1
|
Sun Y, Zhang C, Zhang X. O/S Exchange Reaction in Synthesizing Sulfur-Containing Polymers. Chemistry 2024; 30:e202401684. [PMID: 38802324 DOI: 10.1002/chem.202401684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Using carbon disulfide (CS2) and carbonyl sulfide (COS) as sulfur-containing and one-carbon feedstocks to make value-added products is paramount for both pure and applied chemistry and environmental science. One of the practical strategies is to copolymerize these bulk chemicals with epoxides to produce sulfur-containing polymers. This approach contributes to improving the sustainability of polymer manufacturing, provides highly desired functional polymer materials, and has attracted much attention. However, these copolymerizations invariably exhibit the intensely complicated chemistry of O/S exchange reaction, leading to sulfur-containing polymers with diverse architectures. As the understanding of O/S exchange continues to deepen, recent efforts have guided significant advances in the synthesis of CS2- and COS-based polymers. This review examines the O/S exchange chemistry and summarizes the recent progress in this field to promote the further advance of synthesizing sulfur-containing polymers from CS2 and COS.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Stephan J, Olmedo-Martínez JL, Fornacon-Wood C, Stühler MR, Dimde M, Braatz D, Langer R, Müller AJ, Schmalz H, Plajer AJ. Easy Synthetic Access to High-Melting Sulfurated Copolymers and their Self-Assembling Diblock Copolymers from Phenylisothiocyanate and Oxetane. Angew Chem Int Ed Engl 2024; 63:e202405047. [PMID: 38520388 DOI: 10.1002/anie.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Although sulfurated polymers promise unique properties, their controlled synthesis, particularly when it comes to complex and functional architectures, remains challenging. Here, we show that the copolymerization of oxetane and phenyl isothiocyanate selectively yields polythioimidocarbonates as a new class of sulfur containing polymers, with narrow molecular weight distributions (Mn=5-80 kg/mol with Đ≤1.2; Mn,max=124 kg/mol) and high melting points of up to 181 °C. The method tolerates different substituent patterns on both the oxetane and the isothiocyanate. Self-nucleation experiments reveal that π-stacking of phenyl substituents, the presence of unsubstituted polymer backbones, and the kinetically controlled linkage selectivity are key factors in maximising melting points. The increased tolerance to macro-chain transfer agents and the controlled propagation allows the synthesis of double crystalline and amphiphilic diblock copolymers, which can be assembled into micellar- and worm-like structures with amorphous cores in water. In contrast, crystallization driven self-assembly in ethanol gives cylindrical micelles or platelets.
Collapse
Affiliation(s)
- Jenny Stephan
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Jorge L Olmedo-Martínez
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Christoph Fornacon-Wood
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Merlin R Stühler
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Mathias Dimde
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Daniel Braatz
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Robert Langer
- Institute for Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Alejandro J Müller
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Holger Schmalz
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Alex J Plajer
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
3
|
Yue TJ, Ren WM, Lu XB. Copolymerization Involving Sulfur-Containing Monomers. Chem Rev 2023; 123:14038-14083. [PMID: 37917384 DOI: 10.1021/acs.chemrev.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
4
|
Schwarz DB, Patil A, Singla S, Dhinojwala A, Eagan JM. Metal-catalyzed copolymerizations of epoxides and carbon disulfide for high-refractive index low absorbance adhesives and plastics. Front Chem 2023; 11:1287528. [PMID: 38025056 PMCID: PMC10652881 DOI: 10.3389/fchem.2023.1287528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
High-refractive index plastics are useful materials due to their optical properties, ease of processing, and low-costs compared to their inorganic counterparts. Catalytic carbon disulfide (CS2) copolymerization with epoxides is one method for producing low-cost high refractive index polymers. The reaction is accompanied by an oxygen-sulfur exchange reaction which produces irregular microstructures in the repeating units. In this study, metal salen catalysts were investigated with different metal centers (Al, Cr, Co) and salen ligand electronics, sterics, backbones, and co-catalyst in the copolymerization of CS2 with propylene oxide (PO) and cyclohexene oxide (CHO). The results reveal the essential nature of Cr metal centers on reactivity and the backbone geometry on monomer selectivity. There were no significant impacts on the O-S exchange reaction when ligand design changed, however PO and CHO/CS2 copolymers yield different monothiocarbonate microstructures. Additionally, the effects of microstructure on optical and thermal properties were investigated using spectroscopic ellipsometry and calorimetry, respectively. The CHO system produced high T g plastics (93°C) with high refractive indexes (n up to 1.64), modest absorbance (κ < 0.020), and Abbe numbers of 32.2 while PO yielded low T g adhesives (T g = 9°C) with high refractive indexes (n up to 1.73), low absorbance (κ < 0.005), and low Abbe numbers (V D = 19.1).
