1
|
Peng Z, Zhang J, Feng N, Zhang J, Liu SH. Manipulation of aurophilicity in constructed clusters of gold(I) complexes with boosted luminescence and smart responsiveness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123979. [PMID: 38310742 DOI: 10.1016/j.saa.2024.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
High-performance luminescent gold(I) complexes have attracted considerable attention due to their potential applications in various fields, but their construction is a significantly challenging task. Herein, we designed and synthesized a series of novel dinuclear gold(I) complexes 1-4 based on 1,2-bis(diphenylphosphino)benzene and 1,4-bis(diphenylphosphino)benzene frameworks, where para-substitutions of benzene ring were employed for comparison and bulky t-butyl groups were introduced into carbazole ligands to assist flexibly regulating the aurophilicity. Among them, the structure of complex 1 was confirmed by single-crystal X-ray diffraction, and all the complexes exhibited typical aggregation-induced emission characteristics. Due to the construction of intramolecular aurophilicity and the formation of molecular clusters, noticeable enhancement of the luminescent efficiency was achieved for the core complex 1. Together with the introduction of flexible t-butyl groups, good responsiveness towards external mechanical force and solvent vapors were also realized. Moreover, the specific bioimaging ability of complex 1 towards cancer cells was demonstrated. Thus, this work presents the crucial capability of aurophilic manipulation in tuning the luminescence and smart behaviors of gold complexes, and it will open a new route to developing high-performance luminescent materials.
Collapse
Affiliation(s)
- Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Tian M, Zhou W, Guan W, Lu C. Real-Time Imaging of Stress in Single Spherulites and Its Relaxation at the Single-Particle Level in Semicrystalline Polymers. Anal Chem 2022; 94:17716-17724. [PMID: 36480806 DOI: 10.1021/acs.analchem.2c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystallization-induced microscopic stress and its relaxation play a vital role in understanding crystallization behavior and mechanism. However, the real-time measurements for stress and its relaxation seem to be an unachievable task due to difficulties in simultaneous labeling, spatiotemporal discrimination, and continuous quantification. We designed a micron-sized fluorescent probe, whose fluorescence can respond to stress-induced environmental rigidity and whose three-dimensional (3D) flow can respond to stress relaxation. Using the as-prepared fluorescent probe, we established a versatile strategy to realize the real-time 3D imaging of stress and its relaxation in the crystallization process. The rigidity-responsive fluorescence clearly indicated the stress, while the 3D flow movement could quantify the stress relaxation. It is revealed that stress in spherulites increased dramatically as a result of the suppression of stress relaxation in polymer melts. The developed method provides a novel avenue to simultaneously detect stress and its relaxation in various semicrystalline polymers at the single-particle level. This success would achieve the microscopic ways to guide the development of advanced crystallization-dependent materials.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100089, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Fu ZZ, He W, Yao Y, Qiu Z, Chen H, Li CX, Wang K, Zhang Q, Kwok RTK, Tang BZ, Fu Q. Pursuing Phase Transitions of a Concentrated Polymer Solution by In Situ Fluorescence Measurements Based On Aggregation-Induced Emission. J Phys Chem Lett 2022; 13:9855-9861. [PMID: 36251000 DOI: 10.1021/acs.jpclett.2c02741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Concentration-dependent phase transitions in concentrated solutions have remained speculation due to the serious impediment of macromolecule dynamics by intensive topological entanglement or intermolecular interaction as well as the absence of powerful tool for detecting changes in chain or segment movement. Herein, taking a general polymer, namely, poly(vinyl alcohol) (PVA), as an example, a water-soluble fluorescent molecule with aggregation-induced emission (AIE) is introduced into the PVA solutions as a chain dynamics indicator to investigate phase transitions at high concentrations through in situ monitoring of the solvent evaporation process. Two turning points of fluorescent intensity are observed for the first time at mean concentrations of ∼25% and ∼45%, corresponding to the gelation and amorphous-to-crystalline transitions, respectively. Our work offers a fundamental insight into the physical nature of concentrate-dependent nonequilibrium transitions and develops a reliable and sensitive approach based on the AIE phenomenon for following high-concentration-triggered property changes of a polymer solution.
