1
|
Scheffold F. Revisiting the density profile of the fuzzy sphere model for microgel colloids. SOFT MATTER 2024; 20:8181-8184. [PMID: 39382518 PMCID: PMC11463209 DOI: 10.1039/d4sm01045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Common neutral polymer microgels exhibit an inhomogeneous density profile with a gradual decay that is commonly described using the fuzzy sphere model. The model is based on the idea of convolving the collapsed solid sphere profile with a Gaussian to describe inhomogeneous swelling of the microgel in a good solvent. Here we show that the corresponding density profile in real space used in several recent works - such as in super-resolution microscopy - is different from the fuzzy sphere model, and we explain how to correctly transition between reciprocal space modelling to real space. Our work aims to clarify the application of the model so that errors can be avoided in the future. Our discussion is also crucial when comparing alternative real-space models for the density profile with the established fuzzy sphere model.
Collapse
Affiliation(s)
- Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
| |
Collapse
|
2
|
Dobroserdova AB, Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Core-shell nanogels: the effects of morphology, electro- and magnetostatic interactions. SOFT MATTER 2024; 20:7797-7810. [PMID: 39018087 DOI: 10.1039/d4sm00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core. This effect of backfolding is enhanced in charged nanogels, regardless of whether all monomers are charged, or only the core or shell ones. The presence of an experimentally available amount of magnetic nanoparticles in a gel, on the one hand, does not lead to any significant morphological changes. On the other hand, the morphology of the nanogel with magnetic particles has an impact on its magnetic susceptibility. Particular growth of the magnetic response is observed if a long shell of a nanogel is functionalised.
Collapse
Affiliation(s)
| | - Elena S Minina
- Faculty of Physics, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
3
|
Chen Q, Xia X, Huang W, Zhang L, Ni R, Liu J. Topological Programmability of Isomerizable Polymers. PHYSICAL REVIEW LETTERS 2024; 133:048101. [PMID: 39121423 DOI: 10.1103/physrevlett.133.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/20/2024] [Indexed: 08/11/2024]
Abstract
Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | | | | | |
Collapse
|
4
|
Höfken T, Gasser U, Schneider S, Petrunin AV, Scotti A. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition. Macromol Rapid Commun 2024; 45:e2400043. [PMID: 38613338 DOI: 10.1002/marc.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, SE-205 06, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, SE-205 06, Sweden
| |
Collapse
|
5
|
Gerelli Y, Camerin F, Bochenek S, Schmidt MM, Maestro A, Richtering W, Zaccarelli E, Scotti A. Softness matters: effects of compression on the behavior of adsorbed microgels at interfaces. SOFT MATTER 2024; 20:3653-3665. [PMID: 38623629 DOI: 10.1039/d4sm00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.
Collapse
Affiliation(s)
- Yuri Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Fabrizio Camerin
- Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Emanuela Zaccarelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
6
|
Ninarello A, Ruiz-Franco J, Zaccarelli E. Auxetic polymer networks: The role of crosslinking, density, and disorder. J Chem Phys 2023; 159:234902. [PMID: 38108485 DOI: 10.1063/5.0178409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Abstract
Low-crosslinked polymer networks have recently been found to behave auxetically when subjected to small tensions, that is, their Poisson's ratio ν becomes negative. In addition, for specific state points, numerical simulations revealed that diamond-like networks reach the limit of mechanical stability, exhibiting values of ν = -1, a condition that we define as hyper-auxeticity. This behavior is interesting per se for its consequences in materials science but is also appealing for fundamental physics because the mechanical instability is accompanied by evidence of criticality. In this work, we deepen our understanding of this phenomenon by performing a large set of equilibrium and stress-strain simulations in combination with phenomenological elasticity theory. The two approaches are found to be in good agreement, confirming the above results. We also extend our investigations to disordered polymer networks and find that the hyper-auxetic behavior also holds in this case, still manifesting a similar critical-like behavior as in the diamond one. Finally, we highlight the role of the number density, which is found to be a relevant control parameter determining the elastic properties of the system. The validity of the results under disordered conditions paves the way for an experimental investigation of this phenomenon in real systems, such as hydrogels.
Collapse
Affiliation(s)
- Andrea Ninarello
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - José Ruiz-Franco
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
7
|
Brasili F, Del Monte G, Capocefalo A, Chauveau E, Buratti E, Casciardi S, Truzzolillo D, Sennato S, Zaccarelli E. Toward a Unified Description of the Electrostatic Assembly of Microgels and Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58770-58783. [PMID: 38060242 DOI: 10.1021/acsami.3c14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes. We find a general behavior where, by increasing the number of interacting NPs, the microgel deswells up to a minimum size after which a plateau behavior occurs. This occurs either when NPs are mainly adsorbed to the microgel corona via the folding of the more external chains or when NPs penetrate inside the microgel, thereby inducing a collective reorganization of the polymer network. By varying microgel properties, such as fraction of cross-linkers or charge, as well as NP size and charge, we further show that the microgel deswelling curves can be rescaled onto a single master curve, for both experiments and simulations, demonstrating that the process is entirely controlled by the charge of the whole microgel-NP complex. Our results thus have a direct relevance in fundamental materials science and offer novel tools to tailor the nanofabrication of hybrid devices of technological interest.
Collapse
Affiliation(s)
- Francesco Brasili
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanni Del Monte
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Capocefalo
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Edouard Chauveau
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Elena Buratti
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Domenico Truzzolillo
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Simona Sennato
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Alziyadi MO, Denton AR. Osmotic swelling behavior of surface-charged ionic microgels. J Chem Phys 2023; 159:184901. [PMID: 37942869 DOI: 10.1063/5.0161027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
In recent years, ionic microgels have garnered much attention due to their unique properties, especially their stimulus-sensitive swelling behavior. The tunable response of these soft, permeable, compressible, charged colloidal particles is increasingly attractive for applications in medicine and biotechnologies, such as controlled drug delivery, tissue engineering, and biosensing. The ability to model and predict variation of the osmotic pressure of a single microgel with respect to changes in particle properties and environmental conditions proves vital to such applications. In this work, we apply both nonlinear Poisson-Boltzmann theory and molecular dynamics simulation to ionic microgels (macroions) in the cell model to compute density profiles of microions (counterions, coions), single-microgel osmotic pressure, and equilibrium swelling ratios of spherical microgels whose fixed charge is confined to the macroion surface. The basis of our approach is an exact theorem that relates the electrostatic component of the osmotic pressure to the microion density profiles. Close agreement between theory and simulation serves as a consistency check to validate our approach. We predict that surface-charged microgels progressively deswell with increasing microgel concentration, starting well below close packing, and with increasing salt concentration, in qualitative agreement with experiments. Comparison with previous results for microgels with fixed charge uniformly distributed over their volume demonstrates that surface-charged microgels deswell more rapidly than volume-charged microgels. We conclude that swelling behavior of ionic microgels in solution is sensitive to the distribution of fixed charge within the polymer-network gel and strongly depends on bulk concentrations of both microgels and salt ions.
