuable insights into optimizing bioremediation strategies in PAH-contaminated environments.
Collapse
Affiliation(s)
- Kai Wang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jiameng Zhang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Meishu Li
- School of Life Sciences, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuting Zhu
- School of Life Sciences, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tao Pan
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Life Sciences, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
8
|
Hyer AP, McMillin RE, Ferri JK. The shape of things to come: Axisymmetric drop shape analysis using deep learning. J Colloid Interface Sci 2024; 653:1188-1195. [PMID: 37793245 DOI: 10.1016/j.jcis.2023.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
HYPOTHESIS In the traditional approach to Axisymmetric Drop Shape Analysis (ADSA), the determination of surface tension or interfacial tension is constrained by computational speed and image quality. By implementing a machine learning-based approach, particularly using a convolutional neural network (CNN), it is posited that analysis of pendant drop images can be both faster and more accurate. EXPERIMENTS A CNN model was trained and used to predict the surface tension of drop images. The performance of our CNN model was compared to the traditional ADSA, i.e. direct numerical integration, in terms of precision, computational speed, and robustness in dealing with images of varying quality. Additionally, the ability of the CNN model to predict other drop properties such as Volume and Surface Area was evaluated. FINDINGS Our CNN demonstrated a significant enhancement in experimental fit precision, predicting surface tension with an accuracy of (+/-) 1.22×10-1 mN/m and at a speed of 1.50 ms-1, outpacing the traditional method by more than 5×103 times. The model maintained an average surface tension error of 2.42×10-1 mN/m even for experimental images with challenges such as misalignment and poor focus. The CNN model also demonstrated showcased a high degree of accuracy in determining other drop properties.
Collapse
Affiliation(s)
- Andres P Hyer
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States
| | - Robert E McMillin
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States
| | - James K Ferri
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States.
| |
Collapse
|
9
|
Hashemi SA, Ghaffarkhah A, Goodarzi M, Nazemi A, Banvillet G, Milani AS, Soroush M, Rojas OJ, Ramakrishna S, Wuttke S, Russell TP, Kamkar M, Arjmand M. Liquid-Templating Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302826. [PMID: 37562445 DOI: 10.1002/adma.202302826] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Goodarzi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Amir Nazemi
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Abbas S Milani
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Stefan Wuttke
- Basque Centre for Materials, Applications & Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Milad Kamkar
- Multi-scale Materials Design Center, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
10
|
Alsmaeil AW, Kouloumpis A, Potsi G, Hammami MA, Kanj MY, Giannelis EP. Probing the Interfacial Properties of Oil-Water Interfaces Decorated with Ionizable, pH Responsive Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3118-3130. [PMID: 36791471 DOI: 10.1021/acs.langmuir.2c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.
Collapse
Affiliation(s)
- Ahmed Wasel Alsmaeil
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14850, United States
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31261, Saudi Arabia
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mazen Yousef Kanj
- College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
11
|
Hammami MA, Kouloumpis A, Qi G, Alsmaeil AW, Aldakkan B, Kanj MY, Giannelis EP. Probing the Mechanism of Targeted Delivery of Molecular Surfactants Loaded into Nanoparticles after Their Assembly at Oil-Water Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6113-6122. [PMID: 36692039 DOI: 10.1021/acsami.2c18762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.g., by adding 1 wt % stearic acid to hexadecane to produce a model oil). The presence of positively charged NPs consistently lowers the stiffness of the water-oil interface. The effect is lessened, when the NPs are present in a solution of NaCl or deionized water at pH 2, consistent with a less dense monolayer of NPs at the interface in the last two systems. In addition, the NPs reduce the interfacial adhesion (i.e., the "stickiness" of the interface or, put differently, the pull-off force experienced by the atomic force microscopy (AFM) tip during retraction). After the assembly, the NPs can release a previously loaded cargo of surfactant molecules, which then facilitate the formation of a much finer oil-water emulsion. As a proof of concept, we demonstrate the release of octadecyl amine, ODA, that has been incorporated into the NPs prior to the assembly. The release of ODA causes the NPs to detach from the interface altering the interfacial properties and leads to finer oil droplets. This approach can be exploited in applications in several fields ranging from pharmaceutical and cosmetics to hydrocarbon recovery and oil-spill remediation, where a targeted and controlled release of surfactants is wanted.
