1
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Zoughi S, Faridbod F, Moradi S. Rapid enzyme-free detection of miRNA-21 in human ovarian cancerous cells using a fluorescent nanobiosensor designed based on hairpin DNA-templated silver nanoclusters. Anal Chim Acta 2024; 1320:342968. [PMID: 39142796 DOI: 10.1016/j.aca.2024.342968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cancer is known as one of the main non-communicable diseases and the leading cause of death in the new era. Early diagnosis of cancer requires the identification of special biomarkers. Currently, microRNAs (miRNAs) have attracted the attention of researchers as useful biomarkers for cancer early detection. Hence, various methods have been recently developed for detecting and monitoring miRNAs. Among all miRNAs, detection of miRNA-21 (miR-21) is important because it is abnormally overexpressed in most cancers. Here, a new biosensor based on silver nanoclusters (AgNCs) is introduced for detecting miR-21. RESULTS As a fluorescent probe, a rationally designed hairpin sequence containing a poly-cytosine motif was used to facilitate the formation of AgNCs. A guanine-rich sequence was also employed to enhance the sensing signal. It was found that in the absence of miR-21, adding a guanine-rich sequence to the detecting probe caused only a slight change in the fluorescence emission intensity of AgNCs. While in the presence of miR-21, the emission signal enhanced. A direct correlation was observed between the increase in the fluorescence of AgNCs and the concentration of miR-21. The performance of the proposed biosensor was characterized thoroughly and confirmed. The biosensor detected miR-21 in an applicable linear range from 9 pM to 1.55 nM (LOD: 2 pM). SIGNIFICANCE The designed biosensor was successfully applied for detecting miR-21 in human plasma samples and also in human normal and lung and ovarian cancer cells. This biosensing strategy can be used as a model for detecting other miRNAs. The designed nanobiosensor can measure miR-21 without using any enzymes, with fewer experimental steps, and at a low cost compared to the reported biosensors in this field.
Collapse
Affiliation(s)
- Sheida Zoughi
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Li Y, Tang X, Deng R, Feng L, Xie S, Chen M, Zheng J, Chang K. Dumbbell Dual-Hairpin Triggered DNA Nanonet Assembly for Cascade-Amplified Sensing of Exosomal MicroRNA. ACS OMEGA 2024; 9:19723-19731. [PMID: 38708273 PMCID: PMC11064005 DOI: 10.1021/acsomega.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Exosomal microRNAs (miRNAs) are valuable biomarkers closely associated with cancer progression. Therefore, sensitive and specific exosomal miRNA biosensing has been employed for cancer diagnosis, prognosis, and prediction. In this study, a miRNA-based DNA nanonet assembly strategy is proposed, enabling the biosensing of exosomal miRNAs through dumbbell dual-hairpin under isothermal enzyme-free conditions. This strategy dexterously designs a specific dumbbell dual-hairpin that can selectively recognize exosomal miRNA, inducing conformational changes to cascade-generated X-shaped DNA structures, facilitating the extension of the X-shaped DNA in three-dimensional space, ultimately forming a DNA nanonet assembly. On the basis of the target miRNA, our design enriches the fluorescence signal through the cascade assembly of DNA nanonet and realizes the secondary signal amplification. Using exosomal miR-141 as the target, the resultant fluorescence sensing demonstrates an impressive detection limit of 57.6 pM and could identify miRNA sequences with single-base variants with high specificity. Through the analysis of plasma and urine samples, this method effectively distinguishes between benign prostatic hyperplasia, prostate cancer, and metastatic prostate cancer. Serving as a novel noninvasive and accurate screening and diagnostic tool for prostate cancer, this dumbbell dual-hairpin triggered DNA nanonet assembly strategy is promising for clinical applications.
