1
|
Peddireddy KR, McGorty R, Robertson-Anderson RM. Topological DNA blends exhibit resonant deformation fields and strain propagation dynamics tuned by steric constraints. Acta Biomater 2024:S1742-7061(24)00634-2. [PMID: 39481624 DOI: 10.1016/j.actbio.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Understanding how polymers deform in response to local stresses and strains, and how strains propagate from a local disturbance, are grand challenges in wide-ranging fields from materials manufacturing to cell mechanics. These dynamics are particularly complex for blends of polymers of distinct topologies, for which several different species-dependent mechanisms may contribute. Here, we use OpTiDDM (Optical Tweezers integrating Differential Dynamic Microscopy) to elucidate deformation fields and propagation dynamics of binary blends of linear, ring and supercoiled DNA of varying sizes. We reveal robust non-monotonic dependence of strain alignment and superdiffusive transport with strain rate. However, peak alignment and superdiffusivity are surprisingly decoupled, occurring at different strain rates resonant with the distinct relaxation rates of the different topologies. Despite this universal resonance, we find that strain propagation of ring-linear blends is dictated by entanglements while supercoiled-ring blends are governed by Rouse dynamics. Our results capture critical subtleties in propagation and deformation dynamics of topological blends, shedding new light on the governing physics and offering a route towards decoupled tuning of response features. We anticipate our approach to be broadly generalizable to mapping the deformation dynamics of polymer blends, with an eye towards bottom-up bespoke materials design. STATEMENT OF SIGNIFICANCE: In biology and in manufacturing, biomaterials are often subject to localized and spatially nonuniform strains and stresses. Yet, understanding the extent to which strains are absorbed, distributed, or propagated across different spatiotemporal scales remains a grand challenge. Here, we combine optical tweezers with differential dynamic microscopy to elucidate deformation fields and propagation dynamics of blends of linear, ring and supercoiled DNA, revealing robust non-monotonic trends and decoupling of strain alignment and superdiffusivity, and capturing critical subtleties in propagation and deformation dynamics. Our results, shedding important new physical insight to guide decoupled tuning of response features, may be leveraged to map the deformation dynamics of wide-ranging systems of biopolymers and other macromolecules, with an eye towards bottom-up bespoke biomaterials design.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States.
| |
Collapse
|
2
|
Vigil DL, Ge T, Rubinstein M, O'Connor TC, Grest GS. Measuring Topological Constraint Relaxation in Ring-Linear Polymer Blends. PHYSICAL REVIEW LETTERS 2024; 133:118101. [PMID: 39331970 DOI: 10.1103/physrevlett.133.118101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/29/2024]
Abstract
Polymers are an effective test bed for studying topological constraints in condensed matter due to a wide array of synthetically available chain topologies. When linear and ring polymers are blended together, emergent rheological properties are observed as the blend can be more viscous than either of the individual components. This emergent behavior arises since ring-linear blends can form long-lived topological constraints as the linear polymers thread the ring polymers. Here, we demonstrate how the Gauss linking integral can be used to efficiently evaluate the relaxation of topological constraints in ring-linear polymer blends. For majority-linear blends, the relaxation rate of topological constraints depends primarily on reptation of the linear polymers, resulting in the diffusive time τ_{d,R} for rings of length N_{R} blended with linear chains of length N_{l} to scale as τ_{d,R}∼N_{R}^{2}N_{L}^{3.4}.
