1
|
El-Seidy AMA, Sallam OI, Nabil IM, Rammah YS, El-Okaily MS, Alshater H. Preparation, physical, optical, ESR and γ-ray attenuation efficacy investigation of copper oxide/silver borosilicate glass. Sci Rep 2024; 14:25354. [PMID: 39455675 PMCID: PMC11512057 DOI: 10.1038/s41598-024-75017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The sonication method was used to prepare a new set of CuO and CuO/Ag nanocomposites. The particle size was estimated using XRD and HR-TEM while the morphology of the nanoparticles was investigated with SEM. The average particle sizes of CuO and Ag falls in the 29.32-35.80 nm and 35.13-45.95 nm ranges, respectively. XRD declared that CuO has the space groups C 1 c 1 (9) and C 1 2/c 1 (15), while silver has space group F m -3 m (225). XPS analysis indicated the presence of Ag as Ag0 and Cu as Cu2+. Nano-oxide and nanocomposites were used to synthesis CuO and CuO/Ag doped lithium-zinc borosilicate glass. Physical parameters of the glass samples were calculated including density, V m , V o , V m B , OPD, d B - B , n b , and N, R p , and R i depending on Ag and CuO mole fractions. The physical properties of glass indicated an increase in density and an initial expansion in glass structural network with the addition of silver metal due to its larger size followed by a compression as its molar ratio increase due to its higher C no . XRD measurements were reported for the glass samples doped with nanoparticles, proving the amorphous phase. ESR measurements were determined for all glass samples to detect the nature of the doped nanoparticles when incorporated inside a glassy matrix where CuO was found as tetragonal in octahedral sites and silver can be transformed after melting inside the glass matrix into Ag+ to form more stable Ag y x + clusters.The fabricated sample of CuAgB-4 with significant nano silver doping (7.32% mol) has the maximum LAc and effective atomic number. Nano silver content increases the γ -RdSg in the lithium-zinc borosilicate glasses.
Collapse
Affiliation(s)
- Ahmed M A El-Seidy
- Inorganic Chemistry Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, El-bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - O I Sallam
- Glass Lab, Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Islam M Nabil
- Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Yasser S Rammah
- Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, 32511, Menoufia, Egypt
- Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt
| | - Mohamed S El-Okaily
- Refractories, Ceramics & Building Materials Department (Biomaterials Group), Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Heba Alshater
- Forensic Medicine and Clinical Toxicology Department, Menoufia University Hospital, Shebin El-Koom, 32511, Menoufia, Egypt
| |
Collapse
|
2
|
Anisimov YA, Yang H, Kwon J, Cree DE, Wilson LD. Chitosan-Polyaniline (Bio)Polymer Hybrids by Two Pathways: A Tale of Two Biocomposites. Polymers (Basel) 2024; 16:2663. [PMID: 39339127 PMCID: PMC11435797 DOI: 10.3390/polym16182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research highlights the potential of polyaniline-based biocomposites as unique adsorbents for humidity sensors. This study examines several preparative routes for creating polyaniline (PANI) and chitosan (CHT) composites: Type 1-in situ polymerization of aniline with CHT; Type 2-molecular association in acidic aqueous media; and a control, Type 3-physical mixing of PANI and CHT powders (without solvent). The study aims to differentiate the bonding nature (covalent vs. noncovalent) within these composites, which posits that noncovalent composites should exhibit similar physicochemical properties regardless of the preparative route. The results indicate that Type 1 composites display features consistent with covalent and hydrogen bonding, which result in reduced water swelling versus Type 2 and 3 composites. These findings align with spectral and thermogravimetric data, suggesting more compact structure for Type 1 materials. Dye adsorption studies corroborate the unique properties for Type 1 composites, and 1H NMR results confirm the role of covalent bonding for the in situ polymerized samples. The structural stability adopts the following trend: Type 1 (covalent and noncovalent) > Type 2 (possible trace covalent and mainly noncovalent) > Type 3 (noncovalent). Types 2 and 3 are anticipated to differ based on solvent-driven complex formation. This study provides greater understanding of structure-function relationships in PANI-biopolymer composites and highlights the role of CHT as a template that involves variable (non)covalent contributions with PANI, according to the mode of preparation. The formation of composites with tailored bonding modalities will contribute to the design of improved adsorbent materials for environmental remediation to versatile humidity sensor systems.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada;
| | - Heng Yang
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Johnny Kwon
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Duncan E. Cree
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
3
|
Dolatkhah A, Dewani C, Kazem-Rostami M, Wilson LD. Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis. Polymers (Basel) 2024; 16:2500. [PMID: 39274133 PMCID: PMC11398182 DOI: 10.3390/polym16172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity.