Collapse
Affiliation(s)
- Mohamed Amen Hammami
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Genggeng Qi
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ahmed Wasel Alsmaeil
- Department of the Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Bashayer Aldakkan
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mazen Y Kanj
- Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, KSA 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Zhang Y, Marlow JB, Millar W, Silvester DS, Warr GG, Li H, Atkin R. Effect of ion structure on the nanostructure and electrochemistry of surface active ionic liquids. J Colloid Interface Sci 2023; 630:931-939. [DOI: 10.1016/j.jcis.2022.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
13
|
Machrafi H. Surface tension of nanoparticle dispersions unravelled by size-dependent non-occupied sites free energy versus adsorption kinetics. NPJ Microgravity 2022; 8:47. [PMID: 36323719 PMCID: PMC9630414 DOI: 10.1038/s41526-022-00234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The surface tension of dispersions presents many types of behaviours. Although some models, based on classical surface thermodynamics, allow partial interpretation, fundamental understanding is still lacking. This work develops a single analytical physics-based formulation experimentally validated for the surface tension of various pure nanoparticle dispersions, explaining the underlying mechanisms. Against common belief, surface tension increase of dispersions appears not to occur at low but rather at intermediate surface coverage, owed by the relatively large size of nanoparticles with respect to the fluid molecules. Surprisingly, the closed-form model shows that the main responsible mechanism for the various surface tension behaviours is not the surface chemical potential of adsorbed nanoparticles, but rather that of non-occupied sites, triggered and delicately controlled by the nanoparticles ‘at a distance’, introducing the concept of the ‘non-occupancy’ effect. The model finally invites reconsidering surface thermodynamics of dispersions and provides for criteria that allow in a succinct manner to quantitatively classify the various surface tension behaviours.
Collapse
Affiliation(s)
- Hatim Machrafi
- grid.4861.b0000 0001 0805 7253Université de Liège, Institut de Physique, Liège, 4000 Belgium ,grid.4989.c0000 0001 2348 0746Université libre de Bruxelles, Physical Chemistry Group, Bruxelles, 1050 Belgium ,grid.462844.80000 0001 2308 1657Sorbonne Université, UFR Physique, Paris, 75005 France
| |
Collapse
|
14
|
Chondath SK, Sreekala APK, Farzeena C, Varanakkottu SN, Menamparambath MM. Interfacial tension driven adsorption of MnO 2 nanoparticles at the liquid/liquid interface to tailor ultra-thin polypyrrole sheets. NANOSCALE 2022; 14:11197-11209. [PMID: 35900017 DOI: 10.1039/d2nr02130g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An emerging aspect of research is designing and developing fully tunable metamaterials for various applications with fluid interfaces. Liquid/liquid interface-assisted methods represent an efficient and facile route for synthesizing two-dimensional (2-D) thin films of potential materials. The underlying mechanism behind thin film formation at the liquid/liquid interface involves the preferential adsorption of nano-sized particles at the interface to minimize high interfacial tension. Here, a water/chloroform interface-assisted method is employed for the one-pot synthesis of highly crystalline polypyrrole/manganese dioxide (PPy/MnO2) sheets. The temporal evolution in the dynamic interfacial tension (from 32 mN m-1 to 17 mN m-1) observed in pendant drop tensiometry proved the preferential adsorption of MnO2 atttached PPy oligomers at the water/chloroform interface. An ultra-thin sheet-like morphology and uniform distribution of ∼6 nm highly crystalline MnO2 nanoparticles are evidenced by transmission and atomic force microscopy techniques. The predominance of interfacial polymerization in retaining the electrochemical activity of the PPy/MnO2 sheets is elucidated for the electrochemical detection of nicotine. This study opens a new avenue for the realization of ultra-thin sheets of polymer-nanomaterial hybrids, enabling applications ranging from new classes of sensors to optics.
Collapse
Affiliation(s)
- Subin Kaladi Chondath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| | | | - Chalikkara Farzeena
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut-673601, Kerala, India
| | | | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
15
|
Nowrouzi I, Khaksar Manshad A, Mohammadi AH. Effects of MgO, γ-Al 2O 3, and TiO 2 Nanoparticles at Low Concentrations on Interfacial Tension (IFT), Rock Wettability, and Oil Recovery by Spontaneous Imbibition in the Process of Smart Nanofluid Injection into Carbonate Reservoirs. ACS OMEGA 2022; 7:22161-22172. [PMID: 35811910 PMCID: PMC9260905 DOI: 10.1021/acsomega.1c07134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Recently, some nanoparticles have been used to upgrade injected water into oil reservoirs to enhance oil recovery. These nanoadditives can be used in a variety of injectable waters, including smart/engineered water with special salinities. In this study, the performance of smart water containing different concentrations of magnesium sulfate (MgSO4) and calcium chloride (CaCl2) and 500 ppm of titanium dioxide (TiO2), γ-alumina (γ-Al2O3), and magnesium oxide (MgO) nanoparticles in interfacial tension (IFT) and contact angle reduction and oil production under imbibition of the chemical fluids was investigated. Based on the results, the IFT decreased more when ions and nanoparticles were present in the system. An optimum IFT of 4.684 mN/m was recorded for the nanofluid containing 2000 ppm of MgSO4 + 500 ppm of MgO. The results of contact angle tests demonstrated improved saline water capabilities in the presence of nanoparticles and showed that a very effective reduction was accessible and highly hydrophilic wettability was obtained when using smart water with stable nanoparticles as a minimum contact angle of 18.33° was obtained by the optimal fluid containing nano-γ-Al2O3. Finally, an ultimate oil production of 64.1-68.7% was obtained in six experiments with smart water and stable nanoparticles.