Collapse
Affiliation(s)
- Zhen-Zhen Fu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, China
| | - Yihang Yao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Hong Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Chen-Xi Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Ke Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Qin Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999777, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Qiang Fu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan610065, China
| |
Collapse
|
5
|
Lan Y, Song W, Wang J. Molecular dynamics simulation for chlorinated butyl rubber composite reinforced by dendritic amino‐terminated aromatic polyamide. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunrui Lan
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Weijin Song
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Jincheng Wang
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
6
|
Ge S, Wang E, Li J, Tang BZ. Aggregation-Induced Emission Boosting the Study of Polymer Science. Macromol Rapid Commun 2022; 43:e2200080. [PMID: 35320607 DOI: 10.1002/marc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Indexed: 11/07/2022]
Abstract
The past one hundred years witness the great development of polymer science. The advancement of polymer science is closely related with the developing of characterization techniques and methods, from viscometry in molecular weight determination to advanced techniques including differential scanning calorimetry, nuclear magnetic resonance and scanning electron microscopy. However, these techniques are normally constrained to tedious sample preparation, high cost, harsh experimental condition, or ex-situ characterization. Fluorescence technology has the merits of high sensitivity and direct visualization. Contrary to conventional aggregation-causing quenching fluorophores, those dyes with aggregation-induced emission characteristic show high emission efficiency in aggregate states. Based on the restriction of intramolecular motions for AIE properties, the AIE materials are very sensitive to the surrounding microenvironments owing to the twisted propeller-like structures and therefore reveal great potentials in polymer's study. The AIE concept has been successfully used in polymer's study and provides us a deeper understanding on polymer structure and properties. In this review, the applications of AIEgens in polymer science for visualizing polymerization, glass transition, dissolution, crystallization, gelation, self-assembly, phase separation, cracking and self-healing were exemplified and summarized. Lastly, the challenges and perspectives in the study of polymer science using AIEgens are addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng Ge
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Erjing Wang
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jinhua Li
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ben Zhong Tang
- Prof. B. Z. Tang, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
7
|
Lyu G, Southern TJF, Charles BL, Roger M, Gerbier P, Clément S, Evans RC. Aggregation-induced emission from silole-based lumophores embedded in organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13914-13925. [PMID: 34745631 PMCID: PMC8515938 DOI: 10.1039/d1tc02794h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/05/2021] [Indexed: 05/29/2023]
Abstract
Aggregation-induced emitters - or AIEgens - are often symbolised by their photoluminescence enhancement as a result of aggregation in a poor solvent. However, for some applications, it is preferable for the AIE response to be induced in the solid-state. Here, the ability of an organic-inorganic hybrid polymer host to induce the AIE response from embedded silole-based lumophores has been explored. We have focussed on understanding how the incorporation method controls the extent of lumophore aggregation and thus the associated photophysical properties. To achieve this, two sample concentration series have been prepared, based on either the parent AIEgen 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) or the silylated analogue (DMTPS-Sil), which were physically doped or covalently grafted, respectively, to dU(600) - a member of the ureasil family of poly(oxyalkylene)/siloxane hybrids. Steady-state and time-resolved photoluminescence measurements, coupled with confocal microscopy studies, revealed that covalent grafting leads to improved dispersibility of the AIEgen, reduced scattering losses, increased photoluminescence quantum yields (up to ca. 40%) and improved chemical stability. Moreover, the ureasil also functions as a photoactive host that undergoes excitation energy transfer to the embedded DMTPS-Sil with an efficiency of almost 70%. This study highlights the potential for designing complex photoluminescent hybrid polymers exhibiting an ehanced AIE response for solid-state optical applications.