Collapse
Affiliation(s)
| | | | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
- World Premier International Research Center Initiative-Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | | | | |
Collapse
|
3
|
Mei B, Grest GS, Liu S, O’Connor TC, Schweizer KS. Unified understanding of the impact of semiflexibility, concentration, and molecular weight on macromolecular-scale ring diffusion. Proc Natl Acad Sci U S A 2024; 121:e2403964121. [PMID: 39042674 PMCID: PMC11295076 DOI: 10.1073/pnas.2403964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors. Here, we combine simulations and a microscopic force-level theory to build a unified understanding for how key aspects of ring dynamics depend on different tunable molecular properties including backbone rigidity, monomer concentration, degree of traditional entanglement, and molecular weight. Our large-scale molecular dynamics simulations of ring melts with very different backbone stiffnesses reveal unanticipated behaviors which agree well with our generalized theory. This includes a universal master curve for center-of-mass diffusion constants as a function of molecular weight scaled by a chemistry and thermodynamic state-dependent critical molecular weight that generalizes the concept of an entanglement cross-over for linear chains. The key physics is how backbone rigidity and monomer concentration induced changes of the entanglement length, interring packing, degree of interpenetration, and liquid compressibility slow down space-time dynamic-force correlations on macromolecular scales. A power law decay of the center-of-mass diffusion constant with inverse molecular weight squared is the first consequence, followed by an ultraslow activated hopping transport regime. Our results set the stage to address slow dynamics and kinetic arrest in different families of compact synthetic and biological polymeric systems.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | | | - Songyue Liu
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Thomas C. O’Connor
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
4
|
Schneck C, Smrek J, Likos CN, Zöttl A. Supercoiled ring polymers under shear flow. NANOSCALE 2024. [PMID: 38639709 DOI: 10.1039/d3nr04258h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We apply monomer-resolved computer simulations of supercoiled ring polymers under shear, taking full account of the hydrodynamic interactions, accompanied, in parallel, by simulations in which these are switched off. The combination of bending and torsional rigidities inherent in these polymers, in conjunction with hydrodynamics, has a profound impact on their flow properties. In contrast to their flexible counterparts, which dramatically deform and inflate under shear [Liebetreu et al., Commun. Mater. 2020, 1, 4], supercoiled rings undergo only weak changes in their overall shape and they display both a reduced propensity to tumbling (at fixed Weissenberg number) and a much stronger orientational resistance with respect to their flexible counterparts. In the presence of hydrodynamic interactions, the coupling of the polymer to solvent flow is capable of bringing about a topological transformation of writhe to twist at strong shear upon conservation of the overall linking number.
Collapse
Affiliation(s)
- Christoph Schneck
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Andreas Zöttl
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Farimani RA, Ahmadian Dehaghani Z, Likos CN, Ejtehadi MR. Effects of Linking Topology on the Shear Response of Connected Ring Polymers: Catenanes and Bonded Rings Flow Differently. PHYSICAL REVIEW LETTERS 2024; 132:148101. [PMID: 38640389 DOI: 10.1103/physrevlett.132.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 04/21/2024]
Abstract
We perform computer simulations of mechanically linked (poly[2]catenanes, PC) and chemically bonded (bonded rings, BR) pairs of self-avoiding ring polymers in steady shear. We find that BRs develop a novel motif, termed gradient tumbling, rotating around the gradient axis. For the PCs the rings are stretched and display another new pattern, termed slip tumbling. The dynamics of BRs is continuous and oscillatory, whereas that of PCs is intermittent between slip-tumbling attempts. Our findings demonstrate the interplay between topology and hydrodynamics in dilute solutions of connected polymers.
Collapse
Affiliation(s)
- Reyhaneh A Farimani
- Department of Physics, Sharif University of Technology, Tehran, Iran
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
6
|
Neill P, Crist N, McGorty R, Robertson-Anderson R. Enzymatic cleaving of entangled DNA rings drives scale-dependent rheological trajectories. SOFT MATTER 2024; 20:2750-2766. [PMID: 38440846 DOI: 10.1039/d3sm01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA, which naturally occurs in linear, ring, and supercoiled topologies, frequently undergoes enzyme-driven topological conversion and fragmentation in vivo, enabling it to perform a variety of functions within the cell. In vitro, highly concentrated DNA polymers form entanglements that yield viscoelastic properties dependent on the topologies and lengths of the DNA. Enzyme-driven alterations of DNA size and shape therefore offer a means of designing active materials with programmable viscoelastic properties. Here, we incorporate multi-site restriction endonucleases into dense DNA solutions to linearize and fragment circular DNA molecules. We pair optical tweezers microrheology with differential dynamic microscopy and single-molecule tracking to measure the linear and nonlinear viscoelastic response and transport properties of entangled DNA solutions over a wide range of spatiotemporal scales throughout the course of enzymatic digestion. We show that, at short timescales, relative to the relaxation timescales of the polymers, digestion of these 'topologically-active' fluids initially causes an increase in elasticity and relaxation times followed by a gradual decrease. Conversely, for long timescales, linear viscoelastic moduli exhibit signatures of increasing elasticity. DNA diffusion, likewise, becomes increasingly slowed, in direct opposition to the short-time behavior. We hypothesize that this scale-dependent rheology arises from the population of small DNA fragments, which increases as digestion proceeds, driving self-association of larger fragments via depletion interactions, giving rise to slow relaxation modes of clusters of entangled chains, interspersed among shorter unentangled fragments. While these slow modes likely dominate at long times, they are presumably frozen out in the short-time limit, which instead probes the faster relaxation modes of the unentangled population.