Collapse
Affiliation(s)
- Asghar Dolatkhah
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Chandni Dewani
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur 302017, Rajasthan, India
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
4
|
Molina A, Oliva J, Vazquez-Lepe M, Lopez-Medina M, Ojeda L, Rios-Jara D, Flores-Zuñiga H. Effect of NiAl alloy microparticles deposited in flexible SERS substrates on the limit of detection of rhodamine B molecules. NANOSCALE 2024; 16:16183-16194. [PMID: 39136150 DOI: 10.1039/d4nr02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Flexible-SERS (FSERS) substrates were fabricated by depositing Ni64Al36(NiAl)-alloy-microparticles and/or spherical Ag-NPs (sizes of 10-40 nm) on recycled plastics, which had an aluminum layer on their surface. First, FSERS substrates made of Al + Ag-NPs and an area of 1 cm2 were used to detect rhodamine B (RhB) molecules. The limit-of-detection (LOD) for RhB was 8.35 × 10-22 moles (∼503 molecules), and the enhancement factor (EF) was 3.11 × 1015. After adding NiAl-microparticles to the substrate, the LOD decreased to 8.35 × 10-24 moles (∼5 molecules) and the EF was increased to 2.05 × 1017. Such EF values were calculated with respect to substrates made only with Al + NiAl-alloy (without Ag-NPs), which did not show any Raman signal. Other FSERS substrates were made with graphene-layer + Ag-NPs or graphene-layer + NiAl-alloy + Ag-Nps, and the best LOD and EF values were 8.35 × 10-22 moles and 6.89 × 1015, respectively. Overall, combining the Ag-NPs and NiAl-alloy microparticles allowed for the zeptomole detection of RhB. This was possible due to the formation of Ag aggregates around the alloy microparticles, which enhanced the number of hotspots. If no alloy is present in the FSERS substrates, the detection of RhB is lowered. Overall, we presented a low-cost FSERS substrate that does not require expensive Au films or Au-NPs (as previously reported) to detect RhB at the zeptomole level.
Collapse
Affiliation(s)
- A Molina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - J Oliva
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Mexico.
| | - M Vazquez-Lepe
- Departamento de Ingeniería de Proyectos, CUCEI-Universidad de Guadalajara, Jalisco, Mexico
| | - M Lopez-Medina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - L Ojeda
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - D Rios-Jara
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - H Flores-Zuñiga
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| |
Collapse
|
5
|
Costas A, Preda N, Zgura I, Kuncser A, Apostol N, Curutiu C, Enculescu I. Silver nanoparticles decorated ZnO-CuO core-shell nanowire arrays with low water adhesion and high antibacterial activity. Sci Rep 2023; 13:10698. [PMID: 37400545 PMCID: PMC10318101 DOI: 10.1038/s41598-023-37953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
Nanostructured surfaces based on silver nanoparticles decorated ZnO-CuO core-shell nanowire arrays, which can assure protection against various environmental factors such as water and bacteria were developed by combining dry preparation techniques namely thermal oxidation in air, radio frequency (RF) magnetron sputtering and thermal vacuum evaporation. Thus, high-aspect-ratio ZnO nanowire arrays were grown directly on zinc foils by thermal oxidation in air. Further ZnO nanowires were coated with a CuO layer by RF magnetron sputtering, the obtained ZnO-CuO core-shell nanowires being decorated with Ag nanoparticles by thermal vacuum evaporation. The prepared samples were comprehensively assessed from morphological, compositional, structural, optical, surface chemistry, wetting and antibacterial activity point of view. The wettability studies show that native Zn foil and ZnO nanowire arrays grown on it are featured by a high water droplet adhesion while ZnO-CuO core-shell nanowire arrays (before and after decoration with Ag nanoparticles) reveal a low water droplet adhesion. The antibacterial tests carried on Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) emphasize that the nanostructured surfaces based on nanowire arrays present excellent antibacterial activity against both type of bacteria. This study proves that functional surfaces obtained by relatively simple and highly reproducible preparation techniques that can be easily scaled to large area are very attractive in the field of water repellent coatings with enhanced antibacterial function.