Collapse
Affiliation(s)
- Mohammed O Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
9
|
Rey M, Kolker J, Richards JA, Malhotra I, Glen TS, Li NYD, Laidlaw FHJ, Renggli D, Vermant J, Schofield AB, Fujii S, Löwen H, Clegg PS. Interactions between interfaces dictate stimuli-responsive emulsion behaviour. Nat Commun 2023; 14:6723. [PMID: 37872193 PMCID: PMC10593850 DOI: 10.1038/s41467-023-42379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces.
Collapse
Affiliation(s)
- Marcel Rey
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden.
| | - Jannis Kolker
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - James A Richards
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Isha Malhotra
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Thomas S Glen
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - N Y Denise Li
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Fraser H J Laidlaw
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Damian Renggli
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Andrew B Schofield
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Paul S Clegg
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
10
|
Ruiz-Franco J, Rivas-Barbosa R, Lara-Peña MA, Villanueva-Valencia JR, Licea-Claverie A, Zaccarelli E, Laurati M. Concentration and temperature dependent interactions and state diagram of dispersions of copolymer microgels. SOFT MATTER 2023; 19:3614-3628. [PMID: 37161724 DOI: 10.1039/d3sm00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigate by means of small angle neutron scattering experiments and numerical simulations the interactions and inter-particle arrangements of concentrated dispersions of copolymer poly(N-isopropylacrylamide)-poly(ethylene glycol methyl ether methacrylate) (PNIPAM-PEGMA) microgels across the volume phase transition (VPT). The scattering data of moderately concentrated dispersions are accurately modeled at all temperatures by using a star polymer form factor and static structure factors calculated from the effective potential obtained from simulations. Interestingly, for temperatures below the VPT temperature (VPTT), the radius of gyration and blob size of the particles significantly decrease with increasing the effective packing fraction in the non-overlapping regime. This is attributed to the presence of charges in the system associated with the use of an ionic initiator in the synthesis. Simulations using the experimentally corroborated interaction potential are used to explore the state diagram in a wide range of effective packing fractions. Below and slightly above the VPTT, the system undergoes an arrest transition mainly driven by the soft repulsion between the particles. Only well above the VPTT the system is found to phase separate before arresting. Our results highlight the versatility and potential of copolymer PNIPAM-PEGMA microgels to explore different kinds of arrested states balancing attraction and repulsion by changing temperature and packing fraction.
Collapse
Affiliation(s)
- José Ruiz-Franco
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Rodrigo Rivas-Barbosa
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Mayra A Lara-Peña
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
- Dipartimento di Chimica and CSGI, Università di Firenze, 50019 Sesto Fiorentino, Italy.
| | | | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química del Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, 22500 Tijuana, Mexico
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Marco Laurati
- Dipartimento di Chimica and CSGI, Università di Firenze, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
11
|
Hagemans F, Camerin F, Hazra N, Lammertz J, Dux F, Del Monte G, Laukkanen OV, Crassous JJ, Zaccarelli E, Richtering W. Buckling and Interfacial Deformation of Fluorescent Poly( N-isopropylacrylamide) Microgel Capsules. ACS NANO 2023; 17:7257-7271. [PMID: 37053566 DOI: 10.1021/acsnano.2c10164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Janik Lammertz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Frédéric Dux
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Giovanni Del Monte
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Olli-Ville Laukkanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
- VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, 40400 Jyväskylä, Finland
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
12
|
Rudov AA, Portnov IV, Bogdanova AR, Potemkin II. Structure of swollen hollow polyelectrolyte nanogels with inhomogeneous cross-link distribution. J Colloid Interface Sci 2023; 640:1015-1028. [PMID: 36921382 DOI: 10.1016/j.jcis.2023.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
HYPOTHESIS Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.
Collapse
Affiliation(s)
- Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan V Portnov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation; A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Alisa R Bogdanova
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
13
|
Sorichetti V, Ninarello A, Ruiz-Franco J, Hugouvieux V, Zaccarelli E, Micheletti C, Kob W, Rovigatti L. Structure and elasticity of model disordered, polydisperse, and defect-free polymer networks. J Chem Phys 2023; 158:074905. [PMID: 36813705 DOI: 10.1063/5.0134271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model. Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear modulus of the system.
Collapse
Affiliation(s)
- Valerio Sorichetti
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | | | | | | | | | - Cristian Micheletti
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | | |
Collapse
|
14
|
Midya J, Auth T, Gompper G. Membrane-Mediated Interactions Between Nonspherical Elastic Particles. ACS NANO 2023; 17:1935-1945. [PMID: 36669092 PMCID: PMC9933614 DOI: 10.1021/acsnano.2c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The transport of particles across lipid-bilayer membranes is important for biological cells to exchange information and material with their environment. Large particles often get wrapped by membranes, a process which has been intensively investigated in the case of hard particles. However, many particles in vivo and in vitro are deformable, e.g., vesicles, filamentous viruses, macromolecular condensates, polymer-grafted nanoparticles, and microgels. Vesicles may serve as a generic model system for deformable particles. Here, we study nonspherical vesicles with various sizes, shapes, and elastic properties at initially planar lipid-bilayer membranes. Using the Helfrich Hamiltonian, triangulated membranes, and energy minimization, we predict the interplay of vesicle shapes and wrapping states. Increasing particle softness enhances the stability of shallow-wrapped and deep-wrapped states over nonwrapped and complete-wrapped states. The free membrane mediates an interaction between partial-wrapped vesicles. For the pair interaction between deep-wrapped vesicles, we predict repulsion. For shallow-wrapped vesicles, we predict attraction for tip-to-tip orientation and repulsion for side-by-side orientation. Our predictions may guide the design and fabrication of deformable particles for efficient use in medical applications, such as targeted drug delivery.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Physics of Living Matter,
Institute for Biological Information Processing and Institute for
Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter,
Institute for Biological Information Processing and Institute for
Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter,
Institute for Biological Information Processing and Institute for
Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
15
|
Shaulli X, Rivas-Barbosa R, Bergman MJ, Zhang C, Gnan N, Scheffold F, Zaccarelli E. Probing Temperature Responsivity of Microgels and Its Interplay with a Solid Surface by Super-Resolution Microscopy and Numerical Simulations. ACS NANO 2023; 17:2067-2078. [PMID: 36656959 PMCID: PMC9933603 DOI: 10.1021/acsnano.2c07569] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Super-resolution microscopy has become a powerful tool to investigate the internal structure of complex colloidal and polymeric systems, such as microgels, at the nanometer scale. An interesting feature of this method is the possibility of monitoring microgel response to temperature changes in situ. However, when performing advanced microscopy experiments, interactions between the particle and the environment can be important. Often microgels are deposited on a substrate, since they have to remain still for several minutes during the experiment. This study uses direct stochastic optical reconstruction microscopy (dSTORM) and advanced coarse-grained molecular dynamics simulations to investigate how individual microgels anchored on hydrophilic and hydrophobic surfaces undergo their volume phase transition with temperature. We find that, in the presence of a hydrophilic substrate, the structure of the microgel is unperturbed and the resulting density profiles quantitatively agree with simulations performed under bulk conditions. Instead, when a hydrophobic surface is used, the microgel spreads at the interface and an interesting competition between the two hydrophobic strengths,monomer-monomer vs monomer-surface,comes into play at high temperatures. The robust agreement between experiments and simulations makes the present study a fundamental step to establish this high-resolution monitoring technique as a platform for investigating more complex systems, these being either macromolecules with peculiar internal structure or nanocomplexes where molecules of interest can be encapsulated in the microgel network and controllably released with temperature.