Collapse
Affiliation(s)
- Guanpeng Lyu
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Thomas J F Southern
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bethan L Charles
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Maxime Roger
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | | - Rachel C Evans
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
8
|
Park J, Han S, Park H, Lee J, Cho S, Seo M, Kim BJ, Choi SQ. Simultaneous Measurement of Glass-Transition Temperature and Crystallinity of As-Prepared Polymeric Films from Restitution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinwon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongsoo Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyeonjung Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jaehong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Suchan Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
9
|
Wang M, Wang E, Cao H, Liu S, Wang X, Wang F. Construction of
Self‐Reporting
Biodegradable
CO
2
‐Based
Polycarbonates for the Visualization of Thermoresponsive Behavior with
Aggregation‐Induced
Emission Technology
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
10
|
Nile R, Rajput H, Sims C, Jin K. Sensing the melting transition of semicrystalline polymers via a novel fluorescence technique. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Shen H, Wu W, Liu S, Zhang J, Lam JWY, Tang BZ. Photodegradation‐Induced Turn‐On
Luminescence of
Tetraphenylethylene‐Based
Trithiocarbonate Polymers
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Wenjie Wu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Shunjie Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Jing Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- Department of Laboratory Medicine, Nanfang Hospital Southern Medical University Guangzhou Guangdong 510515 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1 st RD, South Area Hi‐tech Park, Nanshan Shenzhen Guangdong 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1 st RD, South Area Hi‐tech Park, Nanshan Shenzhen Guangdong 518057 China
- Center for Aggregation‐induced Emission, SCUT‐HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong 510640 China
- HKUST AIE Institute Guangzhou Development District, Huangpu Guangzhou Guangdong 510530 China
- Guangdong‐Hong Kong‐Macao Joint laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
12
|
Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
13
|
|
14
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Effect of crosslinking rate on the glass transition temperature of polyimide cross-linked silica aerogels. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02082-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. NANOSCALE 2020; 12:8828-8835. [PMID: 32253405 DOI: 10.1039/d0nr01025a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bright and metal-free mass-amplifying electrochemiluminescence film (MAEF) performing in aqueous media was reported for the first time. Systematic studies demonstrated that the film substrates have a remarkable influence on the electrochemiluminescence (ECL) performance. Gold substrates promote ECL reactions and the subsequent radiative decay process simultaneously, affording an unconventional 507-fold ECL enhancement. Such a gold-enhanced MAEF is opposite to ECL systems previously reported, in which the use of gold electrodes normally results in decreased ECL intensity due to passivation of the gold surface by oxide formation. More importantly, the ECL intensity of the MAEF is linearly amplified through facilely regulating luminogen loading. Morphological analysis reveals that the film consists of grass-like nanowires with a diameter of 57 nm, which facilitate electrical communication between the luminogen, electrode, and supporting electrolyte, giving rise to the mass-amplifying ECL. The bright ECL of the solid film in aqueous media can be readily observed by the naked eye, entirely different from visible ECL systems reported in which ruthenium complexes dissolved/dispersed in solution are used as the luminogens. The film is further utilized to detect dopamine (DA), an important biomolecule related to nervous diseases, in aqueous media, with a low detection limit of 3.3 × 10-16 M. Furthermore, a facile method based on grayscale analysis of ECL images (GAEI) of the film was developed for visual and ultrasensitive DA detection in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM and GDHPPC labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | |
Collapse
|
17
|
Meng B, Zhang Y, Ma P. Composites with AIEgens for Temperature Sensing and Strain Measurement. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Biwei Meng
- Laboratory of Environmental Science and TechnologyXinjiang Technical Institute of Physics and ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of Sciences Urumqi 830011 China
- Center of Material and Optoelectronic ResearchUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yurong Zhang
- Laboratory of Environmental Science and TechnologyXinjiang Technical Institute of Physics and ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of Sciences Urumqi 830011 China
- Center of Material and Optoelectronic ResearchUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Peng‐Cheng Ma
- Laboratory of Environmental Science and TechnologyXinjiang Technical Institute of Physics and ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of Sciences Urumqi 830011 China
- Center of Material and Optoelectronic ResearchUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Wang G, Zhou L, Zhang P, Zhao E, Zhou L, Chen D, Sun J, Gu X, Yang W, Tang BZ. Fluorescence Self-Reporting Precipitation Polymerization Based on Aggregation-Induced Emission for Constructing Optical Nanoagents. Angew Chem Int Ed Engl 2020; 59:10122-10128. [PMID: 31828915 DOI: 10.1002/anie.201913847] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/07/2019] [Indexed: 12/30/2022]
Abstract
Precipitation polymerization is becoming increasingly popular in energy, environment and biomedicine. However, its proficient utilization highly relies on the mechanistic understanding of polymerization process. Now, a fluorescence self-reporting method based on aggregation-induced emission (AIE) is used to shed light on the mechanism of precipitation polymerization. The nucleation and growth processes during the copolymerization of a vinyl-modified AIEgen, styrene, and maleic anhydride can be sensitively monitored in real time. The phase-separation and dynamic hardening processes can be clearly discerned by tracking fluorescence changes. Moreover, polymeric fluorescent particles (PFPs) with uniform and tunable sizes can be obtained in a self-stabilized manner. These PFPs exhibit biolabeling and photosensitizing abilities and are used as superior optical nanoagents for photo-controllable immunotherapy, indicative of their great potential in biomedical applications.
