1
|
Ren Z, Chen Z, Luo Z, Zhong F, Wu Y, Jiang L, Chen Y, Gao C, Wang L. Synergistically Improved Crystallinity and Molecular Doping Ability of Polythiophene-Diketopyrropyrrole Derivatives by m-Trifluoromethylbenzene Containing Side Chains for Improved Thermoelectric Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52988-52996. [PMID: 39297704 DOI: 10.1021/acsami.4c13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
m-Trifluoromethylbenzene (FB) groups have been widely employed in various fields; however, no studies have reported the use of FB in side chains to enhance the carrier mobility and molecular doping of conjugated polymers. In this study, based on density functional theory (DFT) calculations, we discovered that FB groups can effectively bind to [FeCl4]-, the counterion of the p-type dopant FeCl3, thereby increasing doping ability. Consequently, FB groups were incorporated into the side chains of thiophene-diketopyrrolopyrrole-based donor-acceptor (D-A)-conjugated polymers, and a series of random conjugated polymers were synthesized (denoted as PDPPFB-x, where x represents the molar ratio of the FB side chain). The findings revealed that an appropriate number of FB groups can decrease the π-π stacking distances, enhance the films' crystallinity, and consequently improve the charge transfer ability. Furthermore, after doping with FeCl3, the UV-vis-NIR spectra indicated that the doping efficiency was augmented by increasing the molar fraction of the FB side chain. Among these polymers, PDPPFB-10 exhibited the highest conductivity and power factor, which were 2.0 and 1.5 times higher than those of PDPPFB-0, respectively. These results illustrated a straightforward molecular design strategy for enhancing the crystallinity and conductivity of conjugated polymers, thereby expanding the way to optimize their thermoelectric performance.
Collapse
Affiliation(s)
- Zhibo Ren
- School of Chemistry and Environmental Engineering, Key Laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhifu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyong Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fei Zhong
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yufeng Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Linhai Jiang
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China
| | - Chunmei Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Liu C, Liang H, Xie R, Zhou Q, Qi M, Yang C, Gu X, Wang Y, Zhang G, Li J, Gong X, Chen J, Zhang L, Zhang Z, Ge X, Wang Y, Yang C, Liu Y, Liu X. A Three-in-One Hybrid Strategy for High-Performance Semiconducting Polymers Processed from Anisole. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401345. [PMID: 38647436 PMCID: PMC11220690 DOI: 10.1002/advs.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.
Collapse
Affiliation(s)
- Cheng Liu
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Huanhuan Liang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Runze Xie
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Quanfeng Zhou
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Miao Qi
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Chongqing Yang
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Xiaodan Gu
- School of Polymer Science and EngineeringCenter for Optoelectronic Materials and DevicesThe University of Southern MississippiHattiesburgMS39406USA
| | - Yunfei Wang
- School of Polymer Science and EngineeringCenter for Optoelectronic Materials and DevicesThe University of Southern MississippiHattiesburgMS39406USA
| | - Guoxiang Zhang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Jinlun Li
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Xiu Gong
- College of PhysicsGuizhou UniversityGuiyang550025P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zesheng Zhang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xiang Ge
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Yuanyu Wang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Chen Yang
- College of Big Data and Information EngineeringGuizhou UniversityGuiyang550025P. R. China
| | - Yi Liu
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Xuncheng Liu
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| |
Collapse
|
3
|
Dong Y, Zheng H, Lin Z, Peng J. Rapid Meniscus-Assisted Solution Printing of Large-Area Stripe Arrays of Highly Oriented Conjugated Polymers for Field-Effect Transistors. ACS Macro Lett 2024:212-218. [PMID: 38285531 DOI: 10.1021/acsmacrolett.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The ability to pattern semiconducting conjugated polymers (CPs) and concurrently enable their highly oriented chains represents an important endeavor to render their high charge mobility for electronic devices. However, simple yet generalizable routes to CPs with such desirable characteristics are limited. Herein, we report a robust meniscus-assisted solution printing (MASP) strategy to craft arrays of donor-acceptor CP stripes and scrutinize the correlation between different stripes and their charge transport attributes. Specifically, the MASP constrains the CP solution to evaporate between two nearly parallel plates with a stationary upper plate and a mobile lower plate containing periodic photoresist (PR) microchannels. Orchestrating the MASP speed comparable to the CP crystal growth rate yields CP stripe arrays with highly aligned CP crystals, resulting in the highest carrier mobility. Notably, our MASP technique can conveniently pattern other CPs of interest. It stands out as a simple strategy to impart large-scale production of functional materials for a wide range of applications in optics, electronics, sensors, etc.
