1
|
Patel RP, Cristofoletti R, Wu F, Shoyaib AA, Polli JE. In Vitro Lipolysis Model to Predict Food Effect of Poorly Water-Soluble Drugs Itraconazole, Rivaroxaban, and Ritonavir. J Pharm Sci 2024; 113:2361-2373. [PMID: 38614321 DOI: 10.1016/j.xphs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
It is desirable to predict positive food effect of oral formulations due to food mediated dissolution enhancement of lipophilic drugs. The objective was to assess the ability of in vitro lipolysis to anticipate a positive food effect. Tested formulations included rivaroxaban and itraconazole, where some formulations, but not all, exhibit a positive food effect in vivo in humans. Amorphous solid dispersion formulations of ritonavir, which exhibit a negative food effect in vivo in humans, were also studied. Fe-lipolysis and Fa-lipolysis media representing fed and fasted intestinal conditions were used. Results show frequent agreement between in vitro lipolysis predictions and in vivo human outcomes. For rivaroxaban, food effect of unformulated active pharmaceutical ingredient (API) and products were correctly predicted where 2.5 mg and 10 mg strengths did not show any food effect; however, 20 mg did show a positive food effect. For itraconazole, all four products were correctly predicted, with Sporanox, Sempera, and generic capsules having a food effect, but Tolsura not having a positive food effect. For ritonavir, lipolysis predicted a positive food effect for API and Norvir tablet and powder, but Norvir products have negative food effect in vivo in humans. Overall, the lipolysis model showed favorable predictability and merits additional evaluation.
Collapse
Affiliation(s)
- Roshni P Patel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Fang Wu
- Office of Generic Drugs, Food and Drug Administration, White Oak, MD, USA
| | | | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Tanaka Y, Arai H, Hidaka A, Noda S, Imai K, Tsujisawa F, Yagi H, Sakuma S. In Vitro Digestion-In Situ Absorption Setup Employing a Physiologically Relevant Value of the Membrane Surface Area/Volume Ratio for Evaluating Performance of Lipid-Based Formulations: A Comparative Study with an In Vitro Digestion-Permeation Model. Mol Pharm 2024; 21:3459-3470. [PMID: 38809159 DOI: 10.1021/acs.molpharmaceut.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The aim of this study is to establish and test an in vitro digestion-in situ absorption model that can mimic in vivo drug flux by employing a physiologically relevant value of the membrane surface area (S)/volume (V) ratio for accurate prediction of oral drug absorption from lipid-based formulations (LBFs). Three different types of LBFs (Type IIIA-MC, Type IIIA-LC, and Type IV) loaded with cinnarizine (CNZ), a lipophilic weak base with borderline permeability, and a control suspension were prepared. Subsequently, a simultaneous in vitro digestion-permeation experiment was conducted using a side-by-side diffusion cell with a dialysis membrane having a low S/V value. During digestion, CNZ partially precipitated for Type IV, while it remained solubilized in the aqueous phase for Type IIIA-MC and Type IIIA-LC in the donor compartment. However, in vitro drug fluxes for Type IIIA-MC and Type IIIA-LC were lower than those for Type IV due to the reduced free fraction of CNZ in the donor compartment. In pharmacokinetic studies, a similar improvement in in vivo oral exposure relative to suspension was observed, regardless of the LBFs used. Consequently, a poor correlation was found between in vitro permeation and areas under the plasma concentration-time curve (AUCoral) (R2 = 0.087). A luminal concentration measurement study revealed that this discrepancy was attributed to the extremely high absorption rate of CNZ in the gastrointestinal tract compared to that across a dialysis membrane evaluated by the in vitro digestion-permeation model, i.e., the absorption of CNZ in vivo was completed regardless of the extent of the free fraction, owing to the rapid removal of CNZ from the intestine. Subsequently, we aimed to predict the oral absorption of CNZ from the same formulations using a model that demonstrated high drug flux by employing the physiologically relevant S/V value and rat jejunum segment as an absorption sink (for replicating in vivo intestinal permeability). Predigested formulations were injected into the rat intestinal loop, and AUCloop values were calculated from the plasma concentration-time profiles. A better correlation was found between AUCloop and AUCoral (R2 = 0.72), although AUCloop underestimated AUCoral for Type IV due to the precipitation of CNZ during the predigestion process. However, this result indicated the importance of mimicking the in vivo drug absorption rate in the predictive model. The method presented herein is valuable for the development of LBFs.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hinata Arai