Collapse
Affiliation(s)
- Iman Nowrouzi
- Discipline
of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South
Africa
| | - Abbas Khaksar Manshad
- Department
of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan 06145, Iran
| | - Amir H. Mohammadi
- Discipline
of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South
Africa
| |
Collapse
|
16
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Abstract
Microplastics are sub-millimeter-sized fragments of plastics and a relatively new class of pollutant increasingly found in the environment. Due to their size and surface area to volume ratio, the physicochemical characteristics of microplastics can diverge from those of their macroscopic counterparts. This is partly why it is challenging to understand their origin, analyze their behavior, and predict their fates in the environment compared to large pollutants. We believe that adopting a view of microplastics as a colloid provides a holistic framework that connects their physical properties and surface chemistries with observations of their dynamics in the environment. In particular, we discuss the role of fundamental principles of colloid science in interpreting phenomena of wetting, adsorption, aggregation, and transport of microplastics. Colloid and interface science can provide the tools to couple or decouple the physicochemical behaviors of microplastics, which may aid in understanding the environmental challenge both from a fundamental perspective and with respect to practical remediation methods.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
18
|
Wen B, Sun C, Luo Z, Lu X, Wang H, Bai B. A hydrogen bond-modulated soft nanoscale water channel for ion transport through liquid-liquid interfaces. SOFT MATTER 2021; 17:9736-9744. [PMID: 34643637 DOI: 10.1039/d1sm00899d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion transport through interfaces is of ubiquitous importance in many fields such as electrochemistry, emulsion stabilization, phase transfer catalysis, liquid-liquid extraction and enhanced oil recovery. However, the knowledge of interfacial structures that significantly affect ion transport through liquid-liquid interfaces is still lacking due to the difficulty of observing nanoscale interfaces. We studied here the evolution of interfacial structures during ion transport through the decane-water interface under different ionic concentrations and external forces using molecular dynamics simulations. The roles of hydrogen bonds in ion transport through interfaces are revealed. We identified a soft nanoscale channel during ion transport through liquid-liquid interfaces and the decane phase under specific external force. The stability of the water channel and the ion transport velocity both increase with ionic concentration due to the layered ordering structures of the water near the channel surface. We observed that the stability and connectivity of the water channel in the decane phase are remarkably improved both by the high increase of the number of hydrogen bonds in the water channel with increasing ionic concentration, and by the conformational change in water molecules near the water channel surface. Our discovery of a soft nanoscale water channel by molecular simulations implies that there is a potential stable passage for ion transport through liquid-liquid interfaces.
Collapse
Affiliation(s)
- Boyao Wen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Zhengyuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xi Lu
- Petroleum Exploration and Production Research Institute of Sinopec, Beijing, 100083, China
| | - Haibo Wang
- Petroleum Exploration and Production Research Institute of Sinopec, Beijing, 100083, China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
19
|
Zhao Y, Lu Y, Wang D. Tracking of Nanoparticle Diffusion at a Liquid-Liquid Interface Adsorbed by Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12118-12127. [PMID: 34610245 DOI: 10.1021/acs.langmuir.1c01978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emulsions stabilized by both nanoparticles and surfactants often display longer shelf life than those stabilized by nanoparticles or surfactants alone. Although numerous works have been conducted to understand the effect of nanoparticles and surfactants on the variation of interfacial tension, little is known about interfacial diffusion when both nanoparticles and surfactants are present at interfaces. In this work, we used single-particle fluorescence tracking to study the lateral diffusion of individual hydrophobic nanoparticles at hexane-glycerol interfaces adsorbed by different amounts of nonionic surfactants. When the surfactant concentration is over a threshold, we found that the nanoparticle diffusion exhibits a two-regime behavior involving short-time Brownian and the emergence of subdiffusive, non-Gaussian, and dynamically anticorrelated diffusion in the long lag time regime. A stepwise analysis rationalized diffusion in different lag time regimes, leading to a mechanistic interpretation regarding the two-regime behavior. These results could provide insight into the understanding of the synergistic effect for the surfactant-assistant Pickering emulsion.