Collapse
Affiliation(s)
- Xhorxhina Shaulli
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Rodrigo Rivas-Barbosa
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Maxime J. Bergman
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Chi Zhang
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Nicoletta Gnan
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Frank Scheffold
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Emanuela Zaccarelli
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185Roma, Italy
| |
Collapse
|
16
|
Strauch C, Schneider S. Ionisation and swelling behaviour of weak polyampholyte core-shell networks - a Monte Carlo study. SOFT MATTER 2023; 19:938-950. [PMID: 36632835 DOI: 10.1039/d2sm01301k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The network charge of polyampholyte microgels can be tuned by varying the pH of the surrounding solution, and a charge reversal from a positively charged microgel at low pH to a negatively charged microgel at high pH can be achieved. In a titration experiment, it is difficult to tell apart the ionisation of the acidic and basic monomers in the network and to determine the distribution of charges in the network, whereas using Metropolis Monte Carlo simulations, both the degree of ionisation and the distribution of ionised monomers can be determined separately for both species. Building on our earlier work on alternating polyampholyte microgels, we now investigated the pH-dependent ionisation and the swelling behaviour of polyampholyte core-shell microgels under good solvent conditions. For this purpose, we performed Metropolis Monte Carlo simulations for a bead-spring model using the constant-pH method. As in our previous study on alternating microgels, the width of the U-shaped curve of the microgels volume as a function of pH depends on the relative dissociation constants of acid and base, and the microgel volume can be approximated by a linear function of the total network charge. Due to the spatial separation of acid and base in core-shell systems, the ionisation is less enhanced compared to a microgel with an alternating distribution of the two species. Nevertheless, we still see an influence of the presence of one species on the ionisation behaviour of the other species under good solvent conditions. Furthermore, the isoelectric point is shifted towards higher pH, which is caused by a higher charge density in the core compared to that in the shell. Added salt changes the Donnan equilibrium, which determines the counterion distribution within and outside of the microgel. At the same time, it contributes to the electrostatic screening of the network charges, leading to a narrowing of the U-shaped volume transition curve.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
17
|
Nickel AC, Denton AR, Houston JE, Schweins R, Plivelic TS, Richtering W, Scotti A. Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment. J Chem Phys 2022; 157:194901. [DOI: 10.1063/5.0119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.
Collapse
Affiliation(s)
- Anne C. Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tomàs S. Plivelic
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
18
|
Elancheliyan R, Del Monte G, Chauveau E, Sennato S, Zaccarelli E, Truzzolillo D. Role of Charge Content in the Two-Step Deswelling of Poly( N-isopropylacrylamide)-Based Microgels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajam Elancheliyan
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| | - Giovanni Del Monte
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Edouard Chauveau
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| | - Simona Sennato
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
19
|
Chremos A, Douglas JF, Basser PJ, Horkay F. Molecular dynamics study of the swelling and osmotic properties of compact nanogel particles. SOFT MATTER 2022; 18:6278-6290. [PMID: 35968626 PMCID: PMC9425154 DOI: 10.1039/d2sm00681b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to their great importance in materials science and other fields, we investigate the solution and osmotic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimating the second and third virial coefficients, and by extension, we identify the θ-point where the second virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to macrogels in that the particle-like scattering profile disappears at moderate concentrations. We also find that improving the solvent quality enhances the spatial segmental uniformity, while significant heterogeneous structure arises near the θ-point. Well below the θ-point where the second osmotic virial coefficient vanishes, these heterogeneous structures become less prevalent as the particles tend to collapse. We also investigate the degree of swelling and structure of compact nanogel particles with a variable excluded volume interaction and gel particle concentration. The osmotic modulus and the scaling exponents in good and θ-point conditions of these gels are characteristic of interacting randomly branched polymers, i.e., "lattice animals".
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Rovigatti L, Sciortino F. Designing Enhanced Entropy Binding in Single-Chain Nanoparticles. PHYSICAL REVIEW LETTERS 2022; 129:047801. [PMID: 35939033 DOI: 10.1103/physrevlett.129.047801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Single-chain nanoparticles (SCNPs) are a new class of bio- and soft-matter polymeric objects in which a fraction of the monomers are able to form equivalently intra- or interpolymer bonds. Here we numerically show that a fully entropic gas-liquid phase separation can take place in SCNP systems. Control over the discontinuous (first-order) change-from a phase of independent diluted (fully-bonded) polymers to a phase in which polymers entropically bind to each other to form a (fully-bonded) polymer network-can be achieved by a judicious design of the patterns of reactive monomers along the polymer chain. Such a sensitivity arises from a delicate balance between the distinct entropic contributions controlling the binding.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Department of Physics, Sapienza Università di Roma, Piazzale A. Moro 2, IT-00185 Roma, Italy and CNR-ISC Uos Sapienza, Piazzale A. Moro 2, IT-00185 Roma, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale A. Moro 2, IT-00185 Roma, Italy
| |
Collapse
|
21
|
Bochenek S, Camerin F, Zaccarelli E, Maestro A, Schmidt MM, Richtering W, Scotti A. In-situ study of the impact of temperature and architecture on the interfacial structure of microgels. Nat Commun 2022; 13:3744. [PMID: 35768399 PMCID: PMC9243037 DOI: 10.1038/s41467-022-31209-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.