Collapse
Affiliation(s)
- Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Natalie Crist
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Rae Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| |
Collapse
|
7
|
Micheletti C, Chubak I, Orlandini E, Smrek J. Topology-Based Detection and Tracking of Deadlocks Reveal Aging of Active Ring Melts. ACS Macro Lett 2024:124-129. [PMID: 38198592 PMCID: PMC10883035 DOI: 10.1021/acsmacrolett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Connecting the viscoelastic behavior of stressed ring melts to the various forms of entanglement that can emerge in such systems is still an open challenge. Here, we consider active ring melts, where stress is generated internally, and introduce a topology-based method to detect and track consequential forms of ring entanglements, namely, deadlocks. We demonstrate that, as stress accumulates, more and more rings are co-opted in a growing web of deadlocks that entrap many other rings by threading, bringing the system to a standstill. The method ought to help the study of topological aging in more general polymer contexts.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Iurii Chubak
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Enzo Orlandini
- Università degli studi di Padova, Dipartimento di Fisica "G. Galilei", Via Marzolo 8, I-35100 Padova, Italy
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Goto S, Kim K, Matubayasi N. Unraveling the Glass-like Dynamic Heterogeneity in Ring Polymer Melts: From Semiflexible to Stiff Chain. ACS POLYMERS AU 2023; 3:437-446. [PMID: 38107414 PMCID: PMC10722566 DOI: 10.1021/acspolymersau.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 12/19/2023]
Abstract
Ring polymers are an intriguing class of polymers with unique physical properties, and understanding their behavior is important for developing accurate theoretical models. In this study, we investigate the effect of chain stiffness and monomer density on the static and dynamic behaviors of ring polymer melts using molecular dynamics simulations. Our first focus is on the non-Gaussian parameter of center-of-mass displacement as a measure of dynamic heterogeneity, which is commonly observed in glass-forming liquids. We find that the non-Gaussianity in the displacement distribution increases with the monomer density and stiffness of the polymer chains, suggesting that excluded volume interactions between centers of mass have a strong effect on the dynamics of ring polymers. We then analyze the relationship between the radius of gyration and monomer density for semiflexible and stiff ring polymers. Our results indicate that the relationship between the two varies with chain stiffness, which can be attributed to the competition between repulsive forces inside the ring and from adjacent rings. Finally, we study the dynamics of bond-breakage virtually connected between the centers of mass of rings to analyze the exchanges of intermolecular networks of bonds. Our results demonstrate that the dynamic heterogeneity of bond-breakage is coupled with the non-Gaussianity in ring polymer melts, highlighting the importance of the bond-breaking method in determining the intermolecular dynamics of ring polymer melts. Overall, our study sheds light on the factors that govern the dynamic behaviors of ring polymers.
Collapse
Affiliation(s)
- Shota Goto
- Division of Chemical Engineering, Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Marfai J, McGorty RJ, Robertson-Anderson RM. Cooperative Rheological State-Switching of Enzymatically-Driven Composites of Circular DNA And Dextran. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305824. [PMID: 37500570 DOI: 10.1002/adma.202305824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Polymer topology, which plays a principal role in the rheology of polymeric fluids, and non-equilibrium materials, which exhibit time-varying rheological properties, are topics of intense investigation. Here, composites of circular DNA and dextran are pushed out-of-equilibrium via enzymatic digestion of DNA rings to linear fragments. These time-resolved rheology measurements reveal discrete state-switching, with composites undergoing abrupt transitions between dissipative and elastic-like states. The gating time and lifetime of the elastic-like states, and the magnitude and sharpness of the transitions, are surprisingly decorrelated from digestion rates and non-monotonically depend on the DNA fraction. These results are modeled using sigmoidal two-state functions to show that bulk state-switching can arise from continuous molecular-level activity due to the necessity for cooperative percolation of entanglements to support macroscopic stresses. This platform, coupling the tunability of topological composites with the power of enzymatic reactions, may be leveraged for diverse material applications from wound-healing to self-repairing infrastructure.
