1
|
Lee JH, Jang W, Lee H, Oh D, Noh WY, Kim KY, Kim J, Kim H, An K, Kim MG, Kwon Y, Lee JS, Cho S. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH 4 and C 2+ Product Selectivity in CO 2 Electroreduction. NANO LETTERS 2024. [PMID: 38924488 DOI: 10.1021/acs.nanolett.4c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.
Collapse
Affiliation(s)
- Jin Ho Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wonsik Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Daewon Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woo Yeong Noh
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Kwang Young Kim
- Carbon Conversion Research Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyoseok Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangjin An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Wei Y, Mao Z, Jiang TW, Li H, Ma XY, Zhan C, Cai WB. Uncovering Photoelectronic and Photothermal Effects in Plasmon-Mediated Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202317740. [PMID: 38318927 DOI: 10.1002/anie.202317740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Plasmon-mediated electrocatalysis that rests on the ability of coupling localized surface plasmon resonance (LSPR) and electrochemical activation, emerges as an intriguing and booming area. However, its development seriously suffers from the entanglement between the photoelectronic and photothermal effects induced by the decay of plasmons, especially under the influence of applied potential. Herein, using LSPR-mediated CO2 reduction on Ag electrocatalyst as a model system, we quantitatively uncover the dominant photoelectronic effect on CO2 reduction reaction over a wide potential window, in contrast to the leading photothermal effect on H2 evolution reaction at relatively negative potentials. The excitation of LSPR selectively enhances the CO faradaic efficiency (17-fold at -0.6 VRHE ) and partial current density (100-fold at -0.6 VRHE ), suppressing the undesired H2 faradaic efficiency. Furthermore, in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) reveals a plasmon-promoted formation of the bridge-bonded CO on Ag surface via a carbonyl-containing C1 intermediate. The present work demonstrates a deep mechanistic understanding of selective regulation of interfacial reactions by coupling plasmons and electrochemistry.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zijie Mao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Yanagi R, Zhao T, Cheng M, Liu B, Su H, He C, Heinlein J, Mukhopadhyay S, Tan H, Solanki D, Hu S. Photocatalytic CO 2 Reduction with Dissolved Carbonates and Near-Zero CO 2(aq) by Employing Long-Range Proton Transport. J Am Chem Soc 2023. [PMID: 37399530 DOI: 10.1021/jacs.3c03281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Photocatalytic CO2 reduction (CO2R) in ∼0 mM CO2(aq) concentration is challenging but is relevant for capturing CO2 and achieving a circular carbon economy. Despite recent advances, the interplay between the CO2 catalytic reduction and the oxidative redox processes that are arranged on photocatalyst surfaces with nanometer-scale distances is less studied. Specifically, mechanistic investigation on interdependent processes, including CO2 adsorption, charge separation, long-range chemical transport (∼100 nm distance), and bicarbonate buffer speciation, involved in photocatalysis is urgently needed. Photocatalytic CO2R in ∼0 mM CO2(aq), which has important applications in integrated carbon capture and utilization (CCU), has rarely been studied. Using 0.1 M KHCO3 (aq) of pH 7 but without continuously bubbling CO2, we achieved ∼0.1% solar-to-fuel conversion efficiency for CO production using Ag@CrOx nanoparticles that are supported on a coating-protected GaInP2 photocatalytic panel. CO is produced at ∼100% selectivity with no detectable H2, even with copious protons co-generated nearby. CO2 flux to the Ag@CrOx CO2R sites enhances CO2 adsorption, probed by in situ Raman spectroscopy. CO is produced with local protonation of dissolved inorganic carbon species in a pH as high as 11.5 when using fast electron donors such as ethanol. Isotopic labeling using KH13CO3 was used to confirm the origin of CO from the bicarbonate solution. We then employed COMSOL Multiphysics modeling to simulate the spatial and temporal pH variation and the local concentrations of bicarbonates and CO2(aq). We found that light-driven CO2R and CO2 reactive transport are mutually dependent, which is important for further understanding and manipulating CO2R activity and selectivity. This study enables direct bicarbonate utilization as the source of CO2, thereby achieving CO2 capture and conversion without purifying and feeding gaseous CO2.