Collapse
Affiliation(s)
- Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - Armando Maestro
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, 38000, Grenoble, France
- Centro de Fısica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| |
Collapse
|
22
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
23
|
Gumerov RA, Rudyak VY, Gavrilov AA, Chertovich AV, Potemkin II. Effect of network topology and crosslinker reactivity on microgel structure and ordering at liquid-liquid interface. SOFT MATTER 2022; 18:3738-3747. [PMID: 35506715 DOI: 10.1039/d2sm00269h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer microgels synthesized in silico were studied at a liquid-liquid interface via mesoscopic computer simulations and compared to microgels with ideal (diamond-like) structure. The effect of crosslinkers reactivity ratio on the single particle morphology at the interface and monolayer behavior was examined. It was demonstrated that single particles deform into an explicit core-corona morphology when adsorbed at the interface. An increase in the crosslinker reactivity ratio decreased both the deformation ratio and the ratio between the core and corona sizes. Meanwhile, the compression of microgel monolayers revealed the existence of five distinct interparticle contact regimes, which have been observed experimentally in the literature. The crosslinker reactivity ratio appeared to define the compression range in these regimes and the sharpness of the transition between them. In particular, the higher the crosslinker reactivity ratio, the smaller the corona, and in turn, the narrower the range of the intermediate regime comprising both core-core and corona-corona contacts. The obtained results demonstrate that the more realistic model of microgels synthesized via precipitation polymerization allows for a more accurate prediction of the properties of the microgels at a liquid-liquid interface in comparison to the conventional diamond-like lattice model.
Collapse
Affiliation(s)
- Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation.
| | - Vladimir Yu Rudyak
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation.
| | - Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation.
| | - Alexander V Chertovich
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation.
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation.
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
24
|
Höfken T, Strauch C, Schneider S, Scotti A. Changes in the Form Factor and Size Distribution of Nanogels in Crowded Environments. NANO LETTERS 2022; 22:2412-2418. [PMID: 35258981 DOI: 10.1021/acs.nanolett.2c00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle size disparities suppress crystallization. However, soft deformable nanogels can change the size of the larger particles in suspension and crystallize even at a high initial size-polydispersity. Using neutron scattering with contrast variation, the response of individual nanogels in crowded environments was probed, and an increase of the parameter describing size-polydispersity was found, which is often interpreted as deformation. Here, computer simulations are used to generate deformed nanogels and the corresponding form factor. The data are fitted with the spherical model used to analyze scattering data. The fits show the same qualitative increase of the parameter related to the size-polydispersity with increasing particle deformation. Starting from the simulated deformed spheres, we also reproduce experimental scattering data. A further analysis of the particle shows that the size disparities between nanogels do not increase significantly. In contrast, their shapes strongly vary from one nanogel to the other.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
25
|
Rivas-Barbosa R, Ruiz-Franco J, Lara-Peña MA, Cardellini J, Licea-Claverie A, Camerin F, Zaccarelli E, Laurati M. Link between Morphology, Structure, and Interactions of Composite Microgels. Macromolecules 2022; 55:1834-1843. [PMID: 35283539 PMCID: PMC8908736 DOI: 10.1021/acs.macromol.1c02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Indexed: 11/28/2022]
Abstract
We combine small-angle scattering experiments and simulations to investigate the internal structure and interactions of composite poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) microgels. At low temperatures the experimentally determined form factors and the simulated density profiles indicate a loose internal particle structure with an extended corona that can be modeled as a starlike object. With increasing temperature across the volumetric phase transition, the form factor develops an inflection that, using simulations, is interpreted as arising from a conformation in which PEG chains are incorporated in the interior of the PNIPAM network. This gives rise to a peculiar density profile characterized by two dense, separated regions, at odds with configurations in which the PEG chains reside on the surface of the PNIPAM core. The conformation of the PEG chains also have profound effects on the interparticle interactions: Although chains on the surface reduce the solvophobic attraction typically experienced by PNIPAM particles at high temperatures, PEG chains inside the PNIPAM network shift the onset of attractive interaction at even lower temperatures. Our results show that by tuning the morphology of the composite microgels, we can qualitatively change both their structure and their mutual interactions, opening the way to explore new collective behaviors of these objects.
Collapse
Affiliation(s)
- Rodrigo Rivas-Barbosa
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- División
de Ciencias e Ingenierías, Universidad
de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - José Ruiz-Franco
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Mayra A. Lara-Peña
- División
de Ciencias e Ingenierías, Universidad
de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Jacopo Cardellini
- Dipartimento
di Chimica and CSGI, Universitá di
Firenze, 50019 Sesto Fiorentino, Italy
| | - Angel Licea-Claverie
- Centro
de Graduados e Investigación en Química del Tecnológico
Nacional de México, Instituto Tecnológico
de Tijuana, 22500 Tijuana, Mexico
| | - Fabrizio Camerin
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Marco Laurati
- Dipartimento
di Chimica and CSGI, Universitá di
Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
26
|
Ninarello A, Ruiz-Franco J, Zaccarelli E. Onset of criticality in hyper-auxetic polymer networks. Nat Commun 2022; 13:527. [PMID: 35082298 PMCID: PMC8791937 DOI: 10.1038/s41467-022-28026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
Against common sense, auxetic materials expand or contract perpendicularly when stretched or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson's ratio ν. The amount of deformation in response to the applied force can be at most equal to the imposed one, so that ν = - 1 is the lowest bound for the mechanical stability of solids, a condition here defined as "hyper-auxeticity". In this work, we numerically show that ultra-low-crosslinked polymer networks under tension display hyper-auxetic behavior at a finite crosslinker concentration. At this point, the nearby mechanical instability triggers the onset of a critical-like transition between two states of different densities. This phenomenon displays similar features as well as important differences with respect to gas-liquid phase separation. Since our model is able to faithfully describe real-world hydrogels, the present results can be readily tested in laboratory experiments, paving the way to explore this unconventional phase behavior.