Collapse
Affiliation(s)
- Juexin Marfai
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
10
|
Kumar S, Biswas P. Intrinsic viscosity and dielectric relaxation of ring polymers in dilute solutions. J Chem Phys 2023; 159:164902. [PMID: 37870141 DOI: 10.1063/5.0169880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The absence of chain ends makes ring polymers distinctly different from their linear analogues. The intrinsic viscosity, complex viscosity and the dielectric relaxation of ring polymers are investigated within the tenets of the optimized Rouse-Zimm theory. The distance dependent excluded volume interactions (EVIs) are obtained from Flory's mean field theory. The hydrodynamic interactions (HIs) between the pairs of monomers are estimated using the preaveraged Oseen tensor. The intrinsic viscosity of linear and ring polymers both with and without EVI are compared as a function of ring size. A monotonically increasing trend of the intrinsic viscosity is observed in both cases. The intrinsic viscosity of both linear and ring polymers both with and without EVI show a very good agreement with the experimental results of polystyrene over a wide range of molecular weights in both good and theta solvents, respectively. The fractal dimensions of the ring polymers with EVI lie between that of a random walk and a self-avoiding walk model of linear polymers in three dimensions. The ring size increases with EVI and the effect of EVI is stronger on larger rings than that on smaller rings. The dielectric relaxation follow a connectivity independent universal scaling behavior at low and high frequency regions. The imaginary part of the complex dielectric susceptibility displays a local maxima in the intermediate frequency region, which reveals a structure dependent behavior of the rings. The theoretically calculated dielectric loss of ring polymers with HI matches well with those obtained from experiments.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
11
|
Staňo R, Likos CN, Egorov SA. Mixing Linear Polymers with Rings and Catenanes: Bulk and Interfacial Behavior. Macromolecules 2023; 56:8168-8182. [PMID: 37900098 PMCID: PMC10601540 DOI: 10.1021/acs.macromol.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Indexed: 10/31/2023]
Abstract
We derive and parameterize effective interaction potentials between a multitude of different types of ring polymers and linear chains, varying the bending rigidity and solvent quality for the former species. We further develop and apply a density functional treatment for mixtures of both disconnected (chain-ring) and connected (chain-polycatenane) mixtures of the same, drawing coexistence binodals and exploring the ensuing response functions as well as the interface and wetting behavior of the mixtures. We show that worsening of the solvent quality for the rings brings about a stronger propensity for macroscopic phase separation in the linear-polycatenane mixtures, which is predominantly of the demixing type between phases of similar overall particle density. We formulate a simple criterion based on the effective interactions, allowing us to determine whether any specific linear-ring mixture will undergo a demixing phase separation.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
- Erwin
Schrödinger International Institute for Mathematics and Physics, Boltzmanngasse 9, 1090 Vienna, Austria
| |
Collapse
|
12
|
Chang R, Prakash M. Topological damping in an ultrafast giant cell. Proc Natl Acad Sci U S A 2023; 120:e2303940120. [PMID: 37792511 PMCID: PMC10576051 DOI: 10.1073/pnas.2303940120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Cellular systems are known to exhibit some of the fastest movements in biology, but little is known as to how single cells can dissipate this energy rapidly and adapt to such large accelerations without disrupting internal architecture. To address this, we investigate Spirostomum ambiguum-a giant cell (1-4 mm in length) well-known to exhibit ultrafast contractions (50% of body length) within 5 ms with a peak acceleration of 15[Formula: see text]. Utilizing transmitted electron microscopy and confocal imaging, we identify an association of rough endoplasmic reticulum (RER) and vacuoles throughout the cell-forming a contiguous fenestrated membrane architecture that topologically entangles these two organelles. A nearly uniform interorganelle spacing of 60 nm is observed between RER and vacuoles, closely packing the entire cell. Inspired by the entangled organelle structure, we study the mechanical properties of entangled deformable particles using a vertex-based model, with all simulation parameters matching 10 dimensionless numbers to ensure dynamic similarity. We demonstrate how entangled deformable particles respond to external loads by an increased viscosity against squeezing and help preserve spatial relationships. Because this enhanced damping arises from the entanglement of two networks incurring a strain-induced jamming transition at subcritical volume fractions, which is demonstrated through the spatial correlation of velocity direction, we term this phenomenon "topological damping." Our findings suggest a mechanical role of RER-vacuolar meshwork as a metamaterial capable of damping an ultrafast contraction event.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford University, Palo Alto, CA94305
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Palo Alto, CA94305
- Woods Institute for the Environment, Stanford University, Palo Alto, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
13
|
Tu M, Davydovich O, Mei B, Singh PK, Grest GS, Schweizer KS, O’Connor TC, Schroeder CM. Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions. ACS POLYMERS AU 2023; 3:307-317. [PMID: 37576713 PMCID: PMC10416323 DOI: 10.1021/acspolymersau.2c00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.