Collapse
Affiliation(s)
- Yongjie Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hao Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhiqun Lin
- Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Luo S, Li Y, Li N, Cao Z, Zhang S, Ocheje MU, Gu X, Rondeau-Gagné S, Xue G, Wang S, Zhou D, Xu J. Real-time correlation of crystallization and segmental order in conjugated polymers. MATERIALS HORIZONS 2024; 11:196-206. [PMID: 37807887 DOI: 10.1039/d3mh00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modulating the segmental order in the morphology of conjugated polymers is widely recognized as a crucial factor for achieving optimal electronic properties and mechanical deformability. However, it is worth noting that the segmental order is typically associated with the crystallization process, which can result in rigid and brittle long-range ordered crystalline domains. To precisely control the morphology, a comprehensive understanding of how highly anisotropic conjugated polymers form segmentally ordered structures with ongoing crystallization is essential, yet currently elusive. To fill this knowledge gap, we developed a novel approach with a combination of stage-type fast scanning calorimetry and micro-Raman spectroscopy to capture the series of specimens with a continuum in the polymer percent crystallinity and detect the segmental order in real-time. Through the investigation of conjugated polymers with different backbones and side-chain structures, we observed a generally existing phenomenon that the degree of segmental order saturates before the maximum crystallinity is achieved. This disparity allows the conjugated polymers to achieve good charge carrier mobility while retaining good segmental dynamic mobility through the tailored treatment. Moreover, the crystallization temperature to obtain optimal segmental order can be predicted based on Tg and Tm of conjugated polymers. This in-depth characterization study provides fundamental insights into the evolution of segmental order during crystallization, which can aid in designing and controlling the optoelectronic and mechanical properties of conjugated polymers.
Collapse
Affiliation(s)
- Shaochuan Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Yukun Li
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Nan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Song Zhang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Michael U Ocheje
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Gi Xue
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Sihong Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jie Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| |
Collapse
|
5
|
Zhou Q, Liu C, Li J, Xie R, Zhang G, Ge X, Zhang Z, Zhang L, Chen J, Gong X, Yang C, Wang Y, Liu Y, Liu X. A skeletal randomization strategy for high-performance quinoidal-aromatic polymers. MATERIALS HORIZONS 2024; 11:283-296. [PMID: 37943155 DOI: 10.1039/d3mh01143g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Enhancing the solution-processability of conjugated polymers (CPs) without diminishing their thin-film crystallinity is crucial for optimizing charge transport in organic field-effect transistors (OFETs). However, this presents a classic "Goldilocks zone" dilemma, as conventional solubility-tuning methods for CPs typically yield an inverse correlation between solubility and crystallinity. To address this fundamental issue, a straightforward skeletal randomization strategy is implemented to construct a quinoid-donor conjugated polymer, PA4T-Ra, that contains para-azaquinodimethane (p-AQM) and oligothiophenes as repeat units. A systematic study is conducted to contrast its properties against polymer homologues constructed following conventional solubility-tuning strategies. An unusually concurrent improvement of solubility and crystallinity is realized in the random polymer PA4T-Ra, which shows moderate polymer chain aggregation, the highest crystallinity and the least lattice disorder. Consequently, PA4T-Ra-based OFETs, fabricated under ambient air conditions, deliver an excellent hole mobility of 3.11 cm2 V-1 s-1, which is about 30 times higher than that of the other homologues and ranks among the highest for quinoidal CPs. These findings debunk the prevalent assumption that a random polymer backbone sequence results in decreased crystallinity. The considerable advantages of the skeletal randomization strategy illuminate new possibilities for the control of polymer aggregation and future design of high-performance CPs, potentially accelerating the development and commercialization of organic electronics.