Collapse
Affiliation(s)
- Rito Yanagi
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Tianshuo Zhao
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Matthew Cheng
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Bin Liu
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Haoqing Su
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Chengxing He
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Jake Heinlein
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Shomeek Mukhopadhyay
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
| | - Haiyan Tan
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Devan Solanki
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Shu Hu
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| |
Collapse
|
4
|
Song Y, Mao J, Zhu C, Li S, Li G, Dong X, Jiang Z, Chen W, Wei W. Ni Nanoclusters Anchored on Ni-N-C Sites for CO 2 Electroreduction at High Current Densities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10785-10794. [PMID: 36802488 DOI: 10.1021/acsami.2c23095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal catalyst-based electrocatalytic CO2 reduction is a highly attractive approach to fulfill the renewable energy storage and a negative carbon cycle. However, it remains a great challenge for the earth-abundant VIII transition metal catalysts to achieve highly selective, active, and stable CO2 electroreduction. Herein, bamboo-like carbon nanotubes that anchor both Ni nanoclusters and atomically dispersed Ni-N-C sites (NiNCNT) are developed for exclusive CO2 conversion to CO at stable industry-relevant current densities. Through optimization of gas-liquid-catalyst interphases via hydrophobic modulation, NiNCNT exhibits as high as Faradaic efficiency (FE) of 99.3% for CO formation at a current density of -300 mA·cm-2 (-0.35 V vs reversible hydrogen electrode (RHE)), and even an extremely high CO partial current density (jCO) of -457 mA·cm-2 corresponding to a CO FE of 91.4% at -0.48 V vs RHE. Such superior CO2 electroreduction performance is ascribed to the enhanced electron transfer and local electron density of Ni 3d orbitals upon incorporation of Ni nanoclusters, which facilitates the formation of the COOH* intermediate.
Collapse
Affiliation(s)
- Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chang Zhu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujie Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Zheng Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, China
| |
Collapse
|
5
|
Devi P, Verma R, Singh JP. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Sikdar N, Junqueira JRC, Öhl D, Dieckhöfer S, Quast T, Braun M, Aiyappa HB, Seisel S, Andronescu C, Schuhmann W. Redox Replacement of Silver on MOF-Derived Cu/C Nanoparticles on Gas Diffusion Electrodes for Electrocatalytic CO 2 Reduction. Chemistry 2022; 28:e202104249. [PMID: 35040207 PMCID: PMC9304169 DOI: 10.1002/chem.202104249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Bimetallic tandem catalysts have emerged as a promising strategy to locally increase the CO flux during electrochemical CO2 reduction, so as to maximize the rate of conversion to C-C-coupled products. Considering this, a novel Cu/C-Ag nanostructured catalyst has been prepared by a redox replacement process, in which the ratio of the two metals can be tuned by the replacement time. An optimum Cu/Ag composition with similarly sized particles showed the highest CO2 conversion to C2+ products compared to non-Ag-modified gas-diffusion electrodes. Gas chromatography and in-situ Raman measurements in a CO2 gas diffusion cell suggest the formation of top-bound linear adsorbed *CO followed by consumption of CO in the successive cascade steps, as evidenced by the increasingνC-H bands. These findings suggest that two mechanisms operate simultaneously towards the production of HCO2 H and C-C-coupled products on the Cu/Ag bimetallic surface.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - João R. C. Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Denis Öhl
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Michael Braun
- Chemical Technology IIIFaculty of Chemistry and CENIDE Center for NanointegrationUniversity Duisburg-EssenCarl-Benz Straße 19947057DuisburgGermany
| | - Harshitha B. Aiyappa
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDE Center for NanointegrationUniversity Duisburg-EssenCarl-Benz Straße 19947057DuisburgGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
7
|
Cao X, Tan D, Wulan B, Hui KS, Hui KN, Zhang J. In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2021; 5:e2100700. [PMID: 34927933 DOI: 10.1002/smtd.202100700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of carbon dioxide into organic fuels and feedstocks is a fascinating method to implement the sustainable carbon cycle. Thus, a rational design of advanced electrocatalysts and a deep understanding of reaction mechanisms are crucial for the complex reactions of carbon dioxide reduction with multiple electron transfer. In situ and operando techniques with real-time monitoring are important to obtain deep insight into the electrocatalytic reaction to reveal the dynamic evolution of electrocatalysts' structure and composition under experimental conditions. In this paper, the reaction pathways for the CO2 reduction reaction (CO2 RR) in the generation of various products (e.g., C1 and C2 ) via the proposed mechanisms are introduced. Moreover, recent advances in the development and applications of in situ and operando characterization techniques, from the basic working principles and in situ cell structure to detailed applications are discussed. Suggestions and future directions of in situ/operando analysis are also addressed.
Collapse
Affiliation(s)
- Xueying Cao
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Dongxing Tan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Bari Wulan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - K S Hui
- School of Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - K N Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, 999078, P. R. China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Li C, Xiong H, He M, Xu B, Lu Q. Oxyhydroxide Species Enhances CO 2 Electroreduction to CO on Ag via Coelectrolysis with O 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haocheng Xiong
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming He
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Song Y, Junqueira JRC, Sikdar N, Öhl D, Dieckhöfer S, Quast T, Seisel S, Masa J, Andronescu C, Schuhmann W. B-Cu-Zn Gas Diffusion Electrodes for CO 2 Electroreduction to C 2+ Products at High Current Densities. Angew Chem Int Ed Engl 2021; 60:9135-9141. [PMID: 33559233 PMCID: PMC8048895 DOI: 10.1002/anie.202016898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Indexed: 11/30/2022]
Abstract
Electroreduction of CO2 to multi-carbon products has attracted considerable attention as it provides an avenue to high-density renewable energy storage. However, the selectivity and stability under high current densities are rarely reported. Herein, B-doped Cu (B-Cu) and B-Cu-Zn gas diffusion electrodes (GDE) were developed for highly selective and stable CO2 conversion to C2+ products at industrially relevant current densities. The B-Cu GDE exhibited a high Faradaic efficiency of 79 % for C2+ products formation at a current density of -200 mA cm-2 and a potential of -0.45 V vs. RHE. The long-term stability for C2+ formation was substantially improved by incorporating an optimal amount of Zn. Operando Raman spectra confirm the retained Cu+ species under CO2 reduction conditions and the lower overpotential for *OCO formation upon incorporation of Zn, which lead to the excellent conversion of CO2 to C2+ products on B-Cu-Zn GDEs.