Collapse
Affiliation(s)
- Yongxing Li
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
- Department
of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), 183 Xinqiao, Shapingba
District, Chongqing 400037, P. R. China
- School
of Medicine, Chongqing University, Chongqing 400030, P. R. China
| | - Xiaoqi Tang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ruijia Deng
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Liu Feng
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Shuang Xie
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ming Chen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ji Zheng
- Department
of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), 183 Xinqiao, Shapingba
District, Chongqing 400037, P. R. China
- School
of Medicine, Chongqing University, Chongqing 400030, P. R. China
| | - Kai Chang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| |
Collapse
|
4
|
Yu S, Wang J, Liang M, Shang J, Chen Y, Liu X, Song D, Wang F. Rational Engineering of a Multifunctional DNA Assembly for Enhanced Antibacterial Efficacy and Accelerated Wound Healing. Adv Healthc Mater 2024; 13:e2300694. [PMID: 37846795 DOI: 10.1002/adhm.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/18/2023]
Abstract
DNA-based assemblies hold immense prospects for antibacterial application, yet are constrained by their poor specificity and deficient antibacterial delivery. Herein, the fabrication of a versatile rolling circle amplification (RCA)-sustained DNA assembly is reported, encoding simultaneously with multivalent aptamers and tandem antibacterial agents, for target-specific and efficient antibacterial application. In the compact RCA-sustained antibacterial platform, the facilely organized multivalent aptamers guarantee the target bacteria-specific delivery of sufficient antibacterial agents which is assembled through DNA-stabilizing silver nanostructures. It is shown that the biocompatible DNA system could enhance bacteria elimination and simultaneously facilitate wound healing in vivo. By virtue of the programmable RCA assembly, the present RCA-sustained system provides a highly modular and scalable approach to design versatile multifunctional therapeutic systems.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Meijuan Liang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
5
|
Gong X, Zhang J, Zhang P, Jiang Y, Hu L, Jiang Z, Wang F, Wang Y. Engineering of a Self-Regulatory Bidirectional DNA Assembly Circuit for Amplified MicroRNA Imaging. Anal Chem 2023; 95:18731-18738. [PMID: 38096424 DOI: 10.1021/acs.analchem.3c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The engineering of catalytic hybridization DNA circuits represents versatile ways to orchestrate a complex flux of molecular information at the nanoscale, with potential applications in DNA-encoded biosensing, drug discovery, and therapeutics. However, the diffusive escape of intermediates and unintentional binding interactions remain an unsolved challenge. Herein, we developed a compact, yet efficient, self-regulatory assembly circuit (SAC) for achieving robust microRNA (miRNA) imaging in live cells through DNA-templated guaranteed catalytic hybridization. By integrating the toehold strand with a preblocked palindromic fragment in the stem domain, the proposed miniature SAC system allows the reactant-to-template-controlled proximal hybridization, thus facilitating the bidirectional-sustained assembly and the localization-intensified signal amplification without undesired crosstalk. With condensed components and low reactant complexity, the SAC amplifier realized high-contrast intracellular miRNA imaging. We anticipate that this simple and template-controlled design can enrich the clinical diagnosis and prognosis toolbox.
