1
|
Huang C, Wang Y, Zhou C, Fan X, Sun Q, Han J, Hua C, Li Y, Niu Y, Emeka Okonkwo C, Yao D, Song L, Otu P. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem 2024; 453:139622. [PMID: 38761729 DOI: 10.1016/j.foodchem.2024.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.
Collapse
Affiliation(s)
- Chengxia Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenhui Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Deyang Yao
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Linglin Song
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Phyllis Otu
- Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| |
Collapse
|
2
|
Cui B, Sun J, Chang S, Zhang H, Li Y, Feng X, Guo Z. Preparation and Tumor Inhibitory Activity of Tricin from Carex Meyeriana Kunth. Molecules 2024; 29:4530. [PMID: 39407460 PMCID: PMC11478251 DOI: 10.3390/molecules29194530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
This study describes the purification and preparation of tricin (5, 7, 4-trihydroxy-3, 5-dimethoxyflavone) from Carex Meyeriana Kunth via adsorption and desorption using macroporous resins and high-performance liquid chromatography. Six resins were tested to evaluate the static adsorption and desorption capacities. The HPD-300 resin was selected as the adsorption material to enrich tricin because of its suitable adsorption and desorption capacities. Adsorption thermodynamics and kinetics were studied on HPD-300 resin, and the results agreed with the Langmuir model and quasi-second-order kinetics model, respectively. The parameters of the dynamic adsorption and desorption tests were then optimized. The purity of tricin increased from 2.6 mg/g to 45.1 mg/g with a recovery yield of 76.4% after purification using HPD-300 resin. Then, Prep-HPLC was used to further purify tricin. The purity of tricin reached 99.4%, with a recovery yield of 78.0% thereafter. Tricin exerts an inhibitory effect on the proliferation of various tumor cells, including gastric cancer SGC-7901 cells. It significantly suppresses cell colony formation while also altering cell cycle progression metabolism by decreasing the proportion of cells in the G0/G1 phase and increasing the proportion in the S and G2/M phases. Additionally, tricin affects the efficiency of SGC-7901 cell lactate production, ATP content, and glucose uptake. These findings suggest that tricin may impede tumor cell proliferation through its impact on cell cycle progression and energy metabolism.
Collapse
Affiliation(s)
- Baiji Cui
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.C.); (H.Z.); (Y.L.)
| | - Jie Sun
- School of Basic Medicine Sciences, Jilin Medical University, Jilin 132013, China;
| | - Sheng Chang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.C.); (H.Z.); (Y.L.)
| | - Hongmei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.C.); (H.Z.); (Y.L.)
| | - Yawei Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (S.C.); (H.Z.); (Y.L.)
| | - Xianmin Feng
- School of Basic Medicine Sciences, Jilin Medical University, Jilin 132013, China;
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
3
|
Tikhomirov E, Franconetti A, Johansson M, Sandström C, Carlsson E, Andersson B, Hailer NP, Ferraz N, Palo-Nieto C. A Simple and Cost-Effective FeCl 3-Catalyzed Functionalization of Cellulose Nanofibrils: Toward Adhesive Nanocomposite Materials for Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30385-30395. [PMID: 38816917 PMCID: PMC11181277 DOI: 10.1021/acsami.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Antonio Franconetti
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Mathias Johansson
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Corine Sandström
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Carlos Palo-Nieto
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
4
|
Wang W, Liu J, Khan MJ, Wang R, Francesco S, Sun J, Mao X, Huang WC. Magnetic macroporous chitin microsphere as a support for covalent enzyme immobilization. Int J Biol Macromol 2024; 256:128214. [PMID: 37992928 DOI: 10.1016/j.ijbiomac.2023.128214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In this study, a novel magnetic macroporous chitin microsphere (MMCM) was developed for enzyme immobilization. Chitin nanofibers were prepared and subsequently subjected to self-assembly with magnetic nanoparticles and PMMA (polymethyl methacrylate). Following this, microspheres were formed through spray drying, achieving a porous structure through etching. The MMCM serves as an effective support for immobilizing enzymes, allowing for their covalent immobilization both on the microsphere's surface and within its pores. The substantial surface area resulting from the porous structure leads to a 2.1-fold increase in enzyme loading capacity compared to non-porous microspheres. The MMCM enhances stability of the immobilized enzymes under various pH and temperature conditions. Furthermore, after 20 days of storage at 4 °C, the residual activity of the immobilized enzyme was 2.93 times that of the free enzyme. Even after being recycled 10 times, the immobilized enzyme retained 56.7 % of its initial activity. It's noteworthy that the active sites of the enzymes remained unchanged after immobilization using the MMCM, and kinetic analysis revealed that the affinity of the immobilized enzymes rivals that of the free enzymes.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jiayuan Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Muhammad Junaid Khan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rong Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Secundo Francesco
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche via Mario Bianco 9, 20131 Milan, Italy
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China.