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Aya Hidaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Saki Noda
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Ko Imai
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Fumiya Tsujisawa
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruya Yagi
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Sakuma
- Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
3
|
Kádár S, Kennedy A, Lee S, Ruiz R, Farkas A, Tőzsér P, Csicsák D, Tóth G, Sinkó B, Borbás E. Bioequivalence prediction with small-scale biphasic dissolution and simultaneous dissolution-permeation apparatus-An aripiprazole case study. Eur J Pharm Sci 2024; 198:106782. [PMID: 38697313 DOI: 10.1016/j.ejps.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Both biphasic dissolution and simultaneous dissolution-permeation (D-P) systems have great potential to improve the in vitro-in vivo correlation compared to simple dissolution assays, but the assay conditions, and the evaluation methods still need to be refined in order to effectively use these apparatuses in drug development. Therefore, this comprehensive study aimed to compare the predictive accuracy of small-volume (16-20 mL) D-P system and small-volume (40-80 mL) biphasic dissolution apparatus in bioequivalence prediction of five aripiprazole (ARP) containing marketed drug products. Assay conditions, specifically dose dependence were studied to overcome the limitations of both small-scale systems. In case of biphasic dissolution the in vivo maximum plasma concentration (Cmax) prediction greatly improved with the dose reduction of ARP, while in case of the D-P setup the use of whole tablet gave just as accurate prediction as the scaled dose. With the dose reduction strategy both equipment was able to reach 100 % accuracy in bioequivalence prediction for Cmax ratio. In case of the in vivo area under the curve (AUC) prediction the predictive accuracy for the AUC ratio was not dependent on the dose, and both apparatus had a 100 % accuracy predicting bioequivalence based on AUC results. This paper presents for the first time that not only selected parameters of flux assays (like permeability, initial flux, AUC value) were used as an input parameter of a mechanistic model (gastrointestinal unified theory) to predict absorption rate but the whole in vitro flux profile was used. All fraction absorbed values estimated by Predictor Software fell within the ±15 % acceptance range during the comparison with the in vivo data.
Collapse
Affiliation(s)
- Szabina Kádár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Andrew Kennedy
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Samuel Lee
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Rebeca Ruiz
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Petra Tőzsér
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Dóra Csicsák
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, MA 01821, USA.
| | - Enikő Borbás
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary.
| |
Collapse
|
4
|
Ejskjær L, O'Dwyer PJ, Ryan CD, Holm R, Kuentz M, Box KJ, Griffin BT. Developing an in vitro lipolysis model for real-time analysis of drug concentrations during digestion of lipid-based formulations. Eur J Pharm Sci 2024; 194:106681. [PMID: 38128839 DOI: 10.1016/j.ejps.2023.106681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Understanding the effect of digestion on oral lipid-based drug formulations is a critical step in assessing the impact of the digestive process in the intestine on intraluminal drug concentrations. The classical pH-stat in vitro lipolysis technique has traditionally been applied, however, there is a need to explore the establishment of higher throughput small-scale methods. This study explores the use of alternative lipases with the aim of selecting digestion conditions that permit in-line UV detection for the determination of real-time drug concentrations. A range of immobilised and pre-dissolved lipases were assessed for digestion of lipid-based formulations and compared to digestion with the classical source of lipase, porcine pancreatin. Palatase® 20000 L, a purified liquid lipase, displayed comparable digestion kinetics to porcine pancreatin and drug concentration determined during digestion of a fenofibrate lipid-based formulation were similar between methods. In-line UV analysis using the MicroDISS ProfilerTM demonstrated that drug concentration could be monitored during one hour of dispersion and three hours of digestion for both a medium- and long-chain lipid-based formulations with corresponding results to that obtained from the classical lipolysis method. This method offers opportunities exploring the real-time dynamic drug concentration during dispersion and digestion of lipid-based formulations in a small-scale setup avoiding artifacts as a result of extensive sample preparation.