Collapse
Affiliation(s)
- Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
20
|
Nguele R, Omondi BA, Yamasaki S, Mandai S, Sugai Y, Sasaki K. Evaluation of CO2-triggered and thermo-responsive gels for heterogeneous oil formations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Smits J, Giri RP, Shen C, Mendonça D, Murphy B, Huber P, Rezwan K, Maas M. Synergistic and Competitive Adsorption of Hydrophilic Nanoparticles and Oil-Soluble Surfactants at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5659-5672. [PMID: 33905659 DOI: 10.1021/acs.langmuir.1c00559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fundamental insights into the interplay and self-assembly of nanoparticles and surface-active agents at the liquid-liquid interface play a pivotal role in understanding the ubiquitous colloidal systems present in our natural surroundings, including foods and aquatic life, and in the industry for emulsion stabilization, drug delivery, or enhanced oil recovery. Moreover, well-controlled model systems for mixed interfacial adsorption of nanoparticles and surfactants allow unprecedented insights into nonideal or contaminated particle-stabilized emulsions. Here, we investigate such a model system composed of hydrophilic, negatively, and positively charged silica nanoparticles and the oil-soluble cationic lipid octadecyl amine with in situ synchrotron-based X-ray reflectometry, which is analyzed and discussed jointly with dynamic interfacial tensiometry. Our results indicate that negatively charged silica nanoparticles only adsorb if the oil-water interface is covered with the positively charged lipid, indicating synergistic adsorption. Conversely, the positively charged nanoparticles readily adsorb on their own, but compete with octadecyl amine and reversibly desorb with increasing concentrations of the lipid. These results further indicate that with competitive adsorption, an electrostatic exclusion zone exists around the adsorbed particles. This prevents the adsorption of lipid molecules in this area, leading to a decreased surface excess concentration of surfactants and unexpectedly high interfacial tension.
Collapse
Affiliation(s)
- Joeri Smits
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen, Germany
| | - Rajendra P Giri
- Institute of Experimental and Applied Physics, Kiel University, D-24098 Kiel, Germany
| | - Chen Shen
- DESY Photon Science, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diogo Mendonça
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen, Germany
- Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, Brazil
| | - Bridget Murphy
- Institute of Experimental and Applied Physics, Kiel University, D-24098 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Patrick Huber
- DESY Photon Science, Notkestraße 85, D-22607 Hamburg, Germany
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Eißendorfer Straße 42, 21073 Hamburg, Germany
- Center for Hybrid Nanostructures ChyN, Hamburg University, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| |
Collapse
|
23
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
24
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021; 60:8694-8699. [DOI: 10.1002/anie.202016217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
25
|
Xu M, Zhang W, Jiang J, Pei X, Zhu H, Cui Z, Binks BP. Transition between a Pickering Emulsion and an Oil-in-Dispersion Emulsion Costabilized by Alumina Nanoparticles and a Cationic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15543-15551. [PMID: 33332125 DOI: 10.1021/acs.langmuir.0c02892] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transition between a novel oil-in-dispersion emulsion and an oil-in-water (O/W) Pickering emulsion triggered by pH was achieved using alumina nanoparticles in combination with a cationic surfactant. In acidic and neutral aqueous media, positively charged particles and the surfactant both at very low concentrations costabilize an oil-in-dispersion emulsion with the surfactant adsorbed at droplet interfaces and particles dispersed in the aqueous phase between the droplets. In alkaline media, however, particles become negatively charged and are hydrophobized in situ by adsorption of the surfactant to become surface-active and stabilize an O/W Pickering emulsion. The transition between the two is also possible by lowering the pH. The transformation can be achieved several times in a mixture of 0.1 wt % nanoparticles and 0.01 mM surfactant. This transition is significant, since particles can be made to either adsorb at the oil-water interface, which is beneficial for applications like biphasic catalysis, or remain dispersed in the aqueous phase, which is favorable for their recovery and reuse.