Collapse
Affiliation(s)
- Quanfeng Zhou
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Cheng Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Jinlun Li
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Runze Xie
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Guoxiang Zhang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Xiang Ge
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Zesheng Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiu Gong
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Chen Yang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Yuanyu Wang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Yi Liu
- The Molecular Foundry and Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California, 94720, USA
| | - Xuncheng Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Finkelmeyer SJ, Askins EJ, Eichhorn J, Ghosh S, Siegmund C, Täuscher E, Dellith A, Hupfer ML, Dellith J, Ritter U, Strzalka J, Glusac K, Schacher FH, Presselt M. Tailoring the Weight of Surface and Intralayer Edge States to Control LUMO Energies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305006. [PMID: 37572365 DOI: 10.1002/adma.202305006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Indexed: 08/14/2023]
Abstract
The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.
Collapse
Affiliation(s)
- Sarah Jasmin Finkelmeyer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Erik J Askins
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois, 60439, USA
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Soumik Ghosh
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | - Carmen Siegmund
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Eric Täuscher
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Uwe Ritter
- Institute for Chemistry and Biotechnology, Ilmenau University of Technology, 98684, Ilmenau, Germany
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Ksenija Glusac
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois, 60439, USA
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
7
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Achieving the high charge mobility of conjugated polymers under cyclic stretching by changing the interaction parameter between solvent and sidechain. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Tan E, Kim J, Stewart K, Pitsalidis C, Kwon S, Siemons N, Kim J, Jiang Y, Frost JM, Pearce D, Tyrrell JE, Nelson J, Owens RM, Kim YH, Kim JS. The Role of Long-Alkyl-Group Spacers in Glycolated Copolymers for High-Performance Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202574. [PMID: 35474344 DOI: 10.1002/adma.202202574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Semiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in a field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates hole polaron formation to be more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics simulation. These simultaneously high electronic and ionic charge-transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers.
Collapse
Affiliation(s)
- Ellasia Tan
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jingwan Kim
- Department of Chemistry and Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, Jinju, Gyeongnam, 660-701, South Korea
| | - Katherine Stewart
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Charalampos Pitsalidis
- Department of Physics, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, P. O. Box 127788, UAE
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sooncheol Kwon
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Nicholas Siemons
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yifei Jiang
- Department of Chemistry and Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, Jinju, Gyeongnam, 660-701, South Korea
| | - Jarvist M Frost
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Drew Pearce
- Experimental Solid State Physics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - James E Tyrrell
- Experimental Solid State Physics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jenny Nelson
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Roisin M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Yun-Hi Kim
- Department of Chemistry and Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, Jinju, Gyeongnam, 660-701, South Korea
| | - Ji-Seon Kim
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Cheon HJ, An TK, Kim YH. Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review. Macromol Res 2022. [DOI: 10.1007/s13233-022-0015-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Jo Y, Oh JG, Kim C, An TK, Jang J, Lee J. Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Jeon S, Sun C, Yu SH, Kwon SK, Chung DS, Jeong YJ, Kim YH. Synthesis of Cyclopentadithiophene-Diketopyrrolopyrrole Donor-Acceptor Copolymers for High-Performance Nonvolatile Floating-Gate Memory Transistors with Long Retention Time. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2743-2752. [PMID: 31868340 DOI: 10.1021/acsami.9b20307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic flash memories that employ solution-processed polymer semiconductors preferentially require internal stability of their active channel layers. In this paper, a series of new donor-acceptor copolymers based on cyclopentadithiophene (CDT) and diketopyrrolopyrrole (DPP) are synthesized to obtain high performance and operational stability of nonvolatile floating-gate memory transistors with various additional donor units including thiophene, thiophene-vinylene-thiophene (CDT-DPP-TVT), selenophene, and selenophene-vinylene-selenophene. Detailed analyses on the photophysical, two-dimensional grazing incident X-ray diffraction, and bias stress stability are discussed, which reveal that the CDT-DPP-TVT exhibits excellent bias stress stability over 105 s. To utilize the robust nature of CDT-DPP-TVT, floating-gate transistors are fabricated by embedding Au nanoparticles between Cytop layers as a charge storage site. The resulting memory devices reveal bistable current states with high on/off current ratio larger than 104 and each state can be distinguished for more than 1 year, indicating a long retention time. Moreover, repetitive writing-reading-erasing-reading test clearly supports the reproducible memory operation with reversible and reliable electrical responses. All these results suggest that the internal stability of CDT-DPP-TVT makes this copolymer a promising material for application in reliable organic flash memory.