Collapse
Affiliation(s)
- Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Pu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yuqian Jiang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lianzhe Hu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Fuan Wang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
6
|
Yadavalli HC, Park S, Kim Y, Nagda R, Kim TH, Han MK, Jung IL, Bhang YJ, Yang WH, Dalgaard LT, Yang SW, Shah P. Tailed-Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306793. [PMID: 37967352 DOI: 10.1002/smll.202306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Indexed: 11/17/2023]
Abstract
MicroRNAs (miRNAs) are small RNA molecules, typically 21-22 nucleotides in size, which play a crucial role in regulating gene expression in most eukaryotes. Their significance in various biological processes and disease pathogenesis has led to considerable interest in their potential as biomarkers for diagnosis and therapeutic applications. In this study, a novel method for sensing target miRNAs using Tailed-Hoogsteen triplex DNA-encapsulated Silver Nanoclusters (DNA/AgNCs) is introduced. Upon hybridization of a miRNA with the tail, the Tailed-Hoogsteen triplex DNA/AgNCs exhibit a pronounced red fluorescence, effectively turning on the signal. It is successfully demonstrated that this miRNA sensor not only recognized target miRNAs in total RNA extracted from cells but also visualized target miRNAs when introduced into live cells, highlighting the advantages of the turn-on mechanism. Furthermore, through gel-fluorescence assays and small-angle X-ray scattering (SAXS) analysis, the turn-on mechanism is elucidated, revealing that the Tailed-Hoogsteen triplex DNA/AgNCs undergo a structural transition from a monomer to a dimer upon sensing the target miRNA. Overall, the findings suggest that Tailed-Hoogsteen triplex DNA/AgNCs hold great promise as practical sensors for small RNAs in both in vitro and cell imaging applications.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min Kyun Han
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| |
Collapse
|
7
|
Liu S, Weng B, Liu Y, Wang S, Kang N, Ran J, Liu H, Huang S, Deng Z, Yang C, Wang H, Wang F. Dual-Signal Cascaded Nucleic Acid Amplification Circuit-Loaded Metal-Organic Frameworks for Accurate and Robust Imaging of Intracellular MicroRNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37486222 DOI: 10.1021/acs.langmuir.3c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cascaded signal amplification technologies play an important role in the sensitive detection of lowly expressed biomarkers of interests yet are constrained by severe background interference and low cellular accessibility. Herein, we constructed a metal-organic framework-encapsulating dual-signal cascaded nucleic acid sensor for precise intracellular miRNA imaging. ZIF-8 nanoparticles load and deliver FAM-labeled upstream catalytic hairpin assembly (CHA) and Cy5-modified downstream hybridization chain reaction (HCR) hairpin reactants to tumor cells, enabling visualization of the target-initiated signal amplification process for double-insurance detection of analytes. The pH-responsive ZIF-8 nanoparticles effectively protect DNA hairpins from degradation and allow the release of them in the acid tumor microenvironment. Then, intracellular target miRNAs orderly trigger cascaded nucleic acid signal amplification reaction, of which the exact progress is investigated through the analysis of the fluorescence recovering process of FAM and Cy5. In addition, DNA@ZIF-8 nanoparticles improve measurement accuracy by dual-signal colocalization imaging, effectively avoiding nonspecific false-positive signals and enabling in situ imaging of miRNAs in living cells. A dual-signal colocalization strategy allows accurate target detection in living cells, and DNA@ZIF-8 provides a promising intracellular sensing platform for signal amplification and visual monitoring.
Collapse
Affiliation(s)
- Sijia Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Benrui Weng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Yaqi Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Siyuan Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Nana Kang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shuo Huang
- Wuhan Sports University, Wuhan 430079, Hubei, P. R. China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430000, Hubei, P. R. China
| |
Collapse
|
8
|
Radiothermal Emission of Nanoparticles with a Complex Shape as a Tool for the Quality Control of Pharmaceuticals Containing Biologically Active Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15030966. [PMID: 36986826 PMCID: PMC10059067 DOI: 10.3390/pharmaceutics15030966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
It has recently been shown that the titer of the SARS-CoV-2 virus decreases in a cell culture when the cell suspension is irradiated with electromagnetic waves at a frequency of 95 GHz. We assumed that a frequency range in the gigahertz and sub-terahertz ranges was one of the key aspects in the “tuning” of flickering dipoles in the dispersion interaction process of the surfaces of supramolecular structures. To verify this assumption, the intrinsic thermal radio emission in the gigahertz range of the following nanoparticles was studied: virus-like particles (VLP) of SARS-CoV-2 and rotavirus A, monoclonal antibodies to various RBD epitopes of SARS-CoV-2, interferon-α, antibodies to interferon-γ, humic–fulvic acids, and silver proteinate. At 37 °C or when activated by light with λ = 412 nm, these particles all demonstrated an increased (by two orders of magnitude compared to the background) level of electromagnetic radiation in the microwave range. The thermal radio emission flux density specifically depended on the type of nanoparticles, their concentration, and the method of their activation. The thermal radio emission flux density was capable of reaching 20 μW/(m2 sr). The thermal radio emission significantly exceeded the background only for nanoparticles with a complex surface shape (nonconvex polyhedra), while the thermal radio emission from spherical nanoparticles (latex spheres, serum albumin, and micelles) did not differ from the background. The spectral range of the emission apparently exceeded the frequencies of the Ka band (above 30 GHz). It was assumed that the complex shape of the nanoparticles contributed to the formation of temporary dipoles which, at a distance of up to 100 nm and due to the formation of an ultrahigh strength field, led to the formation of plasma-like surface regions that acted as emitters in the millimeter range. Such a mechanism makes it possible to explain many phenomena of the biological activity of nanoparticles, including the antibacterial properties of surfaces.