Collapse
Affiliation(s)
- Maodong Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
- School of Biological and Chemical Engineering, Anhui Polytechnic University, 8 Beijing Road, Wuhu 241000, P. R. China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
26
|
Chai Y, Hasnain J, Bahl K, Wong M, Li D, Geissler P, Kim PY, Jiang Y, Gu P, Li S, Lei D, Helms BA, Russell TP, Ashby PD. Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. SCIENCE ADVANCES 2020; 6:eabb8675. [PMID: 33239289 PMCID: PMC7688340 DOI: 10.1126/sciadv.abb8675] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/16/2020] [Indexed: 05/14/2023]
Abstract
Electrostatic interactions between nanoparticles (NPs) and functionalized ligands lead to the formation of NP surfactants (NPSs) that assemble at the water-oil interface and form jammed structures. To understand the interfacial behavior of NPSs, it is necessary to understand the mechanism by which the NPSs attach to the interface and how this attachment depends on the areal coverage of the interface. Through direct observation with high spatial and temporal resolution, using laser scanning confocal microscopy and in situ atomic force microscopy (AFM), we observe that early-stage attachment of NPs to the interface is diffusion limited and with increasing areal density of the NPSs, further attachment requires cooperative displacement of the previously assembled NPSs both laterally and vertically. The unprecedented detail provided by in situ AFM reveals the complex mechanism of attachment and the deeply nonequilibrium nature of the assembly.
Collapse
Affiliation(s)
- Yu Chai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jaffar Hasnain
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kushaan Bahl
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Matthew Wong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dong Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Phillip Geissler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yufeng Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Applied Science and Technology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peiyang Gu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Siqi Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, SAR, Hong Kong, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, Hong Kong, China
| | - Brett A Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Paul D Ashby
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Tian C, Feng J, Prud'homme RK. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants. J Colloid Interface Sci 2020; 575:416-424. [PMID: 32388288 DOI: 10.1016/j.jcis.2020.03.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS The unusual observation that addition of sodium dodecylsulfate surfactant to an aqueous nanoparticle dispersion slows down the decrease of air:water interfacial tension is attributed to the combined interactions of the nanoparticle with surfactant and surfactant at the air:water interface. Such dynamics are controlled by electrostatic interactions. EXPERIMENTS The study of dynamics is achieved using the maximum bubble pressure measurement of surface tension from 0.1 s to 30 s. The NPs are assembled by Flash NanoPrecipitation with 5 kDa polyethylene glycol coronas, and cores of polystyrene, polydimethylsiloxane, or polycaprolactone. Anionic (sodium dodecylsulfate), cationic (cetyltrimethylammonium bromide), and non-ionic (decaethylene glycol monododecyl ether) surfactants are employed over concentration 10-4 to 10-2 mM. The zeta potentials of the NPs are measured with surfactants. Electrostatic repulsion between charged NPs and interface is calculated, as well as the adsorption energy. FINDINGS This is the first report to quantitatively explain the effect of surfactants on the dynamics of NP assembly at an interface. An electrostatic energy barrier slows the adsorption kinetics for NPs when the NPs have the same charge as the interface. Increasing ionic strength of the solution reduces the electrostatic barrier. Decreasing interactions between the NP core material and the surfactant reduces the barrier. Our findings offer new insights into understanding of NP interfacial self-assembly dynamics in a complex environment.
Collapse
Affiliation(s)
- Chang Tian
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, United States.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, United States.
| |
Collapse
|
28
|
Mishra K, Bergfreund J, Bertsch P, Fischer P, Windhab EJ. Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7566-7572. [PMID: 32520568 DOI: 10.1021/acs.langmuir.0c01195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline glycerides play an important role in the formation of multiphase systems such as emulsions and foams. The stabilization of oil/water interfaces by glyceride crystals has been extensively studied compared to only few studies which have been dedicated to oil/air interfaces. This study investigates the crystallization and network formation of tripalmitin (TP) and monopalmitin (MP) at the middle-chain triglyceride (MCT) oil/air interface. TP crystals were found to crystallize in the bulk before aggregating as large rectangular crystal conglomerates at the MCT oil/air interface. This leads to the slow formation of a plastic deformable, macroscopic crystal layer with high interfacial rheological moduli. MP crystals form directly at the MCT oil/air interface resulting in a comparatively fast formation of an elastic deformable network. Crystals with tentacle-like morphology were found to be responsible for the network elasticity. In this work, we show how interfacial crystallization dynamics and mechanical strength can be linked to the molecular structure and crystallization behavior of glyceride crystals.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
29
|
Vialetto J, Rudiuk S, Morel M, Baigl D. From bulk crystallization of inorganic nanoparticles at the air/water interface: tunable organization and intense structural colors. NANOSCALE 2020; 12:6279-6284. [PMID: 32037425 DOI: 10.1039/c9nr10965j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The "flipping method" is a new straightforward way to both adsorb and organize microparticles at a liquid interface, with ultralow amounts of a surfactant and no other external forces than gravity. Here we demonstrate that it allows the adsorption of a variety of inorganic nanoparticles at an air/water interface, in an organized way, which is directly controlled by the surfactant concentration, ranging from amorphous to highly crystalline two-dimensional assemblies. With micromolar amounts of a conventional cationic surfactant (dodecyltrimethylammonium bromide, DTAB), nanoparticles of different compositions (silica, silver, and gold), sizes (down to 100 nm) and shapes (spheres and cubes) adsorb from the bulk and directly organize at the air/water interface, resulting in marked optical properties such as reflectivity or intense structural coloration.
