1
|
Thanapongpibul C, Rifaie‐Graham O, Ojansivu M, Najer A, Kim H, Bakker SE, Chami M, Peeler DJ, Liu C, Yeow J, Stevens MM. Unlocking Intracellular Protein Delivery by Harnessing Polymersomes Synthesized at Microliter Volumes using Photo-PISA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408000. [PMID: 39417762 PMCID: PMC11619233 DOI: 10.1002/adma.202408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Miina Ojansivu
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Saskia E. Bakker
- Advanced Bioimaging Research Technology PlatformUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Mohamed Chami
- BioEM LabBiozentrumUniversity of BaselBasel4058Switzerland
| | - David J. Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chenchen Liu
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
2
|
Beeren IAO, Morgan FLC, Rademakers T, Bauer J, Dijkstra PJ, Moroni L, Baker MB. Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement. J Am Chem Soc 2024; 146:24330-24347. [PMID: 39163519 PMCID: PMC11378284 DOI: 10.1021/jacs.4c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.
Collapse
Affiliation(s)
- Ivo A O Beeren
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Cao C, Tian L, Li J, Raveendran R, Stenzel MH. Mix and Shake: A Mild Way to Drug-Loaded Lysozyme Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27177-27186. [PMID: 38753304 DOI: 10.1021/acsami.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Cheng Cao
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Joanna Li
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
4
|
Wan Y, Zhou J, Ni J, Cai Y, Cohen Stuart M, Wang J. Electrostatically Mediated In Situ Polymerization for Enzyme Immobilization and Activation. Biomacromolecules 2024; 25:809-818. [PMID: 38181098 DOI: 10.1021/acs.biomac.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Enzyme immobilization in nanoparticles is of interest for boosting their catalytic applications, yet rational approaches to designs achieving both high enzyme loading and activation remain a challenge. Herein, we report an electrostatically mediated in situ polymerization strategy that simultaneously realizes enzyme immobilization and activation. This was achieved by copolymerizing cationic monomers with a cross-linker in the presence of the enzyme lipase (anionic) as the template, which produces enzyme-loaded nanogels. The effects of different control factors such as pH, lipase dosage, and cross-linker fraction on nanogel formation are investigated systematically, and optimal conditions for enzyme loading and activation have been determined. A central finding is that the cationic polymer network of the nanogel creates a favorable environment that not only protects the enzyme but also boosts enzymatic activity nearly 2-fold as compared to free lipase. The nanogels improve the stability of the lipase to tolerate a broader working range of pH (5.5-8.5) and temperature (25-70 °C) and allow recycling such that after six cycles of reaction, 70% of the initial activity is conserved. The established fabrication strategy can be applied generally to different cationic monomers, and most of these nanogels exhibit adequate immobilization and activation of lipase. Our study confirms that in situ polymerization based on electrostatic interaction provides a facile and robust strategy for enzyme immobilization and activation. The wide variety of ionic monomers, therefore, features great potential for developing functional platforms toward satisfying enzyme immobilization and demanding applications.
Collapse
Affiliation(s)
- Yuting Wan
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jiaying Ni
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
5
|
Fan X, Li K, Liu S, Wang T, Ma Y, Li Z, He C. Protein Nanotubes Assembled from Imidazole-Grafted Horseradish Peroxidase Nanogels. ACS Macro Lett 2023; 12:1031-1036. [PMID: 37433040 DOI: 10.1021/acsmacrolett.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Protein assembly, a common phenomenon in nature, plays an important role in the evolution of life. Inspired by nature, assembling protein monomers into delicate nanostructures has emerged as an attractive research area. However, sophisticated protein assemblies usually need complicated designs or templates. In this work, we successfully fabricated protein nanotubes in a facile way by coordination interactions between imidazole-grafted horseradish peroxidase (HRP) nanogels (iHNs) and Cu2+. The iHNs were synthesized by polymerization on the surface of HRP by employing vinyl imidazole as a comonomer. By direct addition of Cu2+ into iHN solution, protein tubes were therefore formed. The size of the protein tubes could be adjusted by changing the added Cu2+ amount, and the mechanism behind the formation of protein nanotubes was elucidated. Furthermore, a highly sensitive H2O2 detection system was established based on the protein tubes. This work provides a facile method to construct diverse sophisticated functional protein nanomaterials.