Collapse
Affiliation(s)
- Soyeon Jeon
- Department of Energy Science and Engineering , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Cheng Sun
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Seong Hoon Yu
- Department of Energy Science and Engineering , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI , Gyeongsang National University , Jinju 660-701 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science and Engineering , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Yong Jin Jeong
- Department of Materials Science & Engineering , Korea National University of Transportation , Chungju 27469 , Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| |
Collapse
|
12
|
Prakoso SP, Kumar S, Wu SL, Ciou GT, Ke YJ, Venkateswarlu S, Tao YT, Wang CL. n-Type Thin-Film Transistors Based on Diketopyrrolopyrrole Derivatives: Role of Siloxane Side Chains and Electron-Withdrawing Substituents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1169-1178. [PMID: 31840487 DOI: 10.1021/acsami.9b18318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical properties, packing, morphology, and semiconducting performance of a planar π-conjugated system can be effectively modified by introducing side chains and substituent groups, both of which can be complementary to the π framework in changing the intermolecular association, frontier molecular orbital energy, optical band gap, and others. We herein show that installation of end-capped electron-withdrawing groups (EWGs), such as dicyanovinyl (-DCV), 3-ethylrhodanine (-RD), and 2-(3-oxo-indan-1-ylidene)-malononitrile (-INCN), together with siloxane side chains to the backbones of dithienyldiketopyrrolopyrrole (DPPT), such as DPPT-Si-DCV, DPPT-Si-RD, and DPPT-Si-INCN, can greatly improve its solubility, air stability, and film morphology to serve as an n-channel in thin-film transistor fabrication. The EWGs attached to the DPPT core narrowed the optical band gap (Egopt) and changed the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies (EHOMO and ELUMO), making them suitable for n-channel field-effect transistor (FET) applications. The benefits of introducing siloxane side chains to the DPPT core include enhanced solubility, low crystallization barrier, enantiotropic phase behavior, and much improved FET performance. The DPPT-Si-INCN film displayed low-lying HOMO (-5.82 eV) and LUMO (-4.60 eV) energy levels and an optical band gap as low as 1.22 eV, all of which suggest that this derivative can be quite resistant toward aerial oxidation. Thin films of these derivatives were prepared by the solution-shear method. A comparison of the solution-sheared films indicated that the molecular packing motif of DPPT-Si-INCN film was somehow different from that of DPPT-Si-DCV and DPPT-Si-RD, in which the π-π stacking tended to align orthogonally to the shearing direction. This specific π-π stacking alignment could have an impact on the electron mobility (μe) values in transistors based on the solution-sheared films.
Collapse
Affiliation(s)
- Suhendro Purbo Prakoso
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
- Institute of Chemistry , Academia Sinica , 128 Section 2, Academia Road , Taipei 11529 , Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program , Academia Sinica and National Chiao Tung University , Taipei 115 , Taiwan
| | - Sushil Kumar
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
| | - San-Lien Wu
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
| | - Guan-Ting Ciou
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
| | - Yao-Jin Ke
- Institute of Chemistry , Academia Sinica , 128 Section 2, Academia Road , Taipei 11529 , Taiwan
| | - Samala Venkateswarlu
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
- Institute of Chemistry , Academia Sinica , 128 Section 2, Academia Road , Taipei 11529 , Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program , Academia Sinica and National Chiao Tung University , Taipei 115 , Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry , Academia Sinica , 128 Section 2, Academia Road , Taipei 11529 , Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry , National Chiao Tung University , 1001 Ta-Shue Road , Hsinchu 30010 , Taiwan
| |
Collapse
|
13
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven E Bottle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
14
|
Electrohydrodynamic-Jet (EHD)-Printed Diketopyrrolopyroole-Based Copolymer for OFETs and Circuit Applications. Polymers (Basel) 2019; 11:polym11111759. [PMID: 31717795 PMCID: PMC6918276 DOI: 10.3390/polym11111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
We report the employment of an electrohydrodynamic-jet (EHD)-printed diketopyrrolopyrrole-based copolymer (P-29-DPPDTSE) as the active layer of fabricated organic field-effect transistors (OFETs) and circuits. The device produced at optimal conditions showed a field-effect mobility value of 0.45 cm2/(Vs). The morphologies of the printed P-29-DPPDTSE samples were determined by performing optical microscopy, X-ray diffraction, and atomic force microscopy experiments. In addition, numerical circuit simulations of the optimal printed P-29-DPPDTSE OFETs were done in order to observe how well they would perform in a high-voltage logic circuit application. The optimal printed P-29-DPPDTSE OFET showed a 0.5 kHz inverter frequency and 1.2 kHz ring oscillator frequency at a 40 V supply condition, indicating the feasibility of its use in a logic circuit application at high voltage.