Collapse
Affiliation(s)
- Andrea Ninarello
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - José Ruiz-Franco
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Roma, Italy.
| |
Collapse
|
27
|
|
28
|
Bergman MJ, Nöjd S, Mohanty PS, Boon N, Immink JN, Maris JJE, Stenhammar J, Schurtenberger P. On the role of softness in ionic microgel interactions. SOFT MATTER 2021; 17:10063-10072. [PMID: 34714903 PMCID: PMC8597585 DOI: 10.1039/d1sm01222c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/24/2021] [Indexed: 05/17/2023]
Abstract
Thermoresponsive microgels are a popular model system to study phase transitions in soft matter, because temperature directly controls their volume fraction. Ionic microgels are additionally pH-responsive and possess a rich phase diagram. Although effective interaction potentials between microgel particles have been proposed, these have never been fully tested, leading to a gap in our understanding of the link between single-particle and collective properties. To help resolve this gap, four sets of ionic microgels with varying crosslinker density were synthesised and characterised using light scattering techniques and confocal microscopy. The resultant structural and dynamical information was used to investigate how particle softness affects the phase behaviour of ionic microgels and to validate the proposed interaction potential. We find that the architecture of the microgel plays a marked role in its phase behaviour. Rather than the ionic charges, it is the dangling ends which drive phase transitions and interactions at low concentration. Comparison to theory underlines the need for a refined theoretical model which takes into consideration these close-contact interactions.
Collapse
Affiliation(s)
- Maxime J Bergman
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Sofi Nöjd
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Priti S Mohanty
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Niels Boon
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Jasper N Immink
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - J J Erik Maris
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Joakim Stenhammar
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Peter Schurtenberger
- Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
- Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| |
Collapse
|
29
|
Chremos A, Horkay F, Douglas JF. Structure and conformational properties of ideal nanogel particles in athermal solutions. J Chem Phys 2021; 155:134905. [PMID: 34624976 PMCID: PMC8637729 DOI: 10.1063/5.0064835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
We investigate the conformational properties of "ideal" nanogel particles having a lattice network topology by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties of this type of branched molecular architecture. In particular, we calculate the mass scaling of the radius of gyration (Rg), the hydrodynamic radius, as well as the intrinsic viscosity with the variation of the degree of branching, the length of the chains between the branched points, and the average mesh size within these nanogel particles under good solvent conditions. We find competing trends between the molecular characteristics, where an increase in mesh size or degree of branching results in the emergence of particle-like characteristics, while an increase in the chain length enhances linear polymer-like characteristics. This crossover between these limiting behaviors is also apparent in our calculation of the form factor, P(q), for these structures. Specifically, a primary scattering peak emerges, characterizing the overall nanogel particle size. Moreover, a distinct power-law regime emerges in P(q) at length scales larger than the chain size but smaller than Rg of the nanogel particle, and the Rg mass scaling exponent progressively approaches zero as the mesh size increases, the same scaling as for an infinite network of Gaussian chains. The "fuzzy sphere" model does not capture this feature, and we propose an extension to this popular model. These structural features become more pronounced for values of molecular parameters that enhance the localization of the branching segments within the nanogel particle.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
30
|
Tauber J, Rovigatti L, Dussi S, van der Gucht J. Sharing the Load: Stress Redistribution Governs Fracture of Polymer Double Networks. Macromolecules 2021; 54:8563-8574. [PMID: 34602652 PMCID: PMC8482750 DOI: 10.1021/acs.macromol.1c01275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/28/2022]
Abstract
![]()
The stress response
of polymer double networks depends not only
on the properties of the constituent networks but also on the interactions
arising between them. Here, we demonstrate, via coarse-grained simulations,
that both their global stress response and their microscopic fracture
mechanics are governed by load sharing through these internetwork
interactions. By comparing our results with affine predictions, where
stress redistribution is by definition homogeneous, we show that stress
redistribution is highly inhomogeneous. In particular, the affine
prediction overestimates the fraction of broken chains by almost an
order of magnitude. Furthermore, homogeneous stress distribution predicts
a single fracture process, while in our simulations, fracture of sacrificial
chains takes place in two steps governed by load sharing within a
network and between networks, respectively. Our results thus provide
a detailed microscopic picture of how inhomogeneous stress redistribution
after rupture of chains governs the fracture of polymer double networks.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza-Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
31
|
Sorichetti V, Hugouvieux V, Kob W. Dynamics of Nanoparticles in Polydisperse Polymer Networks: from Free Diffusion to Hopping. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valerio Sorichetti
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Virginie Hugouvieux
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
| |
Collapse
|
32
|
Two-step deswelling in the Volume Phase Transition of thermoresponsive microgels. Proc Natl Acad Sci U S A 2021; 118:2109560118. [PMID: 34508008 PMCID: PMC8449345 DOI: 10.1073/pnas.2109560118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Microgels, colloidal-scale polymer networks, are the prototype soft colloids. When the constituent polymers are thermoresponsive, they undergo a volume phase transition (VPT) from a swollen to a collapsed state at a characteristic temperature, close to ambient one, of great appeal for several applications. To describe this phenomenon, microgels are usually treated as neutral, but here we show that electrostatics needs to be taken into account. In particular, deswelling occurs via a two-step, rather than a homogeneous, particle collapse, mainly driven by peripheral charges located on the microgel corona, for which we also establish a unifying framework encompassing all studied microgels. Our work thus provides a change of perspective to describe these fascinating systems. Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.
Collapse
|
33
|
Vialetto J, Camerin F, Grillo F, Ramakrishna SN, Rovigatti L, Zaccarelli E, Isa L. Effect of Internal Architecture on the Assembly of Soft Particles at Fluid Interfaces. ACS NANO 2021; 15:13105-13117. [PMID: 34328717 PMCID: PMC8388124 DOI: 10.1021/acsnano.1c02486] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Monolayers of soft colloidal particles confined at fluid interfaces are at the core of a broad range of technological processes, from the stabilization of responsive foams and emulsions to advanced lithographic techniques. However, establishing a fundamental relation between their internal architecture, which is controlled during synthesis, and their structural and mechanical properties upon interfacial confinement remains an elusive task. To address this open issue, which defines the monolayer's properties, we synthesize core-shell microgels, whose soft core can be chemically degraded in a controlled fashion. This strategy allows us to obtain a series of particles ranging from analogues of standard batch-synthesized microgels to completely hollow ones after total core removal. Combined experimental and numerical results show that our hollow particles have a thin and deformable shell, leading to a temperature-responsive collapse of the internal cavity and a complete flattening after adsorption at a fluid interface. Mechanical characterization shows that a critical degree of core removal is required to obtain soft disk-like particles at an oil-water interface, which present a distinct response to compression. At low packing fractions, the mechanical response of the monolayer is dominated by the outer polymer chains forming a corona surrounding the particles within the interfacial plane, regardless of the presence of a core. By contrast, at high compression, the absence of a core enables the particles to deform in the direction orthogonal to the interface and to be continuously compressed without altering the monolayer structure. These findings show how fine, single-particle architectural control during synthesis can be engineered to determine the interfacial behavior of microgels, enabling one to link particle conformation with the resulting material properties.