Collapse
Affiliation(s)
- Andreea Costas
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania.
| | - Irina Zgura
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Nicoleta Apostol
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Carmen Curutiu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| |
Collapse
|
6
|
Cimrová V, Eom S, Pokorná V, Kang Y, Výprachtický D. Effects of the Donor Unit on the Formation of Hybrid Layers of Donor-Acceptor Copolymers with Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1830. [PMID: 37368260 DOI: 10.3390/nano13121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Donor-acceptor (D-A) copolymers containing perylene-3,4,9,10-tetracarboxydiimide (PDI) electron-acceptor (A) units belonging to n-type semiconductors are of interest due to their many potential applications in photonics, particularly for electron-transporting layers in all-polymeric or perovskite solar cells. Combining D-A copolymers and silver nanoparticles (Ag-NPs) can further improve material properties and device performances. Hybrid layers of D-A copolymers containing PDI units and different electron-donor (D) units (9-(2-ethylhexyl)carbazole or 9,9-dioctylfluorene) with Ag-NPs were prepared electrochemically during the reduction of pristine copolymer layers. The formation of hybrid layers with Ag-NP coverage was monitored by in-situ measurement of absorption spectra. The Ag-NP coverage of up to 41% was higher in hybrid layers made of copolymer with 9-(2-ethylhexyl)carbazole D units than in those made of copolymer with 9,9-dioctylfluorene D units. The pristine and hybrid copolymer layers were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, which proved the formation of hybrid layers with stable Ag-NPs in the metallic state with average diameters <70 nm. The influence of D units on Ag-NP diameters and coverage was revealed.
Collapse
Affiliation(s)
- Věra Cimrová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| | - Sangwon Eom
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Veronika Pokorná
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| | - Youngjong Kang
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Drahomír Výprachtický
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| |
Collapse
|
7
|
Paenkaew S, Mahanitipong U, Rutnakornpituk M, Reiser O. Magnetite Nanoparticles Functionalized with Thermoresponsive Polymers as a Palladium Support for Olefin and Nitroarene Hydrogenation. ACS OMEGA 2023; 8:14531-14540. [PMID: 37125099 PMCID: PMC10134246 DOI: 10.1021/acsomega.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
A thermoresponsive and recyclable nanomaterial was synthesized by surface modification of magnetite nanoparticles (MNPs) with poly(N-isopropylacrylamide-co-diethylaminoethyl methacrylate) (P(NIPAAm-co-DEAEMA)), having PNIPAAm as a thermoresponsive moiety and PDEAEMA for catalyst binding. Palladium (Pd) nanoparticles were incorporated into this material, and the resulting nanocatalyst was efficient in the hydrogenation of olefins and nitro compounds with turnover frequencies (TOFs) up to 750 h-1. Consistent catalytic activity in 10 consecutive runs was observed when performing the hydrogenation at 45 °C, i.e., above the lower critical solution temperature (LCST) of the copolymer (37 °C), followed by cooling to 15 °C, i.e., below the LCST of the copolymer.
Collapse
Affiliation(s)
- Sujittra Paenkaew
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Usana Mahanitipong
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Metha Rutnakornpituk
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Guo A, Baumann AE, Rus ED, Stafford CM, Raciti D. Polymer-Regulated Electrochemical Reduction of CO 2 on Ag. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 127:10.1021/acs.jpcc.3c03157. [PMID: 39380692 PMCID: PMC11459466 DOI: 10.1021/acs.jpcc.3c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The influence of polymer overlayers on the catalytic activity of Ag for electrochemical CO2 reduction to CO is explored. Polystyrene and poly(4-vinylpyridine) films of varying thicknesses are applied as catalysis-directing overlayers atop Ag electrodes. For polystyrene, substantial suppression of CO2 reduction activity is observed while the hydrogen evolution reaction (HER) increases. The addition of a nitrogen heteroatom into the phenyl groups of polystyrene (e.g., a pyridine ring) results in an increase in the conversion of CO2 to CO and suppression of HER. Block copolymer variants containing both phenyl and pyridyl functionalities exhibit similar activity for CO evolution but appear to suppress HER further than the polymer layer containing only pyridine groups. The size of the blocks for the copolymer influences the catalytic output of the Ag electrode, suggesting that the hierarchical structure that forms in the block copolymer layer plays a role in catalytic activity at the electrode surface. Analysis of the polymer overlayers suggests that polystyrene significantly inhibits all ion transport to the metal electrode, while poly(4-vinylpyridine) enables CO2 transport while modifying the electronics of the Ag active site. Therefore, the engineered application of polymer overlayers, especially those containing heteroatoms, enables new avenues of electrochemical CO2 reduction to be explored.