Collapse
Affiliation(s)
- Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Liangyu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, P. R. China
| | - Engui Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, 1st University Road, Songshan Lake District, Dongguan, 523808, China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, P. R. China
| | - Dong Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Wantai Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Wang G, Zhou L, Zhang P, Zhao E, Zhou L, Chen D, Sun J, Gu X, Yang W, Tang BZ. Fluorescence Self‐Reporting Precipitation Polymerization Based on Aggregation‐Induced Emission for Constructing Optical Nanoagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Liangyu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, ShenzhenEngineering Laboratory of Nanomedicine and NanoformulationsCAS Key Lab for Health InformaticsShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen University Town Shenzhen 518055 P. R. China
| | - Engui Zhao
- School of Chemical Engineering and Energy TechnologyDongguan University of Technology 1st University Road, Songshan Lake District Dongguan 523808 China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, ShenzhenEngineering Laboratory of Nanomedicine and NanoformulationsCAS Key Lab for Health InformaticsShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen University Town Shenzhen 518055 P. R. China
| | - Dong Chen
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Wantai Yang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
20
|
Wang S, Jin B, Chen G, Luo Y, Li X. Aggregation-induced emission from the crowded coronal chains of block copolymer micelles. Polym Chem 2020. [DOI: 10.1039/d0py00432d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aggregation-induced emission (AIE) was triggered via the spatial confinement in the coronal chains in block copolymers upon micellization, even with very low content of AIE groups attached, and this could be used to monitor the self-assembly process.
Collapse
Affiliation(s)
- Siyu Wang
- School of Materials Science and Engineering
- Beijing
- China
| | - Bixin Jin
- School of Materials Science and Engineering
- Beijing
- China
| | - Gangfeng Chen
- School of Materials Science and Engineering
- Beijing
- China
| | - Yunjun Luo
- School of Materials Science and Engineering
- Beijing
- China
- Key Laboratory of High Energy Density Materials
- Ministry of Education
| | - Xiaoyu Li
- School of Materials Science and Engineering
- Beijing
- China
- Key Laboratory of High Energy Density Materials
- Ministry of Education
| |
Collapse
|
21
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
22
|
Qiu Z, Zhao W, Cao M, Wang Y, Lam JWY, Zhang Z, Chen X, Tang BZ. Dynamic Visualization of Stress/Strain Distribution and Fatigue Crack Propagation by an Organic Mechanoresponsive AIE Luminogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803924. [PMID: 30260534 DOI: 10.1002/adma.201803924] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Stress exists ubiquitously and is critically important for the manufacturing industry. Due to the ultrasensitive mechanoresponse of the emission of 1,1,2,2,-tetrakis(4-nitrophenyl)ethane (TPE-4N), a luminogen with aggregation-induced emission characteristics, the visualization of stress/strain distributions on metal specimens with a pure organic fluorescent material is achieved. Such a fluorescence mapping method enjoys the merits of simple setup, real-time, full-field, on-site, and direct visualization. Surface analysis shows that TPE-4N can form a nonfluorescent, crystalline uniform film on the metal surface, which cracks into fluorescent amorphous fragments upon mechanical force. Therefore, the invisible information of the stress/strain distribution of the metal specimens are transformed to visible fluorescent signals, which generally matches well but provides more details than software simulation. Remarkably, fatigue crack propagation in stainless steel and aluminum alloy can be observed and predicted clearly, further demonstrating the ultrasensitivity and practicability of TPE-4N.