Collapse
|
9
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
10
|
Chen J, Liu J, Wu D, Pan R, Chen J, Wu Y, Huang M, Li G. CRISPR/Cas Precisely Regulated DNA-Templated Silver Nanocluster Fluorescence Sensor for Meat Adulteration Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14296-14303. [PMID: 36288511 DOI: 10.1021/acs.jafc.2c04500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meat adulteration can cause consumer fraud, food allergies, and religious issues. Rapid and sensitive detection methods are urgently demanded to supervise meat authenticity. Herein, a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas precisely regulated DNA-templated silver nanocluster (DNA-AgNC) sensor was ingeniously designed to detect meat adulteration. Specific sequence recognition of CRISPR/Cas12a allowed accurate identification of target DNA. The emerging label-free fluorescent probes, DNA-AgNCs, a class of promising fluorophores in biochemical analysis with attractive photostability and remarkably enhanced fluorescence properties, were first introduced as the substrates of CRISPR/Cas12a system, allowing a sensitive output of amplified signals through the precise regulation of the unique target DNA-activated trans-cleavage activity of Cas12a. Based on this specific recognition, efficient signal transduction of CRISPR/Cas12a, and the outstanding fluorescence properties of DNA-AgNCs, the proposed strategy achieved a satisfactory linear range from 10 pM to 1 μM with a limit of detection (LOD) as low as 1.9 pM, which can achieve sensitive detection of meat adulteration.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K
| | - Ruiyuan Pan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Shi H, Bi X, Zhang J, Duan S, Yan J, Jia H. Simple and sensitive detection of microRNA based on guanine-rich DNA-enhanced fluorescence of DNA-templated silver clusters. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Tang Z, Zhao W, Sun Y, Deng Y, Bao J, Qiu C, Xiao X, Xu Y, Xie Z, Cai J, Chen X, Lin M, Xu G, Chen Z, Yu L. Spectrophotometric Detection of the BRCA1 Gene via Exponential Isothermal Amplification and Hybridization Chain Reaction of Surface-Bound Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12050-12057. [PMID: 36153844 DOI: 10.1021/acs.langmuir.2c01903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we demonstrated an ultrasensitive approach with a dual-amplification strategy for DNA assay based on isothermal exponential amplification (EXPAR) and the hybridization chain reaction (HCR). In the presence of target DNA, the hairpin probe DNA (HP1) recognized and partially hybridized with the target DNA to form double-stranded structures containing the full recognition sequences for nicking endonuclease and then initiated EXPAR. Under the reaction of EXPAR, a large number of single-stranded DNA (ssDNA) was produced in the circle of nicking, polymerization, and strand displacement. The resulting ssDNA can bind to the surface-bound probe on the well of the microplate and trigger the hybridization chain reaction, resulting in the production of numerous double-stranded DNA concatamers with biotin labeling. In the presence of streptavidin-conjugated horseradish peroxidase (HRP), the amplified signal can be detected by a spectrophotometer via HRP-catalyzed substrate 3,3'5,5'-tetramethylbenzidine (TMB). This proposed dual-amplification method provides a detection limit of 74.48 aM, which also exhibits good linearity ranging from 0.1 fM to 100 pM.