Collapse
Affiliation(s)
| | | | | | | | - James M. Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| |
Collapse
|
5
|
Wang XW, Hui JW, Li YT, Gu YR, Li ZB. Facile Synthesis of Polycarbonate Diol via Copolymerization of CO2 and Cyclohexene Oxide Catalysed by a Combination of One-Component Phosphonium Borane Lewis Pair and Water. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Ullah Khan M, Ullah Khan S, Cao X, Usman M, Yue X, Ghaffar A, Hassan M, Zhang C, Zhang X. Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity. Chem Asian J 2023; 18:e202201050. [PMID: 36342176 DOI: 10.1002/asia.202201050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Indexed: 11/09/2022]
Abstract
This study demonstrates the superiority of a stable and well-defined heterogeneous cobalt hexacyanocobaltate (Co3 [Co(CN)6 ]2 ), a typical cobalt Prussian Blue Analogue (CoCo-PBA) that catalyzes the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO) to produce poly(propylene monothiocarbonate)s (PPMTC). The number-average molecular weights of the PPMTC were 66.4 to 139.4 kg/mol, with a polydispersity of 2.0-3.9. The catalyst productivity reached 1040 g polymer/g catalyst (12.0 h). The oxygen-sulfur exchange reaction (O/S ER), which would generate random thiocarbonate and carbonate units, was effectively suppressed, and thus the selectivity of the monothiocarbonate over carbonate linkages was up to >99%. It was shown that no cyclic thiocarbonate byproduct was produced during the heterogeneous catalysis of COS/PO copolymerization using CoCo-PBA as the catalyst. The content of monothiocarbonate and ether units in the copolymer chain could be regulated by tuning the feeding amount of COS.
Collapse
Affiliation(s)
- Munir Ullah Khan
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Xiaohan Cao
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Muhammad Usman
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xinchen Yue
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Abdul Ghaffar
- Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China
| | - Muhammad Hassan
- Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China
| | - Chengjian Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xinghong Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China.,Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 030013, Shanxi, P. R. China
| |
Collapse
|
7
|
One-pot construction of random, gradient and triblock copolymers from CO2, epoxides and phthalic anhydride by metal-free catalyst. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zhang YY, Yang GW, Xie R, Zhu XF, Wu GP. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts. J Am Chem Soc 2022; 144:19896-19909. [PMID: 36256447 DOI: 10.1021/jacs.2c07857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Lidston CAL, Severson SM, Abel BA, Coates GW. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Claire A. L. Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Sarah M. Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Brooks A. Abel
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
10
|
Kiriratnikom J, Guo J, Cao X, Khan MU, Zhang C, Zhang X. Metal‐free terpolymerization of propylene oxide, carbon dioxide, and carbonyl sulfide: A facile route to sulfur‐containing polycarbonates with gradient sequences. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiraya Kiriratnikom
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jiafang Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xiaohan Cao
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Munir Ullah Khan
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Chengjian Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xinghong Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
12
|
Chen XL, Wang B, Song DP, Pan L, Li YS. One-Step Synthesis of Sequence-Controlled Polyester-block-Poly(ester-alt-thioester) by Chemoselective Multicomponent Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Lu Chen
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue-Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Zhu X, Yang G, Xie R, Wu G. One‐Pot Construction of Sulfur‐Rich Thermoplastic Elastomers Enabled by Metal‐Free Self‐Switchable Catalysis and Air‐Assisted Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guang‐Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
14
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022; 61:e202104495. [PMID: 34015162 PMCID: PMC9298364 DOI: 10.1002/anie.202104495] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer-polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.