Collapse
Affiliation(s)
- Michael
Q. Tu
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Oleg Davydovich
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Baicheng Mei
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Piyush K. Singh
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gary S. Grest
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kenneth S. Schweizer
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Molnar K, Sasidharan Pillai A, Chen D, Kaszas G, McKenna GB, Kornfield JA, Puskas JE. Investigation of the Structure, Filler Interaction and Degradation of Disulfide Elastomers made by Reversible Radical Recombination Polymerization (R3P). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Li YC, Wu ZP, Zong ZH, Cao XZ. Rheological Role of Stiff Nanorings on Concurrently Strengthening and Toughening Polymer Nanocomposites. ACS Macro Lett 2023; 12:183-188. [PMID: 36692488 DOI: 10.1021/acsmacrolett.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanorings, which are increasingly uncovered in natural systems and synthesized in man-made materials, exhibit dynamics distinct from those known for linear chains. We show in this study that, when immersed in a polymer melt matrix, segments of a stiff nanoring (SNR) have more facilitated subdiffusion, i.e., with a larger scaling exponent in the mean squared displacement, than those belonging to one flexible counterpart, while the whole SNR is more suppressed by its surroundings. It is revealed that adding SNRs contributes to achieving the long-anticipated rheological objective of sol- and gel-like characteristics at high and low shearing frequencies, respectively. This study suggests the promising prospect of exploiting SNRs to concurrently strengthen and toughen target polymer nanocomposites.
Collapse
Affiliation(s)
- Yu-Chao Li
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Zong-Pei Wu
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Ze-Hao Zong
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Xue-Zheng Cao
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
16
|
Chen D, Molnar K, Kim H, Helfer CA, Kaszas G, Puskas JE, Kornfield JA, McKenna GB. Linear Viscoelastic Properties of Putative Cyclic Polymers Synthesized by Reversible Radical Recombination Polymerization (R3P). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest1089, Hungary
| | - Hojin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Julia A. Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| |
Collapse
|
17
|
Zheng Y, Tsige M, Wang SQ. Molecular Dynamics Simulation of Entangled Melts at High Rates: Identifying Entanglement Lockup Mechanism Leading to True Strain Hardening. Macromol Rapid Commun 2023; 44:e2200159. [PMID: 35881534 DOI: 10.1002/marc.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/20/2022] [Indexed: 01/11/2023]
Abstract
In the present work, molecular dynamics simulations are carried out based on the bead-spring model to indicate how the entanglement lockup manifests in the late stage of fast Rouse-Weissnberg number (WiR >>1) uniaxial melt stretching of entangled polymer melts. At high strains, distinct features show up to reveal the emergence of an increasingly tightened entanglement network. Chain tension can build up, peaking at the middle of the chain, to a level for chain scission, through accumulated interchain interactions, as if there is a tug-of-war ongoing for each load-bearing chain. Thanks to the interchain uncrossability, network junctions form by the pairing of two or more hairpins. It is hypothesized that the interchain entanglement at junctions can lockup through prevailing twist-like interchain couplings as long as WiR > 9. In this limit, a significant fraction of chains act like cyclic chains to form a network held by interchain uncrossability, and appreciable chain tension emerges.