Collapse
Affiliation(s)
- Ally Guo
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Avery E Baumann
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Eric D Rus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Facile Synthesis and Environmental Applications of Noble Metal-Based Catalytic Membrane Reactors. Catalysts 2022. [DOI: 10.3390/catal12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Noble metal nanoparticle-loaded catalytic membrane reactors (CMRs) have emerged as a promising method for water decontamination. In this study, we proposed a convenient and green strategy to prepare gold nanoparticle (Au NPs)-loaded CMRs. First, the redox-active substrate membrane (CNT-MoS2) composed of carbon nanotube (CNT) and molybdenum disulfide (MoS2) was prepared by an impregnation method. Water-diluted Au(III) precursor (HAuCl4) was then spontaneously adsorbed on the CNT-MoS2 membrane only through filtration and reduced into Au(0) nanoparticles in situ, which involved a “adsorption–reduction” process between Au(III) and MoS2. The constructed CNT-MoS2@Au membrane demonstrated excellent catalytic activity and stability, where a complete 4-nitrophenol transformation can be obtained within a hydraulic residence time of <3.0 s. In addition, thanks to the electroactivity of CNT networks, the as-designed CMR could also be applied to the electrocatalytic reduction of bromate (>90%) at an applied voltage of −1 V. More importantly, by changing the precursors, one could further obtain the other noble metal-based CMR (e.g., CNT-MoS2@Pd) with superior (electro)catalytic activity. This study provided new insights for the rational design of high-performance CMRs toward various environmental applications.
Collapse
|
10
|
Huang J, Tao Y, Ran S, Yang Y, Li C, Luo P, Chen Z, Tan X. A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxy-containing three dimensional covalent organic framework bearing Ag nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue and Congo red.
Collapse
Affiliation(s)
- Juncao Huang
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Yuxin Tao
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Shuqin Ran
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Yujiao Yang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Chaofan Li
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Peizhao Luo
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Ziao Chen
- A State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiaoping Tan
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|
11
|
An Overview of the Design of Chitosan-Based Fiber Composite Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5060160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chitosan composite fibrous materials continue to generate significant interest for wastewater treatment, food packaging, and biomedical applications. This relates to the relatively high surface area and porosity of such fibrous chitosan materials that synergize with their unique physicochemical properties. Various methods are involved in the preparation of chitosan composite fibrous materials, which include the modification of the biopolymer that serve to alter the solubility of chitosan, along with post-treatment of the composite materials to improve the water stability or to achieve tailored functional properties. Two promising methods to produce such composite fibrous materials involve freeze-drying and electrospinning. Future developments of such composite fibrous materials demands an understanding of the various modes of preparation and methods of structural characterization of such materials. This review contributes to an understanding of the structure–property relationships of composite fibrous materials that contain chitosan, along with an overview of recent advancements concerning their preparation.