Collapse
Affiliation(s)
- Alex J. Plajer
- Oxford ChemistryChemical Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
15
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex J. Plajer
- Oxford Chemistry Chemical Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | |
Collapse
|
16
|
Habets T, Siragusa F, Muller A, Grossman Q, Ruffoni D, Grignard B, Detrembleur C. Facile construction of functional poly(monothiocarbonate)s copolymers under mild operating conditions. Polym Chem 2022. [DOI: 10.1039/d2py00307d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The installation of both oxazolidone and thiocarbonate linkages within a single polymer backbone remains elusive by simple procedures under mild conditions. In this work, we report the construction of copolymers...
Collapse
|
17
|
Chen W, Zhou H, Ren BH, Ren WM, Lu XB. COS-triggered oxygen/sulfur exchange of isatins: chemoselective synthesis of functionalized isoindigos and spirothiopyrans via self-condensation and the thio-Diels-Alder reaction. Org Biomol Chem 2021; 20:678-685. [PMID: 34939627 DOI: 10.1039/d1ob02157e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present the first organocatalytic oxygen/sulfur atom exchange reaction (O/S ER) of isatins by employing carbonyl sulfide (COS) as a novel sulfuring reagent under mild reaction conditions. 8-Diazabicyclo[5.4.0]undec-7-ene (DBU) exhibited excellent activity in this approach. Remarkably, the chemical transformations of in situ generated 3-thioisatins can be tuned via the judicious choice of reaction solvents in a one pot process, enabling the selective formation of either functionalized isoindigos in CH3CN via a self-condensation process or spirothiopyrans in DMSO in the presence of conjugated dienes via the thio-Diels-Alder reaction. Mechanistic studies with experimental and density functional theory approaches revealed that the O/S ER between isatins and COS results in the formation of 3-thioisatins as the key intermediates, which further undergo solvent-controlled transformations to generate isoindigos or spirothiopyrans, respectively. The easily-accessible substrates and operational simplicity make the process suitable for further exploration. The practicality of this transformation was demonstrated by the gram-scale synthesis of isoindigo-based drug molecules and donor-acceptor conjugated polymers.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Zhu XF, Yang GW, Xie R, Wu GP. One-Pot Construction of Sulfur-Rich Thermoplastic Elastomers Enabled by Metal-Free Self-Switchable Catalysis and Air-Assisted Coupling. Angew Chem Int Ed Engl 2021; 61:e202115189. [PMID: 34866295 DOI: 10.1002/anie.202115189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Construction of well-defined sulfur-rich macromolecules in a facile manner is an interesting but challenging topic. Herein, we disclose how to readily construct well-defined triblock sulfur-rich thermoplastic elastomers via a self-switchable isothiocyanate/episulfide copolymerization and air-assisted oxidative coupling strategy. During self-switchable polymerization, alternating copolymerization of isothiocyanate and episulfide occurs initially due to the lower energy barrier for isothiocyanate insertion with respect to successive episulfide ring-opening. After exhaustion of isothiocyanate, ring-opening polymerization of episulfide begins, providing diblock polymers. Subsequent exposure of the reaction to air leads to a transformation of diblock copolymers into triblock thermoplastic elastomers. This protocol can be extended to diverse isothiocyanates and episulfides, allowing fine-tuning of the performance of the produced sulfur-rich thermoplastic elastomers.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
19
|
Yue T, Ren B, Zhang W, Lu X, Ren W, Darensbourg DJ. Randomly Distributed Sulfur Atoms in the Main Chains of CO
2
‐Based Polycarbonates: Enhanced Optical Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian‐Jun Yue
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- DepartmentDepartment of Chemistry Texas A&M University College Station TX 77843 USA
| | - Bai‐Hao Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen‐Jian Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wei‐Min Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | | |
Collapse
|
20
|
Zhu XF, Xie R, Yang GW, Lu XY, Wu GP. Precisely Alternating Copolymerization of Episulfides and Isothiocyanates: A Practical Route to Construct Sulfur-Rich Polymers. ACS Macro Lett 2021; 10:135-140. [PMID: 35548986 DOI: 10.1021/acsmacrolett.0c00831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of a controlled and reliable method to construct well-defined sulfur-containing polymers has sparked great interest in polymer science. Herein, we present the trial on the copolymerization of isothiocyanates with episulfides in the presence of organic onium salts, which provides direct access to a class of sulfur-rich polymers. This methodology has combined advantages of simple operation, no metals, mild conditions (25-100 °C), controlled polymerization performance (Mn > 105 g mol-1, Đ < 1.3), and high reactivity (turnover frequency over 1000 h-1). The metal-free feature and versatility of the easily accessible monomers, along with fine adjustment of the final properties enable this strategy to be a feasible approach to produce sulfur-rich polymers (16 examples).