| |
Collapse
|
5
|
Blasi-Romero A, Ångström M, Franconetti A, Muhammad T, Jiménez-Barbero J, Göransson U, Palo-Nieto C, Ferraz N. KR-12 Derivatives Endow Nanocellulose with Antibacterial and Anti-Inflammatory Properties: Role of Conjugation Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24186-24196. [PMID: 37167266 DOI: 10.1021/acsami.3c04237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This work combines the wound-healing-related properties of the host defense peptide KR-12 with wood-derived cellulose nanofibrils (CNFs) to obtain bioactive materials, foreseen as a promising solution to treat chronic wounds. Amine coupling through carbodiimide chemistry, thiol-ene click chemistry, and Cu(I)-catalyzed azide-alkyne cycloaddition were investigated as methods to covalently immobilize KR-12 derivatives onto CNFs. The effects of different coupling chemistries on the bioactivity of the KR12-CNF conjugates were evaluated by assessing their antibacterial activities against Escherichia coli and Staphylococcus aureus. Potential cytotoxic effects and the capacity of the materials to modulate the inflammatory response of lipopolysaccharide (LPS)-stimulated RAW 245.6 macrophages were also investigated. The results show that KR-12 endowed CNFs with antibacterial activity against E. coli and exhibited anti-inflammatory properties and those conjugated by thiol-ene chemistry were the most bioactive. This finding is attributed to a favorable peptide conformation and accessibility (as shown by molecular dynamics simulations), driven by the selective chemistry and length of the linker in the conjugate. The results represent an advancement in the development of CNF-based materials for chronic wound care. This study provides new insights into the effect of the conjugation chemistry on the bioactivity of immobilized host defense peptides, which we believe to be of great value for the use of host defense peptides as therapeutic agents.
Collapse
Affiliation(s)
- Anna Blasi-Romero
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Molly Ångström
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | | | - Taj Muhammad
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio-Bizkaia 48160, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Bilbao 48009, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Carlos Palo-Nieto
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
6
|
Gao X, Liu K, Liu P, Bai X, Li A, Lyu Z, Li Q. Preparation and properties of cellulose acetate graft copolymer‐coated adsorbent resin for hemoperfusion device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Progress on membrane technology for separating bioactive peptides. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Liu B, Liu J, Huang D, Pei D, Wei J, Di D. Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Li X, Ma Y, Zuo Y, Liu Z, Wang Q, Ren D, He Y, Cong H, Wu L, Zhou H. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2405-2414. [PMID: 33997883 DOI: 10.1039/d1ay00616a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptides found in marine life have various specific activities due to their special growth environment, and there is increasing interest in the isolation and concentration of these biofunctional compounds. In this study, the protein hydrolysate of the marine worm Urechis unicinctus was prepared by enzymolysis and enriched by using mesoporous materials of silica MCM-41 and SBA-15 and carbon CMK-3. The differences in pore structures and elemental composition of these materials lead to differences in surface area and hydrophobicity. The adsorption capacities of peptides were 459.5 mg g-1, 431.3 mg g-1, and 626.3 mg g-1 for MCM-41, SBA-15 and CMK-3, respectively. Adsorption kinetics studies showed that the pseudo-second-order model fit the adsorption process better, where both external mass transfer and intraparticle diffusion affected the adsorption, while the Langmuir model better fit the adsorption of peptides on MCM-41 and SBA-15 and the Freundlich model was more suitable for CMK-3. Aqueous acetonitrile (ACN, 50/50, v/v) yielded the most extracted peptides. MALDI-TOF mass spectrometry of the extracted peptides showed that the three mesoporous materials, especially the CMK-3, gave good enrichment results. This study demonstrates the great potential of mesoporous materials in the enrichment of marine biofunctional peptides.