Collapse
Affiliation(s)
- Zibin Tang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wenyong Zhao
- Faculty of Forensic Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Yuanzhong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuling Deng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Juan Bao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Cailing Qiu
- Department of Medical Laboratory, Dalang Hospital of Dongguan, Dongguan 523770, China
| | - Xiang Xiao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yao Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhaoyang Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jingyi Cai
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaofang Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Manhua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhangquan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
13
|
DNA-templated NIR-emitting gold nanoclusters with peroxidase-like activity as a multi-signal probe for Hg2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
15
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Wong ZW, Ng JF, New SY. Ratiometric Detection of microRNA Using Hybridization Chain Reaction and Fluorogenic Silver Nanoclusters. Chem Asian J 2021; 16:4081-4086. [PMID: 34668337 DOI: 10.1002/asia.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/18/2021] [Indexed: 12/30/2022]
Abstract
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
17
|
Salahuddin B, Masud MK, Aziz S, Liu CH, Amiralian N, Ashok A, Hossain SMA, Park H, Wahab MA, Amin MA, Chari MA, Rowan AE, Yamauchi Y, Hossain MSA, Kaneti YV. κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of microRNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bidita Salahuddin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Shazed Aziz
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - S. M. Azad Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Abdul Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M. Adharvana Chari
- Department of Chemistry, JNT University, Kukatpally, Hyderabad 500072, India
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021; 235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Accumulative evidences have indicated that abnormal expression of microRNAs (miRNAs) is closely associated with many health disorders, making them be regarded as potentialbiomarkers for early clinical diagnosis. Therefore, it is extremely necessary to develop a highly sensitive, specific and reliable approach for miRNA analysis. Catalytic hairpin assembly (CHA) signal amplification is an enzyme-free toehold-mediated strand displacement method, exhibiting significant potential in improving the sensitivity of miRNA detection strategies. In this review, we first describe the potential of miRNAs as disease biomarkers and therapeutics, and summarize the latest advances in CHA signal amplification-based sensing strategies for miRNA monitoring. We describe the characteristics and mechanism of CHA signal amplification and classify the CHA-based miRNA sensing strategies into several categories based on the "signal conversion substance", including fluorophores, enzymes, nanomaterials, and nucleotide sequences. Sensing performance, limit of detection, merits and disadvantages of these miRNA sensing strategies are discussed. Moreover, the current challenges and prospects are also presented.
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| |
Collapse
|
19
|
Ma GM, Huo LW, Tong YX, Wang YC, Li CP, Jia HX. Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2021; 188:355. [PMID: 34585278 DOI: 10.1007/s00604-021-05001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs). The combination between target miRNA, DSNSA, and AgNCs is achieved by the unique design of DNA sequences. Target miRNA opens the hairpin structure of the Hairpin DNA probe (HP) by hybridizing with the HP and initiates the duplex-specific nuclease-assisted signal amplification (DSNSA) reaction. The DSNSA reaction generates the release of the guanine-rich DNA sequence, which can turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The fluorescence intensity of AgNCs corresponds to the dosage of the target miRNA. This is measured at 630 nm by exciting at 560 nm. The constructed method exhibits a low detection limit (~8.3 fmol), a great dynamic range of more than three orders of magnitude, and excellent selectivity. Moreover, it has a good performance for miR-21 detection in complex biological samples. A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs).
Collapse
Affiliation(s)
- Gui-Min Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Li-Wei Huo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yin-Xia Tong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yu-Cong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Cui-Ping Li
- Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; College of Public Health, Hebei University, Baoding, 071002, People's Republic of China
| | - Hong-Xia Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China.