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin-Yu Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Yue TJ, Wang LY, Ren WM. The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polym Chem 2021. [DOI: 10.1039/d1py01065d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review comprehensively summarized the recent progresses made in the precise synthesis of sulfur-containing polymers from the structure control, stereochemistry control and the topological structure modification aspects.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Li-Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
22
|
Kiriratnikom J, Yue XC, Yang JL, Wang Y, Chen SH, Zhang KK, Zhang CJ, Khan MU, Zhang XH. Unprecedentedly high active organocatalysts for the copolymerization of carbonyl sulfide and propylene oxide: steric hindrance effect of tertiary amines. Polym Chem 2021. [DOI: 10.1039/d1py01013a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The TEB/DMCHA pair shows exceedingly high turnover frequency of 69 800 h−1 for organocatalytic COS/PO copolymerization at 60 °C under solvent-free conditions.
Collapse
Affiliation(s)
- Jiraya Kiriratnikom
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Xin-Chen Yue
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Jia-Liang Yang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Ying Wang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Shuo-Hong Chen
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Ke-Ke Zhang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Jian Zhang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Yue TJ, Ren BH, Zhang WJ, Lu XB, Ren WM, Darensbourg DJ. Randomly Distributed Sulfur Atoms in the Main Chains of CO 2 -Based Polycarbonates: Enhanced Optical Properties. Angew Chem Int Ed Engl 2020; 60:4315-4321. [PMID: 33180984 DOI: 10.1002/anie.202012565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Polymeric materials possessing both high refractive indices and high Abbe numbers are much in demand for the development of advanced optical devices. However, the synthesis of such functional materials is a challenge because of the trade-off between these two properties. Herein, a synthetic strategy is presented for enhancing the optical properties of CO2 -based polycarbonates by modifying the polymer's topological structure. Terpolymers with thiocarbonate and carbonate units randomly distributed in the polymers' main chain were synthesized via the terpolymerization of cyclohexene oxide with a mixture of CO2 and COS in the presence of metal catalysts, most notably a dinuclear aluminum complex. DFT calculations were employed to explain why different structural sequence were obtained with distinct bimetallic catalysts. Varying the CO2 pressure made it possible to obtain terpolymers with tunable carbonate linkages in the polymer chain. More importantly, optical property studies revealed that terpolymers with comparable thiocarbonate and carbonate units exhibited a refractive index of 1.501 with an enhanced Abbe number as high as 48.6, much higher than the corresponding polycarbonates or polythiocarbonates. Additionally, all terpolymers containing varying thiocarbonate content displayed good thermal properties with Tg >109 °C and Td >260 °C, suggesting little loss in the thermal stability compared to the polycarbonate. Hence, modification of the topological structure of the polycarbonate is an efficient method of obtaining polymeric materials with enhanced optical properties without compromising thermal performance.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.,DepartmentDepartment of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wen-Jian Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Donald J Darensbourg
- DepartmentDepartment of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
24
|
Yang JL, Wang Y, Cao XH, Zhang CJ, Chen Z, Zhang XH. Enabling Oxygen-Sulfur Exchange Reaction to Produce Semicrystalline Copolymers from Carbon Disulfide and Ethylene Oxide. Macromol Rapid Commun 2020; 42:e2000472. [PMID: 33205599 DOI: 10.1002/marc.202000472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/13/2020] [Indexed: 11/08/2022]
Abstract
This work describes the first example of semicrystalline poly(thiocarbonate)s from carbon disulfide (CS2 ) and ethylene oxide (EO), two mass producible low-cost monomers. Lewis acid/base pairs (LPs) exhibit high activity (EO conversion up to >99%, 8 h) in catalyzing the copolymerization under low Lewis pair/monomer ratio of 1:1500. Oxygen-sulfur exchange reaction (O-S ER) during the copolymerization of CS2 and EO, the generation and mutual copolymerization with COS, CO2 , and episulfide, is harnessed to introduce crystallizable segments [SC(O)O and SC(S)S] in the copolymer. The type of Lewis base is found to have a great impact on the chain microstructure and the crystalline properties. The formed copolymers with melting point from 117.7 to 245.3 °C are obtained. The maximum crystallinity is estimated to be 78% based on the powder wide-angle X-ray diffraction pattern. This work provides a general method to prepare semicrystalline sulfur-containing polymers.