Collapse
Affiliation(s)
- Jacopo Vialetto
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fabrizio Camerin
- CNR
Institute for Complex Systems, Uos Sapienza, P.le A. Moro 2, 00185 Roma, Italy
- Department
of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 14, 00161 Roma, Italy
| | - Fabio Grillo
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lorenzo Rovigatti
- CNR
Institute for Complex Systems, Uos Sapienza, P.le A. Moro 2, 00185 Roma, Italy
- Department
of Physics, Sapienza University of Rome, P.le A. Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- CNR
Institute for Complex Systems, Uos Sapienza, P.le A. Moro 2, 00185 Roma, Italy
- Department
of Physics, Sapienza University of Rome, P.le A. Moro 2, 00185 Roma, Italy
| | - Lucio Isa
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Kolker J, Harrer J, Ciarella S, Rey M, Ickler M, Janssen LMC, Vogel N, Löwen H. Interface-induced hysteretic volume phase transition of microgels: simulation and experiment. SOFT MATTER 2021; 17:5581-5589. [PMID: 33988219 DOI: 10.1039/d1sm00111f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermo-responsive microgel particles can exhibit a drastic volume shrinkage upon increasing the solvent temperature. Recently we found that the spreading of poly(N-isopropylacrylamide) (PNiPAm) microgels at a liquid interface under the influence of surface tension hinders the temperature-induced volume phase transition. In addition, we observed a hysteresis behavior upon temperature cycling, i.e. a different evolution in microgel size and shape depending on whether the microgel was initially adsorbed to the interface in expanded or collapsed state. Here, we model the volume phase transition of such microgels at an air/water interface by monomer-resolved Brownian dynamics simulations and compare the observed behavior with experiments. We reproduce the experimentally observed hysteresis in the microgel dimensions upon temperature variation. Our simulations did not observe any hysteresis for microgels dispersed in the bulk liquid, suggesting that it results from the distinct interfacial morphology of the microgel adsorbed at the liquid interface. An initially collapsed microgel brought to the interface and subjected to subsequent swelling and collapsing (resp. cooling and heating) will end up in a larger size than it had in the original collapsed state. Further temperature cycling, however, only shows a much reduced hysteresis, in agreement with our experimental observations. We attribute the hysteretic behavior to a kinetically trapped initial collapsed configuration, which relaxes upon expanding in the swollen state. We find a similar behavior for linear PNiPAm chains adsorbed to an interface. Our combined experimental - simulation investigation provides new insights into the volume phase transition of PNiPAm materials adsorbed to liquid interfaces.
Collapse
Affiliation(s)
- Jannis Kolker
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | - Johannes Harrer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
| | - Simone Ciarella
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
| | - Maret Ickler
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Scotti A. Characterization of the volume fraction of soft deformable microgels by means of small-angle neutron scattering with contrast variation. SOFT MATTER 2021; 17:5548-5559. [PMID: 33978056 DOI: 10.1039/d1sm00277e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The volume occupied by colloids in a suspension - namely the volume fraction - is the thermodynamic variable that determines the phase behavior of these systems. While for hard incompressible spheres this quantity is well defined, for soft compressible colloids such as microgels - polymeric crosslinked networks swollen in a good solvent - the determination of the real volume occupied by these particles in solution is particularly challenging. This fact depends on two aspects: first the surface and, therefore, the volume of the microgels is hard to define properly given their external fuzziness; second, microgels can osmotically deswell, deform or interpenetrate their neighbors, i.e. change their shape and size depending on the solution concentration. Here, the form factors of few hydrogenated microgels embedded in a matrix of deuterated but otherwise identical microgels are measured using small-angle neutron scattering with contrast variation. From the analysis of the scattering data, the variation of the volume of the microgels as a function of concentration is obtained and used to calculate the real microgel volume fraction in solution. Soft neutral microgels are shown to facet already at low concentrations while in contrast, harder microgels maintain their shape and change their volume.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany.
| |
Collapse
|
36
|
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Kenshiro Honda
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
37
|
Ciarella S, Rey M, Harrer J, Holstein N, Ickler M, Löwen H, Vogel N, Janssen LMC. Soft Particles at Liquid Interfaces: From Molecular Particle Architecture to Collective Phase Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5364-5375. [PMID: 33886318 DOI: 10.1021/acs.langmuir.1c00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft particles such as microgels can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. To date, experimental efforts have predominantly provided phenomenological links between microgel structure and resulting interfacial behavior, while simulations have not been entirely successful in reproducing experiments or predicting the minimal requirements for the desired phase behavior. Here, we develop a multiscale framework to link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior. To this end, we investigate interfacial morphologies of different poly(N-isopropylacrylamide) particle systems using phase-contrast atomic force microscopy and correlate the distinct interfacial morphology with their bulk molecular architecture. We subsequently introduce a new coarse-grained simulation method that uses augmented potentials to translate this interfacial morphology into the resulting phase behavior upon compression. The main novelty of this method is the possibility to efficiently encode multibody interactions, the effects of which are key to distinguishing between heterostructural (anisotropic collapse) and isostructural (isotropic collapse) phase transitions. Our approach allows us to qualitatively resolve existing discrepancies between experiments and simulations. Notably, we demonstrate the first in silico account of the two-dimensional isostructural transition, which is frequently found in experiments but elusive in simulations. In addition, we provide the first experimental demonstration of a heterostructural transition to a chain phase in a single-component system, which has been theoretically predicted decades ago. Overall, our multiscale framework provides a phenomenological bridge between physicochemical soft-particle characteristics at the molecular scale and nanoscale and the collective self-assembly phenomenology at the macroscale, serving as a stepping stone toward an ultimately more quantitative and predictive design approach.