| |
Collapse
|
20
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
21
|
Cui L, Zhou J, Yang XY, Dong J, Wang X, Zhang CY. Catalytic hairpin assembly-based electrochemical biosensor with tandem signal amplification for sensitive microRNA assay. Chem Commun (Camb) 2021; 56:10191-10194. [PMID: 32748919 DOI: 10.1039/d0cc04855k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We demonstrate for the first time the construction of a low background electrochemical biosensor with tandem signal amplification for sensitive microRNA assay based on target-activated catalytic hairpin assembly (CHA) of heteroduplex-templated copper nanoparticles. This electrochemical biosensor exhibits high sensitivity, good specificity, single-base mismatch discrimination capability, excellent stability and reproducibility, and it can sensitively detect microRNA in cancer cells.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Jinghua Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Xiao-Yun Yang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
22
|
Tang J, Shi H, Ma G, Luo L, Tang Z. Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Front Bioeng Biotechnol 2020; 8:1019. [PMID: 33163475 PMCID: PMC7580872 DOI: 10.3389/fbioe.2020.01019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023] Open
Abstract
Noble metal (e.g., Au, Ag, Pt, Pd, and their alloys) nanoclusters (NCs) have emerged as a new type of functional nanomaterial in nanoscience and nanotechnology. Owing to their unique properties, such as their ultrasmall dimension, enhanced photoluminescence, low toxicity, and excellent biocompatibility, noble metal NCs-especially Au and Ag NCs-have found various applications in biomedical regimes. This review summarizes the recent advances made in employing ultrasmall Au and Ag NCs for biomedical applications, with particular emphasis on bioimaging and biosensing, anti-microbial applications, and tumor targeting and cancer treatment. Challenges, including the shared and specific challenges for Au and Ag NC toward biomedical applications, and future directions are briefly discussed at the end.
Collapse
Affiliation(s)
- Jia Tang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haihong Shi
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangzhou Higher Education Mega Centre, School of Environment and Energy, New Energy Research Institute, South China University of Technology, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangzhou Higher Education Mega Centre, School of Environment and Energy, New Energy Research Institute, South China University of Technology, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, Guangzhou Higher Education Mega Centre, School of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Liang M, Wang Y, Ma K, Yu S, Chen Y, Deng Z, Liu Y, Wang F. Engineering Inorganic Nanoflares with Elaborate Enzymatic Specificity and Efficiency for Versatile Biofilm Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002348. [PMID: 32939990 DOI: 10.1002/smll.202002348] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Nanozyme has emerged as a versatile nanocatalyst yet is constrained with limited catalytic efficiency and specificity for various biomedical applications. Herein, by elaborately integrating the recognition/transduction carbon dots (CDs) with platinum nanoparticles (PtNPs), an exquisite CDs@PtNPs (CPP) nanoflare is engineered as an efficient and substrate-specific peroxidase-mimicking nanozyme for high-performance biosensing and antibacterial applications. The intelligent CPP-catalyzed hydrogen peroxide (H2 O2 )-generated reactive oxygen species realize the sensitive diagnosis-guided enhanced disinfection of pathogens. Significantly, the CPP nanozyme shows the prominent biofilm eradication and wound healing in vivo by virtue of endogenous H2 O2 in acidic infection tissues, which can substantially preclude the annoying antibiotics resistance. A fundamental understanding on the present CPP nanoflare would not only facilitate the advancement of various prospective biocatalysts, but also establish a multifunctional means for versatile biosensing and smart diagnostic applications.
Collapse
Affiliation(s)
- Meijuan Liang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430072, P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shanshan Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhao Deng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430072, P. R. China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
24
|
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Ge S, Zhao J, Ma G. Monochromatic Photolysis to Generate Silver Quantum Clusters in Polymer Matrices with Efficiently Antibio Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4088-4097. [PMID: 32227964 DOI: 10.1021/acs.langmuir.0c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Size-control of species via wavelength to selectively synthesize Ag quantum clusters (QCs) was utilized and the synthesis conditions of this system (AgNO3, poly(methacrylic acid) (PMAA) with light) were optimized by changing a variety of parameters. Silver QCs, stabilized by PMAA with different compositions, have been synthesized in aqueous solution by tuning the irradiation monochromatic light wavelengths (300 or 365 nm) and AgNO3/MAA ratio (1 or 2). The novel preparation procedure has demonstrated a new approach to enlarge the population of the Ag QC family and proved the effectiveness of size control to prepare Ag QCs by tuning the light wavelength. Naked Ag QC species Agn (n = 2-9, 11, and 13) in polymer matrices are fully characterized by mass spectrometer, thus providing finger-printing evidence of their presence. Details regarding the photolysis reaction procedure, Ag QC optical properties, and the origins of fluorescence are discussed. Through a combination of results obtained from mass spectroscopy, fluorescence, and time-dependent density functional theory, we can assign the origin of fluorescence from a small silver cluster of Ag2 in organic scaffolds. The kinetics of the photolysis reaction follows first-order kinetics (k = 0.1/h). After thiolphenol (C6H5SH) ligand functionalization of the generated silver clusters in aqueous solution, the low or high resolution mass spectra showed the constant species composites with a molecular formula AgnLn-1 (n = 2-9 and L = C6H5S). More evidence indicated the formation of polymer-wrapped silver clusters. Their antibio property was explored, and we confirmed that they indeed show efficient activity.