Collapse
|
12
|
Weliwatte NS, Grattieri M, Simoska O, Rhodes Z, Minteer SD. Unbranched Hybrid Conducting Redox Polymers for Intact Chloroplast-Based Photobioelectrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7821-7833. [PMID: 34132548 DOI: 10.1021/acs.langmuir.1c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 μA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zayn Rhodes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. SENSORS 2021; 21:s21082655. [PMID: 33918956 PMCID: PMC8068845 DOI: 10.3390/s21082655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022]
Abstract
Thanks to its negative surface charge and high swelling behavior, montmorillonite (MMT) has been widely used to design hybrid materials for applications in metal ion adsorption, drug delivery, or antibacterial substrates. The changes in photophysical and photochemical properties observed when fluorophores interact with MMT make these hybrid materials attractive for designing novel optical sensors. Sensor technology is making huge strides forward, achieving high sensitivity and selectivity, but the fabrication of the sensing platform is often time-consuming and requires expensive chemicals and facilities. Here, we synthesized metal-modified MMT particles suitable for the bio-sensing of self-fluorescent biomolecules. The fluorescent enhancement achieved by combining clay minerals and plasmonic effect was exploited to improve the sensitivity of the fluorescence-based detection mechanism. As proof of concept, we showed that the signal of fluorescein isothiocyanate can be harvested by a factor of 60 using silver-modified MMT, while bovine serum albumin was successfully detected at 1.9 µg/mL. Furthermore, we demonstrated the versatility of the proposed hybrid materials by exploiting their plasmonic properties to develop liquid label-free detection systems. Our results on the signal enhancement achieved using metal-modified MMT will allow the development of highly sensitive, easily fabricated, and cost-efficient fluorescent- and plasmonic-based detection methods for biomolecules.
Collapse
|
14
|
Kersell H, Chen P, Martins H, Lu Q, Brausse F, Liu BH, Blum M, Roy S, Rude B, Kilcoyne A, Bluhm H, Nemšák S. Simultaneous ambient pressure x-ray photoelectron spectroscopy and grazing incidence x-ray scattering in gas environments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:044102. [PMID: 34243438 DOI: 10.1063/5.0044162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
We have developed an experimental system to simultaneously measure surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring x-ray photoelectron spectroscopy (XPS) and grazing incidence x-ray scattering in gas pressures as high as the multi-Torr regime while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano-scale to the meso-scale, and the grazing incidence geometry provides tunable depth sensitivity of structural measurements. Scattered x rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and under ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O2 atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between the structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent x-ray scattering experiments can greatly benefit from the concepts we present here.
Collapse
Affiliation(s)
- Heath Kersell
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Pengyuan Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Henrique Martins
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Qiyang Lu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Felix Brausse
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bo-Hong Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Monika Blum
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bruce Rude
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Arthur Kilcoyne
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hendrik Bluhm
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Ahmad MW, Verma S, Yang DJ, Islam MU, Choudhury A. Synthesis of silver nanoparticles-decorated poly(m-aminophenol) nanofibers and their application in a non-enzymatic glucose biosensor. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1886585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Md. Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Sushil Verma
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi, India
| | - Duck-Joo Yang
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mazhar Ul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
16
|
Bunluesak T, Phuruangrat A, Thongtem S, Thongtem T. Photodeposition of AgPd nanoparticles on Bi2WO6 nanoplates for the enhanced photodegradation of rhodamine B. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Manno R, Sebastian V, Irusta S, Mallada R, Santamaria J. Ultra-Small Silver Nanoparticles Immobilized in Mesoporous SBA-15. Microwave-Assisted Synthesis and Catalytic Activity in the 4-Nitrophenol Reduction. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Cimrová V, Eom S, Pokorná V, Kang Y, Výprachtický D. Hybrid Layers of Donor-Acceptor Copolymers with Homogenous Silver Nanoparticle Coverage for Photonic Applications. Polymers (Basel) 2021; 13:polym13030439. [PMID: 33573074 PMCID: PMC7866533 DOI: 10.3390/polym13030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022] Open
Abstract
Hybrid layers of donor-acceptor (D-A) copolymers containing N,N′-dialkylperylene-3,4,9,10-tetracarboxydiimide electron-acceptor units covered with silver nanoparticles (Ag-NPs) were prepared by electrochemical doping of pristine layers during reduction processes. In situ optical absorption spectra of the layers were recorded during the formation of Ag-NP coverage. The hybrid layers were characterized by absorption spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX). In the absorption spectra of the hybrid layers, a surface plasmon band characteristic of Ag-NPs appeared. Significant improvements in light absorption due to the plasmonic effects of Ag NPs were observed. Stable Ag-NPs with an average diameter of 41–63 nm were formed on the surface, as proven by SEM and XPS. The Ag-NP coverage and size depended on the hybrid layer preparation conditions and on the copolymer composition. The metallic character of the Ag-NPs was proven by XPS. The location in the surface layer was further confirmed by EDX analysis. To the best of our knowledge, this is the first report on such hybrid layers having the potential for a variety of photonic and electronic applications.