Collapse
Affiliation(s)
- Simone Ciarella
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Johannes Harrer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Holstein
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Maret Ickler
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
38
|
Sorichetti V, Ninarello A, Ruiz-Franco JM, Hugouvieux V, Kob W, Zaccarelli E, Rovigatti L. Effect of Chain Polydispersity on the Elasticity of Disordered Polymer Networks. Macromolecules 2021; 54:3769-3779. [PMID: 34054144 PMCID: PMC8154883 DOI: 10.1021/acs.macromol.1c00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Indexed: 12/15/2022]
Abstract
Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g., chain-length and end-to-end distributions), we generate disordered phantom networks with different cross-linker concentrations C and initial densities ρinit and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same C, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands, and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming our interpretations.
Collapse
Affiliation(s)
- Valerio Sorichetti
- Laboratoire
de Physique Théorique et Modéles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire
Charles Coulomb (L2C), University of Montpellier,
CNRS, F-34095 Montpellier, France
- IATE,
University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Andrea Ninarello
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - José M. Ruiz-Franco
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - Virginie Hugouvieux
- IATE,
University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Walter Kob
- Laboratoire
Charles Coulomb (L2C), University of Montpellier,
CNRS, F-34095 Montpellier, France
- Institut
Universitaire de France, 75005 Paris, France
| | - Emanuela Zaccarelli
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - Lorenzo Rovigatti
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| |
Collapse
|
39
|
Gnan N, Camerin F, Del Monte G, Ninarello A, Zaccarelli E. Dynamical properties of different models of elastic polymer rings: Confirming the link between deformation and fragility. J Chem Phys 2021; 154:154901. [PMID: 33887924 DOI: 10.1063/5.0041264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report extensive numerical simulations of different models of 2D polymer rings with internal elasticity. We monitor the dynamical behavior of the rings as a function of the packing fraction to address the effects of particle deformation on the collective response of the system. In particular, we compare three different models: (i) a recently investigated model [N. Gnan and E. Zaccarelli, Nat. Phys. 15, 683 (2019)] where an inner Hertzian field providing the internal elasticity acts on the monomers of the ring, (ii) the same model where the effect of such a field on the center of mass is balanced by opposite forces, and (iii) a semi-flexible model where an angular potential between adjacent monomers induces strong particle deformations. By analyzing the dynamics of the three models, we find that in all cases, there exists a direct link between the system fragility and particle asphericity. Among the three, only the first model displays anomalous dynamics in the form of a super-diffusive behavior of the mean-squared displacement and of a compressed exponential relaxation of the density auto-correlation function. We show that this is due to the combination of internal elasticity and the out-of-equilibrium force self-generated by each ring, both of which are necessary ingredients to induce such a peculiar behavior often observed in experiments of colloidal gels. These findings reinforce the role of particle deformation, connected to internal elasticity, in driving the dynamical response of dense soft particles.
Collapse
Affiliation(s)
- Nicoletta Gnan
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Fabrizio Camerin
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Giovanni Del Monte
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Andrea Ninarello
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- CNR Institute for Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
40
|
Song X, Zhou J, Qiao C, Xu X, Zhao S, Liu H. Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. J Phys Chem B 2021; 125:2994-3004. [PMID: 33720720 DOI: 10.1021/acs.jpcb.1c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The engulfing of nanoparticles into microgels provides a versatile platform to design nano- and microstructured materials with various shape anisotropies and multifunctional properties. Manipulating the spontaneous engulfment process remains elusive. Herein, we report a mesoscopic simulation study on the engulfing behavior of nanoparticles into thermoresponsive microgels. The effects of the multiple parameters, including binding strength, temperature, and nanoparticle size, are examined systematically. Our simulation results disclose three engulfing states at different temperatures, namely full-engulfing, half-engulfing, and surface contact. The engulfing depth is determined by the complementary balance of interfacial elastocapillarity. Specifically, the van der Waals interaction of hybrid microgel-nanoparticle offers the capillary force while the internally networked structure of microgel reinforces the elasticity repulsion. Our study, validated by relevant experimental results, provides a mechanistic understanding of the interfacial elastocapillarity for nanoparticle-microgels.
Collapse
Affiliation(s)
- Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404020, China
| | - Jianzhuang Zhou
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chongzhi Qiao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
41
|
Del Monte G, Camerin F, Ninarello A, Gnan N, Rovigatti L, Zaccarelli E. Charge affinity and solvent effects in numerical simulations of ionic microgels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:084001. [PMID: 33105117 DOI: 10.1088/1361-648x/abc4cb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic microgel particles are intriguing systems in which the properties of thermo-responsive polymeric colloids are enriched by the presence of charged groups. In order to rationalize their properties and predict the behaviour of microgel suspensions, it is necessary to develop a coarse-graining strategy that starts from the accurate modelling of single particles. Here, we provide a numerical advancement of a recently-introduced model for charged co-polymerized microgels by improving the treatment of ionic groups in the polymer network. We investigate the thermoresponsive properties of the particles, in particular their swelling behaviour and structure, finding that, when charged groups are considered to be hydrophilic at all temperatures, highly charged microgels do not achieve a fully collapsed state, in favorable comparison to experiments. In addition, we explicitly include the solvent in the description and put forward a mapping between the solvophobic potential in the absence of the solvent and the monomer-solvent interactions in its presence, which is found to work very accurately for any charge fraction of the microgel. Our work paves the way for comparing single-particle properties and swelling behaviour of ionic microgels to experiments and to tackle the study of these charged soft particles at a liquid-liquid interface.
Collapse
Affiliation(s)
- Giovanni Del Monte
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Center for Life NanoScience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Fabrizio Camerin
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via Antonio Scarpa 14, 00161 Roma, Italy
| | - Andrea Ninarello
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Nicoletta Gnan
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Lorenzo Rovigatti
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185, Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
42
|
Elastocapillary interactions of thermoresponsive microgels across the volume phase transition temperatures. J Colloid Interface Sci 2021; 584:275-280. [DOI: 10.1016/j.jcis.2020.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
|
43
|
Song X, Ma J, Long T, Xu X, Zhao S, Liu H. Mechanochemical Cellular Membrane Internalization of Nanohydrogels: A Large-Scale Mesoscopic Simulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:123-134. [PMID: 33307670 DOI: 10.1021/acsami.0c16688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By combining large-scale dissipative particle dynamics and steered molecular dynamics simulations, we investigate the mechanochemical cellular internalization pathways of homogeneous and heterogeneous nanohydrogels and demonstrate that membrane internalization is determined by the crosslink density and encapsulation ability of nanohydrogels. The homogeneous nanohydrogels with a high crosslink density and low encapsulation ability behave as soft nanoparticles partially wrapped by the membrane, while those with a low crosslink density and high encapsulation ability permeate into the membrane. Regardless of the crosslink density, the homogeneous nanohydrogels undergo typical dual morphological deformations. The local lipid nanodomains are identified at the contacting region between the membrane and nanohydrogels because of different diffusion behaviors between lipid and receptor molecules during the internalization process. The yolk@shell heterogeneous nanohydrogels present a different mechanochemical cellular internalization pathway. The yolk with strong affinity is directly in contact with the membrane, resulting in partial membrane wrapping, and the contacting area is much reduced when compared to homogenous nanohydrogels, leading to a smaller lipid nanodomain and thus avoiding related cellular toxicity. Our findings provide a critical mechanism understanding of the biological pathways of nanohydrogels and may guide the molecular design of the hydrogel-based materials for controlled release drug delivery, tissue engineering, and cell culture.