Collapse
Affiliation(s)
- Yexin Zheng
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Shi-Qing Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
18
|
Shi Y, Chen SPR, Fragkiadakis G, Parisi D, Percec V, Vlassopoulos D, Monteiro MJ. Shape Control over the Polymer Molecular Weight Distribution and Influence on Rheological Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanlin Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Sung-Po R. Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - George Fragkiadakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion70013, Greece
| | - Daniele Parisi
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Philadelphia, Philadelphia, Pennsylvania19104-6323, United States
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion70013, Greece
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
19
|
Xu Z, Sun R, Lu W, Patil S, Mays J, Schweizer KS, Cheng S. Nature of Steady-State Fast Flow in Entangled Polymer Melts: Chain Stretching, Shear Thinning, and Viscosity Scaling. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zipeng Xu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan48824, United States
| | - Ruikun Sun
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan48824, United States
| | - Wei Lu
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan48824, United States
| | - Jimmy Mays
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | | | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
20
|
Murashima T, Hagita K, Kawakatsu T. Topological Transition in Multicyclic Chains with Structural Symmetry Inducing Stress-Overshoot Phenomena in Multicyclic/Linear Blends under Biaxial Elongational Flow. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiro Murashima
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai980-8578, Japan
| | - Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka239-8686, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai980-8578, Japan
| |
Collapse
|
21
|
Rauscher PM, de Pablo JJ. Random Knotting in Fractal Ring Polymers. Macromolecules 2022; 55:8409-8417. [PMID: 36186575 PMCID: PMC9520986 DOI: 10.1021/acs.macromol.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
![]()
Many ring polymer
systems of physical and biological
interest exhibit
both pronounced topological effects and nontrivial self-similarity,
but the relationship between these two phenomena has not yet been
clearly established. Here, we use theory and simulation to formulate
such a connection by studying a fundamental topological property—the
random knotting probability—for ring polymers with varying
fractal dimension, df. Using straightforward scaling arguments, we generalize a classic
mathematical result, showing that the probability of a trivial knot
decays exponentially with chain size, N, for all
fractal dimensions: P0(N) ∝ exp(−N/N0). However, no such simple considerations can account for
the dependence of the knotting length, N0, on df, necessitating
a more involved analytical calculation. This analysis reveals a complicated
double-exponential dependence, which is well supported by numerical
data. By contrast, functional forms typical of simple scaling theories
fail to adequately describe the observations. These findings are equally
valid for two-dimensional ring polymer systems, where “knotting”
is defined as the intersection of any two segments.
Collapse
Affiliation(s)
- Phillip M. Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division (MSD) and Center for Molecular Engineering (CME), Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
22
|
Peddireddy KR, Clairmont R, Neill P, McGorty R, Robertson-Anderson RM. Optical-Tweezers-integrating-Differential-Dynamic-Microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites. Nat Commun 2022; 13:5180. [PMID: 36056012 PMCID: PMC9440072 DOI: 10.1038/s41467-022-32876-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map the deformation fields that arise in macromolecular materials, we present Optical-Tweezers-integrating-Differential -Dynamic-Microscopy (OpTiDMM) that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover an unexpected resonant response, in which strain alignment, superdiffusivity, and elasticity are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic storage, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally relax induced stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics-critical to commercial applications and cell mechanics alike.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan Clairmont
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
23
|
Maurya MK, Ruscher C, Mukherji D, Singh MK. Computational indentation in highly cross-linked polymer networks. Phys Rev E 2022; 106:014501. [PMID: 35974630 DOI: 10.1103/physreve.106.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Indentation is a common experimental technique to study the mechanics of polymeric materials. The main advantage of using indentation is this provides a direct correlation between the microstructure and the small-scale mechanical response, which is otherwise difficult within the standard tensile testing. The majority of studies have investigated hydrogels, microgels, elastomers, and even soft biomaterials. However, a less investigated system is the indentation in highly cross-linked polymer (HCP) networks, where the complex network structure plays a key role in dictating their physical properties. In this work, we investigate the structure-property relationship in HCP networks using the computational indentation of a generic model. We establish a correlation between the local bond breaking, network rearrangement, and small-scale mechanics. The results are compared with the elastic-plastic deformation model. HCPs harden upon indentation.
Collapse
Affiliation(s)
- Manoj Kumar Maurya
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| | - Céline Ruscher
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Manjesh Kumar Singh
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| |
Collapse
|
24
|
Wang J, O'Connor TC, Grest GS, Ge T. Superstretchable Elastomer from Cross-linked Ring Polymers. PHYSICAL REVIEW LETTERS 2022; 128:237801. [PMID: 35749195 DOI: 10.1103/physrevlett.128.237801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.