Collapse
Affiliation(s)
- Xinwei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Isolation and purification of oleuropein from olive leaves using boric acid affinity resin and a novel solvent system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wen S, Sun Y, Liu R, Chen L, Wang J, Peng S, Ma C, Yuan Y, Gong W, Wang N. Supramolecularly Poly(amidoxime)-Loaded Macroporous Resin for Fast Uranium Recovery from Seawater and Uranium-Containing Wastewater. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3246-3258. [PMID: 33406816 DOI: 10.1021/acsami.0c21046] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium is an extremely abundant resource in seawater that could supply nuclear fuel for over the long-term, but it is tremendously difficult to extract. Here, a new supramolecular poly(amidoxime) (PAO)-loaded macroporous resin (PLMR) adsorbent has been explored for highly efficient uranium adsorption. Through simply immersing the macroporous resin in the PAO solution, PAOs can be firmly loaded on the surface of the nanopores mainly by hydrophobic interaction, to achieve the as-prepared PLMR. Unlike existing amidoxime-based adsorbents containing many inner minimally effective PAOs, almost all the PAOs of PLMR have high uranium adsorption efficiency because they can form a PAO-layer on the nanopores with molecular-level thickness and ultrahigh specific surface area. As a result, this PLMR has highly efficient uranium adsorbing performance. The uranium adsorption capacity of the PLMR was 157 mg/g (the UPAO in the PLMR was 1039 mg/g), in 32 ppm uranium-spiked seawater for 120 h. Additionally, uranium in 1.0 L 100 ppb U-spiked both water and seawater can be removed quickly and the recovery efficiency can reach 91.1 ± 1.7% and 86.5 ± 1.9%, respectively, after being filtered by a column filled with 200 mg PLMR at 300 mL/min for 24 h. More importantly, after filtering 200 T natural seawater with 200 g PLMR for only 10 days, the uranium-uptake amount of the PLMR reached 2.14 ± 0.21 mg/g, and its average uranium adsorption speed reached 0.214 mg/(g·day) which is very fast among reported amidoxime-based adsorbents. This new adsorbent has great potential to quickly and massively recover uranium from seawater and uranium-containing wastewater. Most importantly, this work will provide a simple but general strategy to greatly enhance the uranium adsorption efficiency of amidoxime-functionalized adsorbents with ultrahigh specific surface area via supramolecular interaction, and even inspire the exploration of other adsorbents.
Collapse
Affiliation(s)
- Shunxi Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Rongrong Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
12
|
Blasi-Romero A, Palo-Nieto C, Sandström C, Lindh J, Strømme M, Ferraz N. In Vitro Investigation of Thiol-Functionalized Cellulose Nanofibrils as a Chronic Wound Environment Modulator. Polymers (Basel) 2021; 13:249. [PMID: 33451171 PMCID: PMC7828681 DOI: 10.3390/polym13020249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/20/2022] Open
Abstract
There is currently a huge need for new, improved therapeutic approaches for the treatment of chronic wounds. One promising strategy is to develop wound dressings capable of modulating the chronic wound environment (e.g., by controlling the high levels of reactive oxygen species (ROS) and proteases). Here, we selected the thiol-containing amino acid cysteine to endow wood-derived cellulose nanofibrils (CNF) with bioactivity toward the modulation of ROS levels and protease activity. Cysteine was covalently incorporated into CNF and the functionalized material, herein referred as cys-CNF, was characterized in terms of chemical structure, degree of substitution, radical scavenging capacity, and inhibition of protease activity. The stability of the thiol groups was evaluated over time, and an in vitro cytotoxicity study with human dermal fibroblasts was performed to evaluate the safety profile of cys-CNF. Results showed that cys-CNF was able to efficiently control the activity of the metalloprotease collagenase and to inhibit the free radical DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), activities that were correlated with the presence of free thiol groups on the nanofibers. The stability study showed that the reactivity of the thiol groups challenged the bioactivity over time. Nevertheless, preparing the material as an aerogel and storing it in an inert atmosphere were shown to be valid approaches to increase the stability of the thiol groups in cys-CNF. No signs of toxicity were observed on the dermal fibroblasts when exposed to cys-CNF (concentration range 0.1-0.5 mg/mL). The present work highlights cys-CNF as a promising novel material for the development of bioactive wound dressings for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Anna Blasi-Romero
- Nanotechnology and Functional Materials, Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden; (A.B.-R.); (C.P.-N.); (J.L.); (M.S.)
| | - Carlos Palo-Nieto
- Nanotechnology and Functional Materials, Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden; (A.B.-R.); (C.P.-N.); (J.L.); (M.S.)
| | - Corine Sandström
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden;
| | - Jonas Lindh
- Nanotechnology and Functional Materials, Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden; (A.B.-R.); (C.P.-N.); (J.L.); (M.S.)
| | - Maria Strømme
- Nanotechnology and Functional Materials, Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden; (A.B.-R.); (C.P.-N.); (J.L.); (M.S.)
| | - Natalia Ferraz
- Nanotechnology and Functional Materials, Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden; (A.B.-R.); (C.P.-N.); (J.L.); (M.S.)