Collapse
Affiliation(s)
- Lotte Ejskjær
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Callum D Ryan
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - René Holm
- University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz 4132, Switzerland
| | - Karl J Box
- Pion Inc (UK), Forest Row, East Sussex, UK
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, Ireland.
| |
Collapse
|
5
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
6
|
Reppas C, Kuentz M, Bauer-Brandl A, Carlert S, Dallmann A, Dietrich S, Dressman J, Ejskjaer L, Frechen S, Guidetti M, Holm R, Holzem FL, Karlsson Ε, Kostewicz E, Panbachi S, Paulus F, Senniksen MB, Stillhart C, Turner DB, Vertzoni M, Vrenken P, Zöller L, Griffin BT, O'Dwyer PJ. Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products: An InPharma commentary. Eur J Pharm Sci 2023; 188:106505. [PMID: 37343604 DOI: 10.1016/j.ejps.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | | | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Lotte Ejskjaer
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Matteo Guidetti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Solvias AG, Department for Solid-State Development, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Edmund Kostewicz
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Shaida Panbachi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Felix Paulus
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Malte Bøgh Senniksen
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Paul Vrenken
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece; Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Laurin Zöller
- AstraZeneca R&D, Gothenburg, Sweden; Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Yukuyama MN, Zuo J, Park C, Yousef M, Henostroza MAB, de Araujo GLB, Bou-Chacra NA, Löbenberg R. Biphasic dissolution combined with modified cylinder method-A new promising method for dissolution test in drug-loaded nanoemulsions. Int J Pharm 2023; 632:122554. [PMID: 36586637 DOI: 10.1016/j.ijpharm.2022.122554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Dissolution testing is important in assessing the in vitro drug release performance for oral administration dosage forms. However, currently, a simple and efficient in vitro test to investigate critical factors that may impact the drug release and bioavailability at the development stage of a drug-loaded nanoemulsion (NE) is lacking. Thus, in this study, we developed a new combined biphasic and modified cylinder (BP + MC) method to evaluate the dissolution profile of NEs. Flubendazole (FLZ), a Biopharmaceutical Classification System (BCS) Class II drug, offers a new prospective for drug repositioning for treating lung cancer and cryptococcal meningitis. We compared the drug release profiles of three different FLZ formulations (micronized as a suspension, loaded in NE, and solubilized in oil) by using three different methods (dialysis bag, modified cylinder method, and a new BP + MC method). The results showed potential higher drug release of FLZ from the suspension compared to FLZ-loaded NE at pH 1.2, and higher drug release from FLZ-loaded NE compared to other forms in octanol phase. These results correlate well with the in vivo test performed in mice carried out in our previous works. Furthermore, the partition mechanism of the drug released from the NE is discussed in-depth in this article, as well as the advantage of drug-loaded NEs over other preparations in creating supersaturable conditions. Based on the results, we provide new insights into how dissolution methods for a poorly water-solubility drug can be designed. Therefore, we present this new combined BP + MC method as a potential new discriminative dissolution test for future studies when developing drug-loaded NE and comparing with other dosage forms.