Collapse
Affiliation(s)
- Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
25
|
Patil N, Bhoopathi S, Chidara V, Hadjichristidis N, Gnanou Y, Feng X. Recycling a Borate Complex for Synthesis of Polycarbonate Polyols: Towards an Environmentally Friendly and Cost-Effective Process. CHEMSUSCHEM 2020; 13:5080-5087. [PMID: 32691981 DOI: 10.1002/cssc.202001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Indexed: 06/11/2023]
Abstract
In this investigation, a metal-free process was developed that enables the synthesis of poly(propylene carbonate) (PPC) diols/polyols by copolymerization of CO2 with propylene epoxide (PO) under environmentally friendly and cost-effective conditions. This process implies the recycling of triethylborane and of ammonium salts that both enter in the composition of the initiators used to copolymerize CO2 and PO. In complement to the above approach, a polymeric support, poly(diallyl dimethylammonium chloride), was synthesized and modified to carry ammonium carboxylate salts along its chain. The prepared polymeric initiator was utilized to copolymerize CO2 with PO under heterogeneous conditions. Not only were the polymerization results similar to the samples obtained under homogeneous conditions, but the polymer substrate could easily be recovered by simple filtration. The integrity of the polycarbonate diols/polyols and the recycling process were followed by 1 H and 11 B NMR spectroscopy, gel permeation chromatography, and matrix assisted laser desorption ionization time of flight (MALDI-TOF) MS.
Collapse
Affiliation(s)
- Naganath Patil
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Senthil Bhoopathi
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Vamshi Chidara
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
26
|
Yue T, Bhat GA, Zhang W, Ren W, Lu X, Darensbourg DJ. Facile Synthesis of Well‐Defined Branched Sulfur‐Containing Copolymers: One‐Pot Copolymerization of Carbonyl Sulfide and Epoxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tian‐Jun Yue
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Gulzar A. Bhat
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Wen‐Jian Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wei‐Min Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | | |
Collapse
|
27
|
Tan D, Hu X, Cao Z, Luo M, Darensbourg DJ. Zwitterionic Alternating Polymerization to Generate Semicrystalline and Recyclable Cyclic Polythiourethanes. ACS Macro Lett 2020; 9:866-871. [PMID: 35648520 DOI: 10.1021/acsmacrolett.0c00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis of cyclic, semicrystalline, and recyclable polythiourethanes was realized via the catalyst-free zwitterionic alternating copolymerization of N-alkyl aziridines with carbonyl sulfide (COS) under mild conditions. The copolymerization proceeded efficiently at room temperature and generated copolymers with fully alternating linkages in more than 99% selectivity in 5 min under solvent-free conditions. Notably, the copolymers are typical semicrystalline thermoplastics with melting temperatures up to 137 °C (n-butyl-substituted) or 170 °C (ethyl-substituted). The resulting polythiourethanes are predominantly cyclic as evidenced by 1H NMR and MALDI-TOF mass spectroscopies. Remarkably, the cyclic copolymers could be recycled into N-substituted cyclic thiourethanes in quantitative yield by heating at 250 °C for 2 h.