Collapse
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Thomas C O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
25
|
Conformation and structure of ring polymers in semidilute solutions: A molecular dynamics simulation study. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wu Z, Müller-Plathe F. Slip-Spring Hybrid Particle-Field Molecular Dynamics for Coarse-Graining Branched Polymer Melts: Polystyrene Melts as an Example. J Chem Theory Comput 2022; 18:3814-3828. [PMID: 35617016 DOI: 10.1021/acs.jctc.2c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The topology of chains significantly modifies the dynamical properties of polymer melts. Here, we extend a recently developed efficient simulation method, namely the slip-spring hybrid particle-field (SS-hPF) model, to study the structural and dynamical properties of branched polymer melts over large spatial-temporal scales. In the coarse-grained SS-hPF simulation of polymers, the bonded potentials are derived by iterative Boltzmann inversion from the underlying fine-grained model. The nonbonded potentials are computed from a density functional field instead of pairwise interactions used in standard molecular dynamics simulations, which increases the computational efficiency by a factor of 10-20. The entangled dynamics is lost due to the soft-core nature of density functional field interactions. It is recovered by a multichain slip-spring model that is rigorously parametrized from existing experimental or simulation data. To quantitatively predict the relaxation and diffusion of branched polymers, which are dominated by arm retraction rather than chain reptation, the slip-spring algorithm is augmented to improve the polymer dynamics near the branch point. Multiple dynamical observables, e.g., diffusion coefficients, arm relaxations, and tube survival probabilities, are characterized in an example coarse-grained model of symmetric and asymmetric star-shaped polystyrene melts. Consistent dynamical behaviors are identified and compared with theoretical predictions. With a single rescaling factor, the prediction of diffusion coefficients agrees well with the available experimental measurements. In this work, an efficient approach is provided to build chemistry-specific coarse-grained models for predicting the dynamics of branched polymers.
Collapse
Affiliation(s)
- Zhenghao Wu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
27
|
Sommer JU, Merlitz H, Schiessel H. Polymer-Assisted Condensation: A Mechanism for Hetero-Chromatin Formation and Epigenetic Memory. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, 01062 Dresden, Germany
| |
Collapse
|
28
|
Yamamoto T, Campbell JA, Panyukov S, Rubinstein M. Scaling Theory of Swelling and Deswelling of Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jonathan A. Campbell
- Department of Mathematics, Duke University, 120 Science Drive, Durham, North Carolina 27708, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia 117924
| | - Michael Rubinstein
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
McGraw ML, Reilly LT, Clarke RW, Cavallo L, Falivene L, Chen EY. Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angew Chem Int Ed Engl 2022; 61:e202116303. [PMID: 35132730 PMCID: PMC9304268 DOI: 10.1002/anie.202116303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/25/2022]
Abstract
In typical cyclic polymer synthesis via ring-closure, chain growth and cyclization events are competing with each other, thus affording cyclic polymers with uncontrolled molecular weight or ring size and high dispersity. Here we uncover a mechanism by which Lewis pair polymerization (LPP) operates on polar vinyl monomers that allows the control of where and when cyclization takes place, thereby achieving spatial and temporal control to afford precision cyclic vinyl polymers or block copolymers with predictable molecular weight and low dispersity (≈1.03). A combined experimental and theoretical study demonstrates that cyclization occurs only after all monomers have been consumed (when) via conjugate addition of the propagating chain end to the specific site of the initiating chain end (where), allowing the cyclic polymer formation steps to be regulated and executed with precision in space and time.