Collapse
Affiliation(s)
- Megumi Nishitani Yukuyama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114 St NW, T6G 2H7 Edmonton, AB, Canada; Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114 St NW, T6G 2H7 Edmonton, AB, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114 St NW, T6G 2H7 Edmonton, AB, Canada
| | - Mirla Anali Bazán Henostroza
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114 St NW, T6G 2H7 Edmonton, AB, Canada
| |
Collapse
|
8
|
Virtual Cocrystal Screening of Adefovir Dipivoxyl: Identification of New Solid Forms with Improved Dissolution and Permeation Profiles. Pharmaceutics 2022; 14:pharmaceutics14112310. [DOI: 10.3390/pharmaceutics14112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The application of a computational screening methodology based on the calculation of intermolecular interaction energies has guided the discovery of new multicomponent solid forms of the oral antiviral Adefovir Dipivoxyl. Three new cocrystals with resorcinol, orcinol and hydroquinone have been synthesized and thoroughly characterized. They show improved dissolution profiles with respect to the single solid form, particularly the cocrystals of orcinol and resorcinol, which have 3.2- and 2-fold faster dissolution rates at stomach conditions (pH 1.5). Moreover, dynamic dissolution experiments that simultaneously mimic both the pH variation along the gastrointestinal tract and the partition into biological membranes show that, in addition to the faster initial dissolution, Adefovir Dipivoxyl also penetrates faster into the organic membranes in the form of resorcinol and orcinol cocrystals.
Collapse
|
9
|
Hedge O, Höök F, Joyce P, Bergström CAS. Investigation of Self-Emulsifying Drug-Delivery System Interaction with a Biomimetic Membrane under Conditions Relevant to the Small Intestine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10200-10213. [PMID: 34379976 PMCID: PMC8388123 DOI: 10.1021/acs.langmuir.1c01689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Self-emulsifying drug-delivery systems (SEDDS) have been extensively shown to increase oral absorption of solvation-limited compounds. However, there has been little clinical and commercial use of these formulations, in large part because the demonstrated advantages of SEDDS have been outweighed by our inability to precisely predict drug absorption from SEDDS using current in vitro assays. To overcome this limitation and increase the biological relevancy of in vitro assays, an absorption function can be incorporated using biomimetic membranes. However, the effects that SEDDS have on the integrity of a biomimetic membrane are not known. In this study, a quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy were employed as complementary methods to in vitro lipolysis-permeation assays to characterize the interaction of various actively digested SEDDS with a liquescent artificial membrane comprising lecithin in dodecane (LiDo). Observations from surface analysis showed that interactions between the digesting SEDDS and LiDo membrane coincided with inflection points in the digestion profiles. Importantly, no indications of membrane damage could be observed, which was supported by flux profiles of the lipophilic model drug felodipine (FEL) and impermeable marker Lucifer yellow on the basal side of the membrane. There was a correlation between the digestion kinetics of the SEDDS and the flux of FEL, but no clear correlation between solubilization and absorption profiles. Membrane interactions were dependent on the composition of lipids within each SEDDS, with the more digestible lipids leading to more pronounced interactions, but in all cases, the integrity of the membrane was maintained. These insights demonstrate that LiDo membranes are compatible with in vitro lipolysis assays for improving predictions of drug absorption from lipid-based formulations.