Collapse
Affiliation(s)
- Dawei Tan
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Xin Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ming Luo
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Yue TJ, Bhat GA, Zhang WJ, Ren WM, Lu XB, Darensbourg DJ. Facile Synthesis of Well-Defined Branched Sulfur-Containing Copolymers: One-Pot Copolymerization of Carbonyl Sulfide and Epoxide. Angew Chem Int Ed Engl 2020; 59:13633-13637. [PMID: 32372553 DOI: 10.1002/anie.202005806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Topological polymers possess many advantages over linear polymers. However, when it comes to the poly(monothiocarbonate)s, no topological polymers have been reported. Described herein is a facile and efficient approach for synthesizing well-defined branched poly(monothiocarbonate)s in a "grafting through" manner by copolymerizing carbonyl sulfide (COS) with epichlorohydrin (ECH), where the side-chain forms in situ. The lengths of the side-chains are tunable based on reaction temperatures. More importantly, enhancement in thermal properties of the branched copolymer was observed, as the Tg value increased by 22 °C, compared to the linear analogues. When chiral ECH was utilized, semicrystalline branched poly(monothiocarbonate)s were accessible with a Tm value of 112 °C, which is 40 °C higher than that of the corresponding linear poly(monothiocarbonate)s. The strategy presented herein for synthesizing branched polymers provides efficient and concise access to topological polymers.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.,Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Gulzar A Bhat
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Wen-Jian Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | | |
Collapse
|
29
|
Jurrat M, Pointer-Gleadhill BJ, Ball LT, Chapman A, Adriaenssens L. Polyurethanes and Polyallophanates via Sequence-Selective Copolymerization of Epoxides and Isocyanates. J Am Chem Soc 2020; 142:8136-8141. [PMID: 32311265 DOI: 10.1021/jacs.0c03520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl isocyanates are introduced as comonomers for ring-opening copolymerization (ROCOP) with epoxides. Informed by studies of reaction kinetics, we show that divergent sequence selectivity for AB- and ABB-type copolymers can be achieved with a single dimagnesium catalyst. The resulting materials respectively constitute a new class of polyurethanes (PUs) and a new class of materials featuring an unprecedented backbone structure, the polyallophanates (PAs). The successful use of isocyanate comonomers in this way marks a new direction for the field of ROCOP while providing distinct opportunities for expansion of PU structural diversity. Specifically, the methodology reported herein delivers PUs featuring fully substituted (tertiary) carbamyl nitrogen atoms, a structural motif that is almost inaccessible via extant polymerization strategies. Thus, in one step from commercially available comonomers, our methodology expands the scope of ROCOP and gives access to diverse materials featuring both privileged (PU) and unexplored (PA) microstructures.
Collapse
Affiliation(s)
- Mark Jurrat
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Benjamin J Pointer-Gleadhill
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Liam T Ball
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Andy Chapman
- Faculty of Science, Engineering and Computing, Kingston University, London KT1 2EE, U.K
| | - Louis Adriaenssens
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7DL, U.K
| |
Collapse
|
30
|
Cao XH, Zhang CJ, Yang JL, Hu LF, Zhang XH. Repurposing poly(monothiocarbonate)s to poly(thioether)s with organic bases. Polym Chem 2020. [DOI: 10.1039/c9py01147a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work reports a unique one-pot/one-step route to rapidly produce poly(thioether)s from poly(monothiocarbonate) (PMTC), a sulfur-containing polymer, using commercially available organic bases.