Collapse
Affiliation(s)
- Jacopo Vialetto
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Damien Baigl
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
30
|
Ahmadi M, Chen Z. Challenges and future of chemical assisted heavy oil recovery processes. Adv Colloid Interface Sci 2020; 275:102081. [PMID: 31830684 DOI: 10.1016/j.cis.2019.102081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022]
Abstract
The primary method for heavy oil and bitumen production across the world is still in-situ steam-based technology. There are some drawbacks associated with steam-driven heavy oil recovery methods such as cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD). These cons include the high greenhouse gas footprint, low heavy oil/bitumen recovery, and difficulty in stop operation in emergency conditions. There exists a need for an improved method for recovering residual oils after applying steam injection. One of the potential technologies for doing this is chemical assisted heavy oil recovery, especially alkaline and surfactant additives. But the challenging question is how to develop a chemical-based oil recovery method considering long-term steam-rock interactions. Several associated issues of chemical additives, including adsorption behavior of surfactant at reservoir conditions and thermal stability of surfactant at steam chamber temperature, make this question more complex. This paper addresses all these concerns and provides solid knowledge regarding this technology. We delve into newly formulated chemicals for coupling with thermal oil recovery techniques that are still limited to lab-scale research, with the need for further studies. This critical review also provides the opportunities and challenges associated with chemical assisted heavy oil/bitumen production in a post-steam injection scenario. Finally, different aspects of such a method are covered in this review, along with practical information on field trials and best practices across the world.
Collapse
Affiliation(s)
- Mohammadali Ahmadi
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N1T4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N1T4, Canada
| |
Collapse
|
31
|
Toor A, Forth J, Bochner de Araujo S, Merola MC, Jiang Y, Liu X, Chai Y, Hou H, Ashby PD, Fuller GG, Russell TP. Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13340-13350. [PMID: 31536356 DOI: 10.1021/acs.langmuir.9b01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.
Collapse
Affiliation(s)
- Anju Toor
- Department of Mechanical Engineering , University of California , 6141 Etcheverry Hall , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Joe Forth
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Simone Bochner de Araujo
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Maria Consiglia Merola
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Yufeng Jiang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Department of Applied Science and Technology , University of California , Berkeley , California 94720 , United States
| | - Xubo Liu
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yu Chai
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Department of Applied Science and Technology , University of California , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Honghao Hou
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Paul D Ashby
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Gerald G Fuller
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Thomas P Russell
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Polymer Science and Engineering Department , University of Massachusetts , 120 Governors Drive, Conte Center for Polymer Research , Amherst , Massachusetts 01003 , United States
- Advanced Institute for Materials Research (AIMR) , Tohoku University , 2-1-1 Katahira , Aoba, Sendai 980-8577 , Japan
| |
Collapse
|
32
|
Effects of TiO2, MgO, and γ-Al2O3 nano-particles in carbonated water on water-oil interfacial tension (IFT) reduction in chemical enhanced oil recovery (CEOR) process. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111348] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Smits J, Vieira F, Bisswurn B, Rezwan K, Maas M. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11089-11098. [PMID: 31368712 DOI: 10.1021/acs.langmuir.9b01568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we show that hydrophilic nanoparticles can readily desorb from liquid-liquid interfaces in the presence of surfactants that do not change the wettability of the particles. Our observations are based on a simple theoretical approach to assess the number of adsorbed particles at the surfactant-laden liquid-liquid interface. We test this approach by studying the interfacial self-assembly of equally charged particles and lipids dissolved in separate immiscible phases. Hence, we investigate the interfacial adsorption of aminated silica particles (80 nm) and octadecylamine to the decane/water interface by interfacial tension measurements, which are supplemented by interfacial rheology of the adsorbed interfacial films, scanning electron microscopy images of Langmuir-Blodgett films, and measurements of the three-phase contact angle of the particle surface in the presence of surfactants. The measurements show that particles adsorb at the surfactant-laden interface at all investigated surfactant concentrations and compete with the surfactants for interfacial coverage. Additionally, the wettability of the hydrophilic particles does not change in the presence of the lipids, except for the highest investigated lipid concentration. Comparing the adsorption energies of one particle and of the lipids as a function of the particle contact angle provides an estimate of the tendency for interfacial adsorption of particles from which the particle coverage can be assessed. Based on these findings, equally charged particles and lipids show a competitive behavior at the interface determined by the bulk surfactant concentration and the attachment energies of the particles at the interface. This leads to a simple mechanistic model demonstrating that particles can readily desorb from the interface due to direct displacement by surfactants, which are loosely adsorbed at the oil-facing particle side. This mechanism critically lowers the otherwise high interfacial energy barrier against particle desorption, which otherwise would lead to virtually irreversible particle attachment at the interface.