Collapse
Affiliation(s)
- Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, P.R. China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, P.R. China
| | - Guibin Ma
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, P.R. China
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Xu J, Zhu X, Zhou X, Khusbu FY, Ma C. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
High-performance biosensing based on autonomous enzyme-free DNA circuits. Top Curr Chem (Cham) 2020; 378:20. [DOI: 10.1007/s41061-020-0284-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
|
28
|
Feng Q, Wang M, Han X, Chen Q, Dou B, Wang P. Construction of an Electrochemical Biosensing Platform Based on Hierarchical Mesoporous NiO@N-Doped C Microspheres Coupled with Catalytic Hairpin Assembly. ACS APPLIED BIO MATERIALS 2020; 3:1276-1282. [DOI: 10.1021/acsabm.9b01145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiguang Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
29
|
Wang W, Liu Y, Shi T, Sun J, Mo F, Liu X. Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay. Anal Chem 2019; 92:1598-1604. [PMID: 31808336 DOI: 10.1021/acs.analchem.9b04919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanomaterials are commonly utilized for amplified immunoassay of biomarkers. However, traditional nanomaterial-based immunoassay usually requires a time-consuming and labor-intensive nanoparticle modification and conjugation process, which impedes their practical applications. Here, a new immunoassay method based on biosynthesized nanomaterials is developed with versatile functions for facile and ultrasensitive detection of cancer biomarker. In this method, the utilized biosynthesized quantum dots (BQDs) allow convenient antibody conjugation and electrode modification, and demonstrate excellent electrochemical and electrochemiluminescent responses. The differential pulse voltammetric, faradaic impedance spectroscopy, and electrochemiluminescent measurements with the BQD-modified electrode show detection limits at picomolar levels as well as good specificity toward human prostate-specific antigen detection. The inherent recognization capability as well as the inherent electrochemical and electrochemiluminescence features thus enable BQDs as good candidates for facile immunosensors with high sensitivity. Such a biosynthesized nanomaterial-based approach opens up the possibility of using innovative designs for nanoparticle-based assays, and developing reliable and practical methods for early disease diagnosis.