Collapse
Affiliation(s)
- Xianyu Song
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Jule Ma
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Long
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Nishizawa Y, Minato H, Inui T, Uchihashi T, Suzuki D. Nanostructures, Thermoresponsiveness, and Assembly Mechanism of Hydrogel Microspheres during Aqueous Free-Radical Precipitation Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:151-159. [PMID: 33355463 DOI: 10.1021/acs.langmuir.0c02654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although techniques to produce uniformly sized hydrogel microspheres (microgels) by aqueous free-radical precipitation polymerization are well established, the details of the polymerization process remain mysterious. In the present study, the structural evolution and thermoresponsiveness of the developing microgels during the polymerization were evaluated by temperature-controlled high-speed atomic force microscopy. This analysis clarified that the swelling properties of the precursor microgels formed in the early stages of the polymerization are quite low due to the high incorporation of cross-linkers and that non-thermoresponsive deca-nanosized spherical domains are already present in the precursor microgels. Furthermore, we succeeded in tracking the formation of nuclei and their growth process, which has never been fully understood, in aqueous solution by real-time observations. These findings will help us to design functional microgels with the desired nanostructures via precipitation polymerization.
Collapse
Affiliation(s)
- Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takumi Inui
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chiksusa-ku, Nagoya, Aichi 464-8602, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
45
|
Hoppe Alvarez L, Rudov AA, Gumerov RA, Lenssen P, Simon U, Potemkin II, Wöll D. Controlling microgel deformation via deposition method and surface functionalization of solid supports. Phys Chem Chem Phys 2021; 23:4927-4934. [PMID: 33620358 DOI: 10.1039/d0cp06355j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.
Collapse
Affiliation(s)
- Laura Hoppe Alvarez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Pia Lenssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1 a, D-52056 Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany and National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
46
|
Scotti A, Pelaez-Fernandez M, Gasser U, Fernandez-Nieves A. Osmotic pressure of suspensions comprised of charged microgels. Phys Rev E 2021; 103:012609. [PMID: 33601513 DOI: 10.1103/physreve.103.012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
We determine the osmotic pressure of microgel suspensions using membrane osmometry and dialysis, for microgels with different softnesses. Our measurements reveal that the osmotic pressure of solutions of both ionic and neutral microgels is determined by the free ions that leave the microgel periphery to maximize their entropy and not by the translational degrees of freedom of the microgels themselves. Furthermore, up to a given concentration it is energetically favorable for the microgels to maintain a constant volume without appreciable deswelling. The concentration where deswelling starts weakly depends on the crosslinker concentration, which affects the microgel dimension; we explain this by considering the dependence of the osmotic pressure and the microgel bulk modulus on the particle size.
Collapse
Affiliation(s)
- A Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - M Pelaez-Fernandez
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - U Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
- School of Physics, Georgia Institute of Technology, Atlanta, 30332 Georgia, USA
| |
Collapse
|
47
|
Lenzi V, Ramos MMD, Marques LSA. Dissipative particle dynamics simulations of end-cross-linked nanogels. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1859111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Veniero Lenzi
- Center of Physics of Universities of Minho and Porto, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Marta M. D. Ramos
- Center of Physics of Universities of Minho and Porto, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Luís S. A. Marques
- Center of Physics of Universities of Minho and Porto, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
48
|
Freeman KG, Adamczyk J, Streletzky KA. Effect of Synthesis Temperature on Size, Structure, and Volume Phase Transition of Polysaccharide Microgels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krista G. Freeman
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Jacob Adamczyk
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Kiril A. Streletzky
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| |
Collapse
|
49
|
Abstract
Suspensions of soft and highly deformable microgels can be concentrated far more than suspensions of hard colloids, leading to their unusual mechanical properties. Microgels can accommodate compression in suspensions in a variety of ways such as interpenetration, deformation, and shrinking. Previous experiments have offered insightful, but somewhat conflicting, accounts of the behavior of individual microgels in compressed suspensions. We develop a mesoscale computational model to probe the behavior of compressed suspensions consisting of microgels with different architectures at a variety of packing fractions and solvent conditions. We find that microgels predominantly change shape and mildly shrink above random close packing. Interpenetration is only appreciable above space filling, remaining small relative to the mean distance between cross-links. At even higher packing fractions, microgels solely shrink. Remarkably, irrespective of the single-microgel properties, and whether the suspension concentration is changed via changing the particle number density or the swelling state of the particles, which can even result in colloidal gelation, the mechanics of the suspension can be quantified in terms of the single-microgel bulk modulus, which thus emerges as the correct mechanical measure for these type of soft-colloidal suspensions. Our results rationalize the many and varied experimental results, providing insights into the relative importance of effects defining the mechanics of suspensions comprising soft particles.
Collapse
|
50
|
Scheffold F. Pathways and challenges towards a complete characterization of microgels. Nat Commun 2020; 11:4315. [PMID: 32887886 PMCID: PMC7473851 DOI: 10.1038/s41467-020-17774-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Due to their controlled size, sensitivity to external stimuli, and ease-of-use, microgel colloids are unique building blocks for soft materials made by crosslinking polymers on the micrometer scale. Despite the plethora of work published, many questions about their internal structure, interactions, and phase behavior are still open. The reasons for this lack of understanding are the challenges arising from the small size of the microgel particles, complex pairwise interactions, and their solvent permeability. Here we describe pathways toward a complete understanding of microgel colloids based on recent experimental advances in nanoscale characterization, such as super-resolution microscopy, scattering methods, and modeling.
Collapse
Affiliation(s)
- Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
| |
Collapse
|