Collapse
Affiliation(s)
- Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lan-Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
31
|
Wu S, Luo M, Darensbourg DJ, Zuo X. Catalyst-Free Construction of Versatile and Functional CS2-Based Polythioureas: Characteristics from Self-Healing to Heavy Metal Absorption. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuang Wu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Ming Luo
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaobing Zuo
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| |
Collapse
|
32
|
|
33
|
Patil NG, Boopathi SK, Alagi P, Hadjichristidis N, Gnanou Y, Feng X. Carboxylate Salts as Ideal Initiators for the Metal-Free Copolymerization of CO2 with Epoxides: Synthesis of Well-Defined Polycarbonates Diols and Polyols. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00122] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Cao XH, Yang JL, Wu HL, Wang RY, Zhang XH, Xu JT. Crystallization behavior and morphology of novel aliphatic poly(monothiocarbonate)s. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Zhou H, Zhang R, Zhang H, Mu S, Lu XB. Organocatalytic cycloaddition of carbonyl sulfide with propargylic alcohols to 1,3-oxathiolan-2-ones. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00062c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis base-COS adducts were firstly studied as organocatalysts for the cyclization of propargylic alcohols with carbonyl sulfide.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Rui Zhang
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Hui Zhang
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Sen Mu
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| |
Collapse
|
36
|
Yue TJ, Ren WM, Chen L, Gu GG, Liu Y, Lu XB. Synthesis of Chiral Sulfur-Containing Polymers: Asymmetric Copolymerization of meso
-Epoxides and Carbonyl Sulfide. Angew Chem Int Ed Engl 2018; 57:12670-12674. [DOI: 10.1002/anie.201805200] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/31/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Li Chen
- Faculty of Machenical Engineering Materials and Energy; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Ge-Ge Gu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| |
Collapse
|
37
|
Yue TJ, Ren WM, Chen L, Gu GG, Liu Y, Lu XB. Synthesis of Chiral Sulfur-Containing Polymers: Asymmetric Copolymerization of meso
-Epoxides and Carbonyl Sulfide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805200] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Li Chen
- Faculty of Machenical Engineering Materials and Energy; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Ge-Ge Gu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Road Dalian 116024 China
| |
Collapse
|
38
|
Yang JL, Cao XH, Zhang CJ, Wu HL, Zhang XH. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs. Molecules 2018; 23:E298. [PMID: 29385077 PMCID: PMC6017417 DOI: 10.3390/molecules23020298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h-1), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights (Mns) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.
Collapse
Affiliation(s)
- Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hai-Lin Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
39
|
Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem Rev 2017; 118:434-504. [PMID: 29220170 DOI: 10.1021/acs.chemrev.7b00435] [Citation(s) in RCA: 888] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CO2 conversion covers a wide range of possible application areas from fuels to bulk and commodity chemicals and even to specialty products with biological activity such as pharmaceuticals. In the present review, we discuss selected examples in these areas in a combined analysis of the state-of-the-art of synthetic methodologies and processes with their life cycle assessment. Thereby, we attempted to assess the potential to reduce the environmental footprint in these application fields relative to the current petrochemical value chain. This analysis and discussion differs significantly from a viewpoint on CO2 utilization as a measure for global CO2 mitigation. Whereas the latter focuses on reducing the end-of-pipe problem "CO2 emissions" from todays' industries, the approach taken here tries to identify opportunities by exploiting a novel feedstock that avoids the utilization of fossil resource in transition toward more sustainable future production. Thus, the motivation to develop CO2-based chemistry does not depend primarily on the absolute amount of CO2 emissions that can be remediated by a single technology. Rather, CO2-based chemistry is stimulated by the significance of the relative improvement in carbon balance and other critical factors defining the environmental impact of chemical production in all relevant sectors in accord with the principles of green chemistry.
Collapse
Affiliation(s)
- Jens Artz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Thomas E Müller
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Katharina Thenert
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Johanna Kleinekorte
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - Raoul Meys
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - André Sternberg
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - André Bardow
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany.,Max-Planck-Institute for Chemical Energy Conversion , Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
40
|
A Single-Site Iron(III)-Salan Catalyst for Converting COS to Sulfur-Containing Polymers. Polymers (Basel) 2017; 9:polym9100515. [PMID: 30965818 PMCID: PMC6418724 DOI: 10.3390/polym9100515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023] Open
Abstract
An iron(III) complex of tetradentate N,N′-disubstituted bis(aminophenoxide) (designated as salan, a saturated version of the corresponding salen ligand) with a sterically hindered organic base anchored on the ligand framework, can selectively mediate the conversion of carbonyl sulfide to sulfur-containing polymers by the copolymerization with epoxides. This single-site catalyst exhibits broad substrate scope, and the resultant copolymers have completely alternating structures. In addition, this catalyst is efficient in producing diblock copolymers, suggesting a living polymerization nature.
Collapse
|