Collapse
Affiliation(s)
- Yanfang Song
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
- CAS Key Laboratory of Low-Carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences99 Haike RoadShanghai201203P. R. China
| | - João R. C. Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Nivedita Sikdar
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Denis Öhl
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Justus Masa
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDECenter for Nanointegration University Duisburg EssenCarl-Benz-Strasse 19947057DuisburgGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
11
|
Song Y, Junqueira JRC, Sikdar N, Öhl D, Dieckhöfer S, Quast T, Seisel S, Masa J, Andronescu C, Schuhmann W. B‐Cu‐Zn‐Gasdiffusionselektroden für die elektrokatalytische CO
2
‐Reduktion zu C
2+
‐Produkten bei hohen Stromdichten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yanfang Song
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road Shanghai 201203 VR China
| | - João R. C. Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Nivedita Sikdar
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Denis Öhl
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE Center for Nanointegration University Duisburg Essen Carl-Benz-Straße 199 47057 Duisburg Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
12
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
13
|
Shan W, Liu R, Zhao H, He Z, Lai Y, Li S, He G, Liu J. In Situ Surface-Enhanced Raman Spectroscopic Evidence on the Origin of Selectivity in CO 2 Electrocatalytic Reduction. ACS NANO 2020; 14:11363-11372. [PMID: 32790343 DOI: 10.1021/acsnano.0c03534] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrocatalytic reduction of CO2 (CO2ER) to liquid fuels is important for solving fossil fuel depletion. However, insufficient insight into the reaction mechanisms renders a lack of effective regulation of liquid product selectivity. Here, in situ surface-enhanced Raman spectroscopy (SERS) empowered by 13C/12C isotope exchange is applied to probing the CO2ER process on nanoporous silver (np-Ag). Direct spectroscopic evidence of the preliminary intermediates, *COOH and *OCO-, indicates that CO2 is coordinated to the catalyst via diverse adsorption modes. Further, the relative Raman intensities of the above intermediates vary notably on np-Ag modified by Cu or Pd, and the liquid product selectivity also changes accordingly. Combined with density functional theory calculations, this study demonstrates that the CO2 adsorption configuration is a critical factor governing the reaction selectivity. Meanwhile, *COOH and *OCO- are key targets in the initial stage regulating liquid product selectivity, which could facilitate future selective catalyst design.
Collapse
Affiliation(s)
- Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zuoliang He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
| | - Shasha Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhi He
- Laboratory of Atmospheric Environment and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Chang CJ, Lin SC, Chen HC, Wang J, Zheng KJ, Zhu Y, Chen HM. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. J Am Chem Soc 2020; 142:12119-12132. [DOI: 10.1021/jacs.0c01859] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chia-Jui Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sheng-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsiao-Chien Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jiali Wang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai Jen Zheng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yanping Zhu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Gupta B, Afonso MC, Zhang L, Ayela C, Garrigue P, Goudeau B, Kuhn A. Wireless Coupling of Conducting Polymer Actuators with Light Emission. Chemphyschem 2019; 20:941-945. [PMID: 30840350 DOI: 10.1002/cphc.201900116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Combining the actuation of conducting polymers with additional functionalities is an interesting fundamental scientific challenge and increases their application potential. Herein we demonstrate the possibility of direct integration of a miniaturized light emitting diode (LED) in a polypyrrole (PPy) matrix in order to achieve simultaneous wireless actuation and light emission. A light emitting diode is used as a part of an electroactive surface on which electrochemical polymerization allows direct incorporation of the electronic device into the polymer. The resulting free-standing polymer/LED hybrid can be addressed by bipolar electrochemistry to trigger simultaneously oxidation and reduction reactions at its opposite extremities, leading to a controlled deformation and an electron flow through the integrated LED. Such a dual response in the form of actuation and light emission opens up interesting perspectives in the field of microrobotics.
Collapse
Affiliation(s)
- Bhavana Gupta
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Mariana C Afonso
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Lin Zhang
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Cedric Ayela
- Univ. Bordeaux, IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP, F-33405, Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM UMR CNRS 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| |
Collapse
|