Collapse
Affiliation(s)
- Michael L. McGraw
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Liam T. Reilly
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Ryan W. Clarke
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)Physical Sciences and Engineering DivisionKAUST Catalysis CenterThuwal23955-6900Saudi Arabia
| | - Laura Falivene
- Università di SalernoDipartimento di Chimica e BiologiaVia Papa Paolo Giovanni II84100Fisciano (SA)Italy
| | - Eugene Y.‐X. Chen
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| |
Collapse
|
30
|
Rudyak VY, Sergeev AV, Kozhunova EY, Molchanov VS, Philippova OE, Chertovich AV. Viscosity of macromolecules with complex architecture. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
McGraw ML, Reilly LT, Clarke RW, Cavallo L, Falivene L, Chen EY. Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael L. McGraw
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Liam T. Reilly
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Ryan W. Clarke
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Thuwal 23955-6900 Saudi Arabia
| | - Laura Falivene
- Università di Salerno Dipartimento di Chimica e Biologia Via Papa Paolo Giovanni II 84100 Fisciano (SA) Italy
| | - Eugene Y.‐X. Chen
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| |
Collapse
|
32
|
Mo J, Wang J, Wang Z, Lu Y, An L. Size and Dynamics of a Tracer Ring Polymer Embedded in a Linear Polymer Chain Melt Matrix. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiangyang Mo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jian Wang
- College of Chemistry and Chemical Engineering, Cangzhou Normal University, Cangzhou 061001, P.R. China
| | - Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
33
|
Yu G, Ji Y, Qin J, Hong W, Li C, Zhang G, Wu H, Guo S. Producing Microlayer Pipes and Tubes through Multiplication Coextrusion and Unique Annular Die: Simulation and Experiment. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guiying Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Yuan Ji
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Jingxian Qin
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Weiyouran Hong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Chunhai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Guangdong Zhang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hong Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| |
Collapse
|
34
|
Peddireddy KR, Michieletto D, Aguirre G, Garamella J, Khanal P, Robertson-Anderson RM. DNA Conformation Dictates Strength and Flocculation in DNA-Microtubule Composites. ACS Macro Lett 2021; 10:1540-1548. [PMID: 35549144 PMCID: PMC9239750 DOI: 10.1021/acsmacrolett.1c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gina Aguirre
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Pawan Khanal
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
35
|
Jeong SH, Ha TY, Cho S, Roh EJ, Kim JM, Baig C. Melt Rheology of Short-Chain Branched Ring Polymers in Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung Heum Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Tae Yong Ha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Soowon Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Eun Jung Roh
- KOLON Advanced Research Cluster, KOLON One & Only Tower, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, South Korea
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyeonggi-do, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| |
Collapse
|
36
|
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
37
|
Parisi D, Kaliva M, Costanzo S, Huang Q, Lutz PJ, Ahn J, Chang T, Rubinstein M, Vlassopoulos D. Nonlinear rheometry of entangled polymeric rings and ring-linear blends. JOURNAL OF RHEOLOGY 2021; 65:695-711. [PMID: 35250122 PMCID: PMC8896906 DOI: 10.1122/8.0000186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/06/2021] [Indexed: 06/14/2023]
Abstract
We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in nonlinear shear and elongation. In particular, data for shear stress growth coefficient, steady-state shear viscosity, and first and second normal stress differences are obtained and discussed as functions of shear rate as well as molecular parameters (molar mass, blend composition and decreasing molar mass of linear component in blend). Over the extended parameter range investigated, rings do not exhibit clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends. For the latter, the size of the undershoot and respective strain appear to increase with shear rate. Universal scaling of strain at overshoot and fractional overshoot (ratio of maximum to steady-state shear stress growth coefficient) indicates subtle differences in the shear-rate dependence between rings and linear polymers or their blends. The shear thinning behaviour of pure rings yields a slope nearly identical to predictions (-4/7) of a recent shear slit model and molecular dynamics simulations. Data for the second normal stress difference are reported for rings and ring-linear blends. While N 2 is negative and its absolute value stays below that of N 1 , as for linear polymers, the ratio -N 2 /N 1 is unambiguously larger for rings compared to linear polymer solutions with the same number of entanglements (almost by factor of two), in agreement with recent non-equilibrium molecular dynamics simulations. Further, -N 2 exhibits slightly weaker shear rate dependence compared to N 1 at high rates, and the respective power-law exponents can be rationalized in view of the slit model (3/7) and simulations (0.6), although further work is needed to unravel the molecular original of the observed behaviour. The comparison of shear and elongational stress growth coefficients for blends reflects the effect of ring-linear threading which leads to significant viscosity enhancement in elongation. Along the same lines, the elongational stress is much larger than the first normal stress in shear, and their ratio is much larger for rings and ring-linear blends compared to linear polymers. This conforms the interlocking scenario of rings and their important role in mechanically reinforcing linear matrices.
Collapse
Affiliation(s)
- Daniele Parisi
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| | - Maria Kaliva
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| | - Salvatore Costanzo
- Department of Chemical, Materials, and Production Engineering, Federico II University, 80125 Naples, Italy
| | - Qian Huang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark 2800 Kgs. Lyngby, Denmark
| | - Pierre J Lutz
- Institut Charles Sadron, CNRS UPR 22, University of Strasbourg, 67034, Strasbourg, France
| | - Junyoung Ahn
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Taihyun Chang
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Michael Rubinstein
- Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, NC 27708, USA
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| |
Collapse
|