Collapse
Affiliation(s)
- Joeri Smits
- Advanced Ceramics , University of Bremen , Am Biologischen Garten 2 , D-28359 Bremen , Germany
| | - Felipi Vieira
- Advanced Ceramics , University of Bremen , Am Biologischen Garten 2 , D-28359 Bremen , Germany
- Department of Mechanical Engineering , Federal University of Santa Catarina , 88040-900 Florianópolis , Brazil
| | - Bianca Bisswurn
- Advanced Ceramics , University of Bremen , Am Biologischen Garten 2 , D-28359 Bremen , Germany
- Department of Mechanical Engineering , Federal University of Santa Catarina , 88040-900 Florianópolis , Brazil
| | - Kurosch Rezwan
- Advanced Ceramics , University of Bremen , Am Biologischen Garten 2 , D-28359 Bremen , Germany
- MAPEX Center for Materials and Processes , University of Bremen , 28359 Bremen , Germany
| | - Michael Maas
- Advanced Ceramics , University of Bremen , Am Biologischen Garten 2 , D-28359 Bremen , Germany
- MAPEX Center for Materials and Processes , University of Bremen , 28359 Bremen , Germany
| |
Collapse
|
34
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
35
|
Sun P, Huang K, Liu H. In situ study of the competitive adsorption of ions at an organic-aqueous two-phase interface: the essential role of the Hofmeister effect. SOFT MATTER 2019; 15:4346-4350. [PMID: 31074480 DOI: 10.1039/c9sm00007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding of the microcosmic essence of the competitive adsorption of different ions at liquid/liquid interfaces is of crucial importance for the elucidation of the unique chemical reactivities or selectivities of ions in numerous heterogeneous chemical processes. However, the knowledge of the microscopic mechanism behind the competitive adsorption of ions at the liquid/liquid interface is lacking. Herein, the competitive adsorption of various inorganic salt anions at organic-aqueous two-phase interfaces has been investigated as compared to that of the CrO42- ions by total internal reflection UV-visible (TIR-UV) spectroscopy since CrO42- ions are detectable by UV-visible spectroscopy and have a relatively poor interface propensity as compared to other chaotropic ions. Experimental results indicate that the interface propensities of different salt anions to the organic/aqueous phase interface follow the Hofmeister series. Molecular dynamics simulations further provided molecular-level evidence for role of the Hofmeister series of ions in the competitive adsorption of salt anions at organic-aqueous two-phase interfaces; the present study provided the first-hand experimental evidence demonstrating the occurrence of the Hofmeister series effect at the organic/aqueous two-phase interfaces, influencing the competitive adsorption of different salt ions; moreover, it is expected to offer a basis for the development of new strategies for the regulation of the chemical reactivity and selectivity of ions at organic/aqueous phase interfaces by introduction of other ions for competitive adsorption.
Collapse
Affiliation(s)
- Pan Sun
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | |
Collapse
|
36
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
37
|
Liu W, Li Y, Goff HD, Nsor-Atindana J, Ma J, Zhong F. Interfacial Activity and Self-Assembly Behavior of Dissolved and Granular Octenyl Succinate Anhydride Starches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4702-4709. [PMID: 30829488 DOI: 10.1021/acs.langmuir.9b00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of granular octenyl succinate anhydride (GOSA) and dissolved OSA (DOSA) starches in emulsion stabilization were investigated. In general, DOSA starch offered better emulsification activity by generating greater ζ-potential, lower particle size as well as long-term stability in comparison to GOSA starch of close degree of substitution (DS). A compact interface in DOSA starches was determined, resulting from an increased surface loading value of 2.37 mg/m2 in comparison to that of GOSA of 1.6 mg/m2. Additionally, the irreversibly adsorbed and predominantly elastic interface of both DOSA and GOSA starches indicated that the DOSA starch may be a Pickering emulsifier rather than a biopolymer surfactant. This assumption was confirmed by transmission electron microscopy. Spherical micelles with average diameters of 100 nm were observed above the critical micelle concentration of 1 mg/mL. Moreover, samples G28 (representing DS of 0.028), D28, G16, and D16 could reach equilibrium interfacial tensions of 19.4, 16.5, 20.0, and 19.3 mN/m, respectively. However, due to the misleading contact angle as a result of rough surfaces and nonignorable gravity of GOSA starch, the energy escape equation failed to be employed in this study.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Yue Li
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - H Douglas Goff
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - John Nsor-Atindana
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Jianguo Ma
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
38
|