| |
Collapse
|
13
|
Wang Y, Ouyang F, Teng C, Qu J. Optimization for the extraction of polyphenols from Inonotus obliquus and its antioxidation activity. Prep Biochem Biotechnol 2021; 51:852-859. [PMID: 33439073 DOI: 10.1080/10826068.2020.1864642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the extraction process and antioxidative activity of Inonotus obliquus polyphenols (IOP), the optimal extraction process was determined by orthogonal experiment optimization. The clearance rate of DPPH and hydroxyl radicals were used as indicators to evaluate the antioxidant activity of IOP. The results showed that the optimum extraction conditions were as follows: ethanol concentration of 50%, solid-liquid ratio of 1:20, temperature of 60 °C, and 90 min. Under these conditions, the extraction yield of IOP was 2.84%. The antioxidant capacity of extracts appeared to be IOP dose-dependent, while it also presented stronger ferric reducing antioxidant power (FRAP). High Performance Liquid Chromatography (HPLC-MS) analysis indicated that the major identified polyphenol compounds extracted at the optimal conditions were ten compounds (procyanidin, caffeic acid, p-coumaric acid, isorhamnetin-3-O-glucoside, astilbin, tangeretin, gallic acid, kaempferol, quercetin, and catechin 7-xyloside). These findings indicate that I. obliquus polyphenols have the potential to be developed as a natural antioxidant and have a good application prospect.
Collapse
Affiliation(s)
- Yu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China.,Harbin Center for Disease Control and Prevention, Harbin, China
| | - Fengju Ouyang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Chunying Teng
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Juanjuan Qu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Liu J, Meng J, Du J, Liu X, Pu Q, Di D, Chen C. Preparative Separation of Flavonoids from Goji Berries by Mixed-Mode Macroporous Adsorption Resins and Effect on Aβ-Expressing and Anti-Aging Genes. Molecules 2020; 25:E3511. [PMID: 32752084 PMCID: PMC7435390 DOI: 10.3390/molecules25153511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Flavonoids are the main constituents of Goji berries and have good biological and pharmacological activities. The mixed-mode macroporous adsorption resins (MARs) for purification of flavonoids from Goji berries through computer-assisted calculation of the molecular size of flavonoids and the precise matching of MAR physical and chemical properties was firstly developed in the present study. Ten varieties of MARs with suitable molecular dimensions and polarities were used for investigating the adsorption/desorption behaviors of the flavonoids. Both AUKJ-1 and BWKX-1 showed higher separation efficiency than other MARs and then were mixed in different ratios to constitute a mixed-mode macroporous adsorption resin to obtain the optimal adsorption phase. Under optimal conditions, total flavonoid content of purified flavonoid (p-FLA) extract increased from 0.97% to 36.88% after one purification. The p-FLA extract from Goji berries significantly improved the expression of six genes with anti-aging effects and played an important role in aging-related Alzheimer's disease by down-regulating Aβ expression.
Collapse
Affiliation(s)
- Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jinhao Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (J.D.); (X.L.)
| | - Xiaofeng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (J.D.); (X.L.)
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China;
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
15
|
Liu B, Liu J, Huang D, Wei J, Di D. Boric acid modified macroporous adsorption resin and its adsorption properties for catechol compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zhao M, Cui C. High adsorption of fulvic acid by amino modified styrene-type macroporous resin and evaluation of its mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1000-1010. [PMID: 32541117 DOI: 10.2166/wst.2020.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amino-modified HPD 100 styrene-type macroporous resin (M-HPD 100) was successfully synthesized by the atom transfer radical polymerization process. The modified resin showed excellent performance in the degradation of fulvic acid (FA). FA removal was pH, temperature and flow velocity dependent. The adsorption data could be well interpreted by the Freundlich model. The maximum adsorption efficiency for M-HPD 100 obtained from the Freundlich model was 92.5% at 298 K, which was 37% higher than that of unmodified styrene-type macroporous resin (HPD 100). The adsorption process could be described by the pseudo-second-order kinetic model. The intra-particle diffusion and film diffusion were believed to be the rate-limiting process for both adsorbents. Thermodynamic parameters suggested it was a multi-layer physicochemical process. More importantly, although limited improvements were seen, the results of this study suggested that the surface of resin can be modified with functional groups to enhance the adsorption of FA from aqueous solution and may give other advantages; for example, despite the interference of the pore diffusion coefficient and other substances, M-HPD 100 has excellent regeneration capacity, and the adsorption and desorption efficiency was 74% and 64.28% respectively after six regenerations, which proved it has engineering application value.
Collapse
Affiliation(s)
- Munan Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Chongwei Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| |
Collapse
|