Collapse
|
15
|
Yoon S, Ryu HS, Ha JU, Kang M, Nguyen TL, Woo HY, Chung DS. High-Performance Near-Infrared-Selective Thin Film Organic Photodiode Based on a Molecular Approach Targeted to Ideal Semiconductor Junctions. J Phys Chem Lett 2019; 10:5647-5653. [PMID: 31498632 DOI: 10.1021/acs.jpclett.9b02481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A molecular approach to achieve wide linear dynamic range (LDR) and near-infrared (NIR)-selective thin film organic photodiodes (OPDs) with high detectivity is reported. Comparative studies based on two NIR-selective polymers are systematically investigated: the commercially available poly[(4,4'-bis(2-ethylhexyl)cyclopenta[2,1-b:3,4-b']dithiophene)-alt-(benzo[c][1,2,5]thiadiazole)] (PCPDTBT) and the synthesized poly[(4,4'-(bis(hexyldecylsulfanyl)methylene)cyclopenta[2,1-b:3,4-b']-dithiophene)-alt-(benzo[c][1,2,5]thiadiazole)] (PCPDTSBT). The introduction of sp2-hybridized side chains in the PCPDTSBT structure can improve chain planarity and thus intermolecular interactions, as confirmed by Raman spectroscopy and grazing incidence X-ray diffraction studies. The favorable crystalline orientation of PCPDTSBT leads to enhanced photocurrent and suppressed noise current, compared to that of PCPDTBT, followed by a sharp increase in the specific detectivity of PCPDTSBT-based NIR OPDs by 1.54 × 1012 Jones. The physics behind PCPDTSBT is analyzed employing optical simulation, temperature-dependent junction analyses, and Mott-Schottky analysis. Furthermore, it is found that PCPDTSBT possesses an exceptional nonsaturation photocurrent, which leads to a wide LDR of 128 dB. This study shows the possibility of realizing thin film NIR-selective OPDs using synthetic approaches.
Collapse
Affiliation(s)
- Seongwon Yoon
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Hwa Sook Ryu
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Jae Un Ha
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Mingyun Kang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Thanh Luan Nguyen
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Han Young Woo
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| |
Collapse
|
16
|
Jeong YJ, Oh JH, Song HJ, An TK. A Quinacridone-Diphenylquinoxaline-Based Copolymer for Organic Field-Effect Transistors. Polymers (Basel) 2019; 11:polym11030563. [PMID: 30960547 PMCID: PMC6473254 DOI: 10.3390/polym11030563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, we characterized poly(quinacridone-diphenylquinoxaline) (PQCTQx). PQCTQx was synthesized by a Suzuki coupling reaction and the synthesized PQCTQx was used as a polymeric semiconducting material in organic field-effect transistors (OFETs) to research the potential of using quinacridone derivatives. The measured field-effect mobility of the pristine PQCTQx film was 6.1 × 10−3 cm2/(V·s). A PQCTQx film heat-treated at 150 °C exhibited good field-effect performances with a hole mobility of 1.2 × 10−2 cm2/(V·s). The improved OFET behaviors resulting from the mild thermal treatment was attributed to improved packing of the molecules in the film, as determined using X-ray diffraction, and to decreased channel resistance.
Collapse
Affiliation(s)
- Yong Jin Jeong
- Department of Materials Science and Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Jeong Hyun Oh
- Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Ho Jun Song
- Research Institute of Sustainable Manufacturing System Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology, Chungcheongnam-do 31056, Korea.
| | - Tae Kyu An
- Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 27469, Korea.
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Korea.
| |
Collapse
|
17
|
Ma J, Liu Z, Yao J, Wang Z, Zhang G, Zhang X, Zhang D. Improving Ambipolar Semiconducting Properties of Thiazole-Flanked Diketopyrrolopyrrole-Based Terpolymers by Incorporating Urea Groups in the Side-Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jing Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingjing Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhijie Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|