Collapse
Affiliation(s)
- Wenxiao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yahua Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Tianhui Shi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Fengye Mo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
30
|
Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 2019; 150:111926. [PMID: 31929081 DOI: 10.1016/j.bios.2019.111926] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have demonstrated pervasive applications in analytical chemistry recently. As a way of signal output in DNA-based detection methods, DNA-AgNCs have prominent advantages: first, the recognition and synthesizing sequences are naturally integrated in one DNA probe without any chemical modification or connection; second, the emissive wavelength of DNA-AgNCs can be adjusted in a wide range by employing different sequences; third, DNA-AgNCs can be utilized for producing not only fluorescence, also electrochemiluminescence and electrochemical signals. Besides, they also show potential applications for cell imaging, and are considered to be one of the most ideal nanomaterials for in-vivo imaging due to their ultra-small particle size. In this review, a brief and comprehensive introduction of DNA-AgNCs is firstly given, then label-free probes using DNA-AgNCs are classified and summarized, lastly concluding perspectives are provided on the defects and application potentials.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinyue Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ka-Wang Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
31
|
Yin N, Yuan S, Zhang M, Wang J, Li Y, Peng Y, Bai J, Ning B, Liang J, Gao Z. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Mikrochim Acta 2019; 186:765. [PMID: 31713694 DOI: 10.1007/s00604-019-3984-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
An enzyme-free fluorometric assay is described for the determination of zearalenone (ZEN). The method combines (a) catalyzed hairpin assembly (CHA), (b) ultrahigh fluorescent light-up G-rich DNA sequences in proximity to silver nanoclusters (Ag NCs), and (c) the use of aptamers (Apt). In the presence of ZEN, the inhibit sequence (Inh) is released from the aptamer-trigger sequence (Apt-T) via the binding of ZEN and the aptamer of Apt-T. The free Apt-T acts as a switch that opens the hairpins H1 and H2 to generate H1-H2 complex. The released Apt-T is available to trigger the next round of CHA between H1 and H2. Finally, the hybridization between H1 and the Ag NCs probe (P) causes the G-rich sequence to be in close proximity to the dark Ag NCs encapsulated by P. This leads to highly efficient lighting up of the Ag NCs and the production of amplified fluorescence with excitation/emission peaks at 575/628 nm. Under the optimized conditions, a linear correlation was observed with concentrations ranging from 1.3 pg mL-1 to 100 ng mL-1, and the limit of detection was 0.32 pg mL-1 (at S/N = 3). The method was successfully validated by analyzing maize and beer for levels of ZEN after a simple sample preparation procedure. Graphical abstractSchematic of the assay. The inhibit sequence (Inh) is released from aptamer-trigger sequence (Apt-T) via binding of ZEN and aptamer. The free Apt-T triggers catalyzed hairpin assembly (CHA).G-rich DNA is in proximity to silver nanoclusters (Ag NCs) and fluorescence intensity increases to detect ZEN.
Collapse
Affiliation(s)
- Na Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuai Yuan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Man Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jingyi Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ye Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
32
|
Ye J, Xu M, Tian X, Cai S, Zeng S. Research advances in the detection of miRNA. J Pharm Anal 2019; 9:217-226. [PMID: 31452959 PMCID: PMC6702429 DOI: 10.1016/j.jpha.2019.05.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of endogenous, small (approximately 22 nucleotides in length), noncoding, functional RNAs. With the development of molecular biology, the research of miRNA biological function has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Traditional methods for miRNA detection do not meet current demands. In particular, nanomaterial-based methods, nucleic acid amplification-based methods such as rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), strand-displacement amplification (SDA) and some enzyme-free amplifications have been employed widely for the highly sensitive detection of miRNA. MiRNA functional research and clinical diagnostics have been accelerated by these new techniques. Herein, we summarize and discuss the recent progress in the development of miRNA detection methods and new applications. This review will provide guidelines for the development of follow-up miRNA detection methods with high sensitivity and specificity, and applicability to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Jiawei Ye
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingcheng Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueke Tian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
33
|
Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron 2019; 129:164-174. [PMID: 30708263 DOI: 10.1016/j.bios.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
Abstract
Biosensors have been commonly used in biomedical diagnostic tools in recent years, because of a wide range of application, such as point-of-care monitoring of treatment and disease progression, drug discovery, commonly use food control, environmental monitoring and biomedical research. Additionally, development of DNA biosensors has been increased enormously over the past few years as confirmed by the large number of scientific publications in this field. A wide range of techniques can be used for the development of DNA biosensors, such as DNA nano-machines and various signal amplification strategies. This article selectively reviews the recent advances in DNA base biosensors with various signal amplification strategies for detection of cancer DNA and microRNA, infectious microorganisms, and toxic metal ions.
Collapse
|
34
|
Lyu D, Li J, Wang X, Guo W, Wang E. Cationic-Polyelectrolyte-Modified Fluorescent DNA–Silver Nanoclusters with Enhanced Emission and Higher Stability for Rapid Bioimaging. Anal Chem 2018; 91:2050-2057. [DOI: 10.1021/acs.analchem.8b04493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Danya Lyu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaowen Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, PR China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|