Collapse
Affiliation(s)
- Věra Cimrová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (V.P.); (D.V.)
- Correspondence:
| | - Sangwon Eom
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (S.E.); (Y.K.)
| | - Veronika Pokorná
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (V.P.); (D.V.)
| | - Youngjong Kang
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (S.E.); (Y.K.)
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Drahomír Výprachtický
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (V.P.); (D.V.)
| |
Collapse
|
19
|
Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts 2021. [DOI: 10.3390/catal11020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pervasive use of toxic nitroaromatics in industrial processes and their prevalence in industrial effluent has motivated the development of remediation strategies, among which is their catalytic reduction to the less toxic and synthetically useful aniline derivatives. While this area of research has a rich history with innumerable examples of active catalysts, the majority of systems rely on expensive precious metals and are submicron- or even a few-nanometer-sized colloidal particles. Such systems provide invaluable academic insight but are unsuitable for practical application. Herein, we report the fabrication of catalysts based on ultralow loading of the semiprecious metal ruthenium on 2–4 mm diameter spherical alumina monoliths. Ruthenium loading is achieved by atomic layer deposition (ALD) and catalytic activity is benchmarked using the ubiquitous para-nitrophenol, NaBH4 aqueous reduction protocol. Recyclability testing points to a very robust catalyst system with intrinsic ease of handling.
Collapse
|
20
|
Preda N, Costas A, Beregoi M, Apostol N, Kuncser A, Curutiu C, Iordache F, Enculescu I. Functionalization of eggshell membranes with CuO-ZnO based p-n junctions for visible light induced antibacterial activity against Escherichia coli. Sci Rep 2020; 10:20960. [PMID: 33262424 PMCID: PMC7708484 DOI: 10.1038/s41598-020-78005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Biopolymers provide versatile platforms for designing naturally-derived wound care dressings through eco-friendly pathways. Eggshell membrane (ESM), a widely available, biocompatible biopolymer based structure features a unique 3D porous interwoven fibrous protein network. The ESM was functionalized with inorganic compounds (Ag, ZnO, CuO used either separately or combined) using a straightforward deposition technique namely radio frequency magnetron sputtering. The functionalized ESMs were characterized from morphological, structural, compositional, surface chemistry, optical, cytotoxicity and antibacterial point of view. It was emphasized that functionalization with a combination of metal oxides and exposure to visible light results in a highly efficient antibacterial activity against Escherichia coli when compared to the activity of individual metal oxide components. It is assumed that this is possible due to the fact that an axial p-n junction is created by joining the two metal oxides. This structure separates into components the charge carrier pairs promoted by visible light irradiation that further can influence the generation of reactive oxygen species which ultimately are responsible for the bactericide effect. This study proves that, by employing inexpensive and environmentally friendly materials (ESM and metal oxides) and fabrication techniques (radio frequency magnetron sputtering), affordable antibacterial materials can be developed for potential applications in chronic wound healing device area.
Collapse
Affiliation(s)
- Nicoleta Preda
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania.
| | - Andreea Costas
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Mihaela Beregoi
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Nicoleta Apostol
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Carmen Curutiu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464, Bucharest, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania.