Lee JG, Larive LL, Valsaraj KT, Bharti B. Binding of Lignin Nanoparticles at Oil-Water Interfaces: An Ecofriendly Alternative to Oil Spill Recovery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43282-43289. [PMID: 30452221 DOI: 10.1021/acsami.8b17748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Synthetic amphiphiles used for managing large-scale oil spills have a toxic impact on the environment and marine life. Developing new oil spill recovery technologies is critical to minimize the environmental and ecological impact of such disasters. Here, we show that a mixture of lignin nanoparticles and 1-pentanol forms a biocompatible alternative to nondegradable, synthetic amphiphiles used for oil spill recovery. The pentanol in the mixture generates initial Marangoni flow and confines the spilled oil into a thick slick on the surface of water. While the alcohol solubilizes, lignin nanoparticles irreversibly adsorb onto the oil-water interface. We find that the lignin nanoparticle adsorption to the oil-water interface is governed by a combination of electrostatic, van der Waals, and hydrophobic interactions between the particles and the interface. These interactions, combined with interparticle electrostatic repulsion between nanoparticles adsorbed at the oil-water interface, drive the formation of a submonolayer. The submonolayer transforms into a film of jammed nanoparticles due to compressive stress acting on the interface upon the solubilization of pentanol. This interfacial layer of lignin nanoparticles restricts oil from respreading and locks the oil in its confined state. The herded state of the oil with the interfacial layer of nanoparticles facilitates safe removal of the spilled oil using mechanical methods. The study presents a new principle of using a mixture of heavy alcohol and biocompatible nanoparticles for oil herding applications, thus providing an ecofriendly alternative to oil spill recovery.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Luke L Larive
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Kalliat T Valsaraj
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
39
|
Tuccitto N, Amato T, Gangemi CMA, Trusso Sfrazzetto G, Puglisi R, Pappalardo A, Ballistreri FP, Messina GML, Li-Destri G, Marletta G. Driving Coordination Polymer Monolayer Formation by Competitive Reactions at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11706-11713. [PMID: 30199641 DOI: 10.1021/acs.langmuir.8b02607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have developed a novel approach enabling us to follow and facilitate the formation of two-dimensional coordination polymer monolayers directly at the air/water interface without the need of complex instrumentation. The method is based on the use of a surface active ligand that, when spread at the air/water interface, progressively undergoes hydrolysis with consequent gradual decrease in surface pressure. Notably, if the aqueous subphase contains metal ions capable of coordinating the ligand, coordination competes with hydrolysis, resulting in a lower surface pressure decrease. As a consequence, the formation of the coordination polymer monolayer can be verified simply by surface pressure measurements. Competition between hydrolysis and coordination was investigated as a function of the main experimental parameters affecting the two reactions, enabling the formation of stable coordination polymer monolayers with controlled density. Finally, the formation of continuous rigid 2D layers was confirmed by compression isotherms and ex situ morphological characterization. This work will simplify the verification of coordination polymer monolayer formation; thus, it will boost the synthesis of novel and innovative 2D materials.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Tiziana Amato
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | | | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Roberta Puglisi
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Francesco P Ballistreri
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Giovanni Li-Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| |
Collapse
|
40
|
Collins MC, Hébrant M, Herzog G. Ion transfer at polarised liquid-liquid interfaces modified with adsorbed silica nanoparticles. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Hua X, Frechette J, Bevan MA. Nanoparticle adsorption dynamics at fluid interfaces. SOFT MATTER 2018; 14:3818-3828. [PMID: 29718061 DOI: 10.1039/c8sm00273h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the dynamic adsorption of nanoparticles (NPs) at fluid interfaces is important for stabilizing emulsions and for the preparation of 2D NP-based materials. Here we show that the Ward-Tordai equations commonly employed to describe the dynamics of surfactant adsorption at a fluid interface combined with a Frumkin adsorption isotherm can be employed to model the diffusion-limited adsorption of NPs onto a fluid interface. In contrast to surfactants, an additional wetting equation of state (EOS) must be incorporated to characterize the dynamic interfacial tension during the adsorption of NPs to the oil-water interface. Our results show agreement between the model and experiments with NP area fractions <0.3. Slower dynamics are observed at larger area fractions, which are speculated to arise from polydispersity or re-organization at the interface. We show the model can be extended to the competitive adsorption between the NPs and a surface active species.
Collapse
Affiliation(s)
- Xiaoqing Hua
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|