Collapse
Affiliation(s)
- Zijie Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Weijun Zhao
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingkui Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yuqi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhe Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xu Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
23
|
Zhang Y, Jiang M, Han T, Xiao X, Chen W, Wang L, Wong KS, Wang R, Wang K, Tang BZ, Wu K. Aggregation-Induced Emission Luminogens as Color Converters for Visible-Light Communication. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34418-34426. [PMID: 30205004 DOI: 10.1021/acsami.8b05950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we report the application of the aggregation-induced emission luminogens (AIEgens) as color converters for visible light communication (VLC). In the form of pure solid powder, the AIEgens studied herein have demonstrated blue-to-red full-color emissions, large -6 dB electrical modulation bandwidths up to 279 MHz (∼56× that of commercial phosphor), and most of them can achieve high data rates of 428-493 Mbps (up to ∼49× that of commercial phosphor) at a maximum bit error rate of 3.8 × 10-3 using on-off keying. Their data communication performances strongly suggest that AIEgens are very promising candidates as color converters for VLC applications, together with their unique AIE properties that will benefit usage in high concentration. Based on the comprehensive experimental results, we further propose some insights into improving data rate of the color converter in VLC: the data rate limit is influenced by modulation bandwidth and signal-noise ratio (SNR). We have experimentally proved that the -6 dB electrical modulation bandwidth f c can be estimated from the effective lifetime τ of the color converter with the theoretical prediction of [Formula: see text] within experimental uncertainties, while theoretically derived that the SNR is proportional to its PL quantum efficiency. These observations and implications are very profound for exploring materials as color converters and improve the data transmission performance in VLC.
Collapse
Affiliation(s)
- Yilin Zhang
- College of Computer Science and Software Engineering , Shenzhen University , Shenzhen , 518060 , China
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077 , China
- Department of Electrical & Electronic Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China
| | - Meijuan Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077 , China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077 , China
| | - Xiangtian Xiao
- Department of Electrical & Electronic Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China
| | - Wanli Chen
- Department of Electrical & Electronic Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China
| | - Lu Wang
- College of Computer Science and Software Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Kam Sing Wong
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077 , China
| | - Rui Wang
- Department of Electrical & Electronic Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China
| | - Kai Wang
- Department of Electrical & Electronic Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077 , China
| | - Kaishun Wu
- College of Computer Science and Software Engineering , Shenzhen University , Shenzhen , 518060 , China
| |
Collapse
|
24
|
Qiu Z, Liu X, Lam JWY, Tang BZ. The Marriage of Aggregation-Induced Emission with Polymer Science. Macromol Rapid Commun 2018; 40:e1800568. [DOI: 10.1002/marc.201800568] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Zijie Qiu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Xiaolin Liu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
25
|
Liu S, Cheng Y, Zhang H, Qiu Z, Kwok RTK, Lam JWY, Tang BZ. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene‐Containing Agents with Aggregation‐Induced Emission Characteristics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Yanhua Cheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ryan T. K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- NFSC Center for Luminescence from Molecular Aggregates SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
26
|
Liu S, Cheng Y, Zhang H, Qiu Z, Kwok RTK, Lam JWY, Tang BZ. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics. Angew Chem Int Ed Engl 2018; 57:6274-6278. [PMID: 29633451 DOI: 10.1002/anie.201803268] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 12/24/2022]
Abstract
A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yanhua Cheng
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.,NFSC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
27
|
Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J. A New Family of Photoluminescent Polymers with Dual Chromophores. Macromol Rapid Commun 2018; 39:e1800035. [DOI: 10.1002/marc.201800035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Chenxi Hu
- College of Materials Science and Engineering; Beijing University of Chemical and Technology; Beijing 100029 P. R. China
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Zhaoyan Guo
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Yue Ru
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Wenbo Song
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Zhenjie Liu
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Xiaohong Zhang
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| | - Jinliang Qiao
- College of Materials Science and Engineering; Beijing University of Chemical and Technology; Beijing 100029 P. R. China
- SINOPEC Beijing Research Institute of Chemical Industry; Beijing 100013 P. R. China
| |
Collapse
|