| |
Collapse
|
21
|
Schmarsow RN, dell'Erba IE, Villaola MS, Hoppe CE, Zucchi IA, Schroeder WF. Effect of Light Intensity on the Aggregation Behavior of Primary Particles during In Situ Photochemical Synthesis of Gold/Polymer Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13759-13768. [PMID: 33174755 DOI: 10.1021/acs.langmuir.0c01916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal/polymer nanocomposites have attracted much attention in recent years due to their exceptional properties and wide range of potential applications. A key challenge to obtain these materials is to stabilize the metal nanoparticles in the matrix, avoiding uncontrolled aggregation processes driven by the high surface free energy of nanosized particles. Here, we investigate the aggregation mechanism of primary particles in gold-epoxy nanocomposites prepared via light-assisted in situ synthesis, under different irradiation conditions. The growth and aggregation of gold nanoparticles were monitored in situ by time-resolved small-angle X-ray scattering experiments, whereas spectroscopic measurements were performed to interpret how matrix polymerization influences the aggregation process. It was found that light intensity has a greater influence on the reduction rate than on the polymerization rate. Under irradiation, gold nanostructures evolve through five time-defined stages: nuclei-mass fractals-surface fractals-spherical nanoparticles-aggregates. If the maximum in the polymerization rate is reached before the aggregation step, individual primary nanoparticles will be preserved in the polymer matrix due to diffusional constraints imposed by the reaction medium. Because the light intensity has a different influence on the reduction rate than on the polymerization rate, this parameter can be used as a versatile tool to avoid aggregation of gold nanoparticles into the polymer matrix.
Collapse
Affiliation(s)
- Ruth N Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Ignacio E dell'Erba
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Micaela S Villaola
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Cristina E Hoppe
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Ileana A Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Walter F Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| |
Collapse
|
22
|
Yu R, Lan T, Jiang J, Peng H, Liang R, Liu G. Facile fabrication of functional cellulose paper with high-capacity immobilization of Ag nanoparticles for catalytic applications for tannery wastewater. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00019-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Abstract
It has been a research goal to develop macroscopic materials with an optimized surface structure to affix silver nanoparticles which could contaminate water and maximize their practical functions. Cellulose paper is a versatile biomass material valued for its abundance, low cost, biocompatibility, and natural composition. Until now, its potential application in water purification has not been adequately explored. In this study, gallic acid-modified silver nanoparticles (GA@AgNPs) were loaded onto commercial cellulose filter paper using a simple lipoic acid modification process (GA@AgNPs-LA-CP). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the GA@AgNPs-LA-CP. The catalytic activity of the GA@AgNPs-LA-CP was evaluated by the reduction reaction of methylene blue (MB), Rhodamine B (RhB), and 4-nitrophenol (4-NP) with sodium borohydride (NaBH4). The GA@AgNPs-LA-CP exhibited excellent catalytic activity toward MB, RhB, and 4-NP, taking advantage of its high specific surface area generated by the cellulose fiber network structure. Interestingly, due to the electrostatic interactions between the cationic dyes and the GA@AgNPs, the as-prepared catalytic composite material serves as a better catalyst for MB and RhB, suggesting dual applications of the composite materials for organic wastewater treatment and the removal of harmful dyes. This implies that the immobilization of AgNPs on cellulose papers is an effective method and can be applied to efficient wastewater treatment applications.
Graphical abstract
Collapse
|
23
|
Xu Y, Zhou F, Chen M, Hu H, Lin L, Wu J, Zhang M. Facile assembly of 2D α-zirconium phosphate supported silver nanoparticles: superior and recyclable catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj01378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and durable two-dimensional ZrP@PDA/Ag nanocatalyst for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Yonghang Xu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Fangya Zhou
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Chen
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Huawen Hu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Limiao Lin
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jingshu Wu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|
24
|
Shultz LR, McCullough B, Newsome WJ, Ali H, Shaw TE, Davis KO, Uribe-Romo FJ, Baudelet M, Jurca T. A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules 2019; 25:E89. [PMID: 31881734 PMCID: PMC6982874 DOI: 10.3390/molecules25010089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/28/2022] Open
Abstract
Para-, or 4-nitrophenol, and related nitroaromatics are broadly used compounds in industrial processes and as a result are among the most common anthropogenic pollutants in aqueous industrial effluent; this requires development of practical remediation strategies. Their catalytic reduction to the less toxic and synthetically desirable aminophenols is one strategy. However, to date, the majority of work focuses on catalysts based on precisely tailored, and often noble metal-based nanoparticles. The cost of such systems hampers practical, larger scale application. We report a facile route to bulk cobalt oxide-based materials, via a combined mechanochemical and calcination approach. Vibratory ball milling of CoCl2(H2O)6 with KOH, and subsequent calcination afforded three cobalt oxide-based materials with different combinations of CoO(OH), Co(OH)2, and Co3O4 with different crystallite domains/sizes and surface areas; Co@100, Co@350 and Co@600 (Co@###; # = calcination temp). All three prove active for the catalytic reduction of 4-nitrophenol and related aminonitrophenols. In the case of 4-nitrophenol, Co@350 proved to be the most active catalyst, therein its retention of activity over prolonged exposure to air, moisture, and reducing environments, and applicability in flow processes is demonstrated.