Collapse
Affiliation(s)
- Xiaotong Fan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Siqi Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Tingting Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yedong Ma
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
6
|
Stevens K, Marras AE, Campagna TR, Ting JM, Tirrell MV. Effect of Charged Block Length Mismatch on Double Diblock Polyelectrolyte Complex Micelle Cores. Macromolecules 2023; 56:5557-5566. [PMID: 37521249 PMCID: PMC10373519 DOI: 10.1021/acs.macromol.3c00555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyelectrolyte complex micelles are hydrophilic nanoparticles that self-assemble in aqueous environments due to associative microphase separation between oppositely charged blocky polyelectrolytes. In this work, we employ a suite of physical characterization tools to examine the effect of charged block length mismatch on the equilibrium structure of double diblock polyelectrolyte complex micelles (D-PCMs) by mixing a diverse library of peptide and synthetic charged-neutral block polyelectrolytes with a wide range of charged block lengths (25-200 units) and chemistries. Early work on D-PCMs suggested that this class of micelles can only be formed from blocky polyelectrolytes with identical charged block lengths, a phenomenon referred to as chain length recognition. Here, we use salt annealing to create PCMs at equilibrium, which shows that chain length recognition, a longstanding hurdle to repeatable self-assembly from mismatched polyelectrolytes, can be overcome. Interestingly, D-PCM structure-property relationships display a range of values that vary systematically with the charged block lengths and chemical identity of constituent polyelectrolyte pairings and cannot be described by generalizable scaling laws. We discuss the interdependent growth behavior of the radius, ionic pair aggregation number, and density in the micelle core for three chemically distinct diblock pairings and suggest a potential physical mechanism that leads to this unique behavior. By comparing the results of these D-PCMs to the scaling laws recently developed for single diblock polyelectrolyte complex micelles (S-PCMs: diblock + homopolymer), we observe that D-PCM design schemes reduce the size and aggregation number and restrict their growth to a function of charged block length relative to S-PCMs. Understanding these favorable attributes enables more predictive use of a wider array of charged molecular building blocks to anticipate and control macroscopic properties of micelles spanning countless storage and delivery applications.
Collapse
Affiliation(s)
- Kaden
C. Stevens
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Alexander E. Marras
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
| | - Trinity R. Campagna
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | | | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Heredero M, Beloqui A. Enzyme-Polymer Conjugates for Tuning, Enhancing, and Expanding Biocatalytic Activity. Chembiochem 2023; 24:e202200611. [PMID: 36507915 DOI: 10.1002/cbic.202200611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Combining polymers with functional proteins is an approach that has brought several successful stories in the field of biomedicine with PEGylated therapeutic proteins. The latest advances in polymer chemistry have facilitated the expansion of protein-polymer hybrids to other research areas such as biocatalysis. Polymers can impart stability and novel functionalities to the enzyme of interest, thereby improving the catalytic performance of a given reaction. In this review, we have revisited the main methodologies currently used for the synthesis of enzyme-polymer hybrids, unveiling the interplay between the configuration and the composition of the assembled structure and the eventual traits of the hybrid. Finally, the latest advances, such as the assembly of polymer-based chemoenzymatic nanoreactors and the use of deep learning methodologies to achieve the most suitable polymer compositions for catalysis, are discussed.
Collapse
Affiliation(s)
- Marcos Heredero
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ana Beloqui
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
8
|
Li Z, Zhu K, Ren L, Yuan X. Sulfonium-Containing Glycopolypeptides Tethering Trehalose for Protein Stabilization. ACS Macro Lett 2022; 11:1278-1284. [DOI: 10.1021/acsmacrolett.2c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zongze Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Controlled synthesis of PEGylated polyelectrolyte nanogels as efficient protein carriers. J Colloid Interface Sci 2022; 620:322-332. [DOI: 10.1016/j.jcis.2022.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
10
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
11
|
Niskanen J, Peltekoff AJ, Bullet JR, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jukka Niskanen
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Alexander J. Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Richard Bullet
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Françoise M. Winnik
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
- International Center for Materials Nanoarchitectonics (WPN-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
12
|
Sproncken CM, Magana JR, Voets IK. 100th Anniversary of Macromolecular Science Viewpoint: Attractive Soft Matter: Association Kinetics, Dynamics, and Pathway Complexity in Electrostatically Coassembled Micelles. ACS Macro Lett 2021; 10:167-179. [PMID: 33628618 PMCID: PMC7894791 DOI: 10.1021/acsmacrolett.0c00787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Electrostatically coassembled micelles constitute a versatile class of functional soft materials with broad application potential as, for example, encapsulation agents for nanomedicine and nanoreactors for gels and inorganic particles. The nanostructures that form upon the mixing of selected oppositely charged (block co)polymers and other ionic species greatly depend on the chemical structure and physicochemical properties of the micellar building blocks, such as charge density, block length (ratio), and hydrophobicity. Nearly three decades of research since the introduction of this new class of polymer micelles shed significant light on the structure and properties of the steady-state association colloids. Dynamics and out-of-equilibrium processes, such as (dis)assembly pathways, exchange kinetics of the micellar constituents, and reaction-assembly networks, have steadily gained more attention. We foresee that the broadened scope will contribute toward the design and preparation of otherwise unattainable structures with emergent functionalities and properties. This Viewpoint focuses on current efforts to study such dynamic and out-of-equilibrium processes with greater spatiotemporal detail. We highlight different approaches and discuss how they reveal and rationalize similarities and differences in the behavior of mixed micelles prepared under various conditions and from different polymeric building blocks.
Collapse
Affiliation(s)
- Christian
C. M. Sproncken
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - J. Rodrigo Magana
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020; 12:E1953. [PMID: 32872312 PMCID: PMC7565781 DOI: 10.3390/polym12091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
Collapse
Affiliation(s)
| | | | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (J.R.M.); (C.C.M.S.)
| |
Collapse
|