Collapse
Affiliation(s)
- Lorianne R. Shultz
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Bryan McCullough
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway #225, Orlando, FL 32826, USA
| | - Wesley J. Newsome
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
| | - Haider Ali
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (K.O.D.)
| | - Thomas E. Shaw
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Kristopher O. Davis
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (K.O.D.)
- CREOL—The College of Optics & Photonics, Building 53, University of Central Florida, 4304 Scorpius Street, Orlando, FL 32816, USA
| | - Fernando J. Uribe-Romo
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Matthieu Baudelet
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway #225, Orlando, FL 32826, USA
- CREOL—The College of Optics & Photonics, Building 53, University of Central Florida, 4304 Scorpius Street, Orlando, FL 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
25
|
Chakraborty D, Shekhar P, Singh HD, Kushwaha R, Vinod CP, Vaidhyanathan R. Ag Nanoparticles Supported on a Resorcinol‐Phenylenediamine‐Based Covalent Organic Framework for Chemical Fixation of CO
2. Chem Asian J 2019; 14:4767-4773. [DOI: 10.1002/asia.201901157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Pragalbh Shekhar
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Rinku Kushwaha
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - C. P. Vinod
- CSIR-NCL Catalysis and Inorganic Chemistry Division Pune Maharashtra- 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| |
Collapse
|
26
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Man Y, Li S, Diao Q, Lee YI, Liu HG. PS-b-PAA/Cu two-dimensional nanoflowers fabricated at the liquid/liquid interface: A highly active and robust heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Shultz LR, Hu L, Preradovic K, Beazley MJ, Feng X, Jurca T. A Broader‐scope Analysis of the Catalytic Reduction of Nitrophenols and Azo Dyes with Noble Metal Nanoparticles. ChemCatChem 2019. [DOI: 10.1002/cctc.201900260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorianne R. Shultz
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
| | - Lin Hu
- Department of Materials Science and EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
| | | | - Melanie J. Beazley
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
| | - Xiaofeng Feng
- Department of Materials Science and EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
- Department of PhysicsUniversity of Central Florida Orlando, Florida 32816 USA
- Renewable Energy and Chemical Transformations ClusterUniversity of Central Florida Orlando, Florida 32816 USA
| | - Titel Jurca
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
- Renewable Energy and Chemical Transformations ClusterUniversity of Central Florida Orlando, Florida 32816 USA
| |
Collapse
|
29
|
Song J, Zhu Y, Zhang J, Yang J, Du Y, Zheng W, Wen C, Zhang Y, Zhang L. Encapsulation of AgNPs within Zwitterionic Hydrogels for Highly Efficient and Antifouling Catalysis in Biological Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1563-1570. [PMID: 30563342 DOI: 10.1021/acs.langmuir.8b02918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used as catalysts in a variety of chemical reactions owing to their unique surface and electronic properties, but their practical applications have been hindered by severe aggregation. The immobilization of AgNPs is crucial to preventing their aggregation or precipitation as well as to improving their reusability. Herein, we developed a facile route for the reductant-free in situ synthesis of AgNPs in zwitterionic hydrogels. Via this method, the embedded AgNPs had a uniform distribution, high activity, and antibiofouling capability. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using polycarboxybetaine-AgNPs (PCB-AgNPs) could achieve >95% conversion efficiency within 5 min. Meanwhile, the normalized rate constant knor (10.617 s-1mmol-1) was higher than that of most of the reported immobilized nanocatalysts. More importantly, in a biofouling environment, PCB-AgNPs could still exhibit >97% initial catalytic activity while AgNPs in the PSB or PHEMA hydrogel lost ∼60% activity. This strategy holds great potential for the immobilization of nanoparticle catalysts, especially for applications in biological environments.
Collapse
Affiliation(s)
- Jiayin Song
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Yan Du
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Weiwei Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Yumiao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology , Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , PR China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , PR China
| |
Collapse
|