Collapse
Affiliation(s)
- Oliver
J. Hedge
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers Technical University, 412 96 Gothenburg, Sweden
| | - Paul Joyce
- Division
of Nano and Biophysics, Department of Physics, Chalmers Technical University, 412 96 Gothenburg, Sweden
- UniSA
Clinical & Health Sciences, University
of South Australia, 5090 Adelaide, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, 5090 Adelaide, Australia
| | - Christel A. S. Bergström
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
- The
Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, 751
23 Uppsala, Sweden
| |
Collapse
|
10
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
11
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
12
|
Bennett-Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O'Shea JP, Müllertz A, Griffin BT. Exploring porcine gastric and intestinal fluids using microscopic and solubility estimates: Impact of placebo self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J Pharm Sci 2021; 161:105778. [PMID: 33647402 DOI: 10.1016/j.ejps.2021.105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/09/2023]
Abstract
Validation and characterisation of in vitro and pre-clinical animal models to support bio-enabling formulation development is of paramount importance. In this work, post-mortem gastric and small intestinal fluids were collected in the fasted, fed state and at five sample-points post administration of a placebo Self-Emulsifying Drug Delivery System (SEDDS) in the fasted state to pigs. Cryo-TEM and Negative Stain-TEM were used for ultrastructure characterisation. Ex vivo solubility of fenofibrate was determined in the fasted-state, fed-state and post-SEDDS administration. Highest observed ex vivo drug solubility in intestinal fluids after SEDDS administration was used for optimising the biorelevant in vitro conditions to determine maximum solubility. Under microscopic evaluation, fasted, fed and SEDDS fluids resulted in different colloidal structures. Drug solubility appeared highest 1 hour post SEDDS administration, corresponding with presence of SEDDS lipid droplets. A 1:200 dispersion of SEDDS in biorelevant media matched the highest observed ex vivo solubility upon SEDDS administration. Overall, impacts of this study include increasing evidence for the pig preclinical model to mimic drug solubility in humans, observations that SEDDS administration may poorly mimic colloidal structures observed under fed state, while microscopic and solubility porcine assessments provided a framework for increasingly bio-predictive in vitro tools.
Collapse
Affiliation(s)
| | - Jacob R Jørgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
13
|
Koehl NJ, Henze LJ, Bennett-Lenane H, Faisal W, Price DJ, Holm R, Kuentz M, Griffin BT. In Silico, In Vitro, and In Vivo Evaluation of Precipitation Inhibitors in Supersaturated Lipid-Based Formulations of Venetoclax. Mol Pharm 2021; 18:2174-2188. [PMID: 33890794 PMCID: PMC8289286 DOI: 10.1021/acs.molpharmaceut.0c00645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The concept of using
precipitation inhibitors (PIs) to sustain
supersaturation is well established for amorphous formulations but
less in the case of lipid-based formulations (LBF). This study applied
a systematic in silico–in vitro–in vivo approach to assess the merits of
incorporating PIs in supersaturated LBFs (sLBF) using the model drug
venetoclax. sLBFs containing hydroxypropyl methylcellulose (HPMC),
hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinylpyrrolidone
(PVP), PVP-co-vinyl acetate (PVP/VA), Pluronic F108,
and Eudragit EPO were assessed in silico calculating
a drug–excipient mixing enthalpy, in vitro using a PI solvent shift test, and finally, bioavailability was
assessed in vivo in landrace pigs. The estimation
of pure interaction enthalpies of the drug and the excipient was deemed
useful in determining the most promising PIs for venetoclax. The sLBF
alone (i.e., no PI present) displayed a high initial drug concentration
in the aqueous phase during in vitro screening. sLBF
with Pluronic F108 displayed the highest venetoclax concentration
in the aqueous phase and sLBF with Eudragit EPO the lowest. In vivo, the sLBF alone showed the highest bioavailability
of 26.3 ± 14.2%. Interestingly, a trend toward a decreasing bioavailability
was observed for sLBF containing PIs, with PVP/VA being significantly
lower compared to sLBF alone. In conclusion, the ability of a sLBF
to generate supersaturated concentrations of venetoclax in
vitro was translated into increased absorption in
vivo. While in silico and in vitro PI screening suggested benefits in terms of prolonged supersaturation,
the addition of a PI did not increase in vivo bioavailability.
The findings of this study are of particular relevance to pre-clinical
drug development, where the high in vivo exposure
of venetoclax was achieved using a sLBF approach, and despite the
perceived risk of drug precipitation from a sLBF, including a PI may
not be merited in all cases.
Collapse
Affiliation(s)
- Niklas J Koehl
- School of Pharmacy, University College Cork, College Road, T12 YN60 Cork, Ireland.,Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Laura J Henze
- School of Pharmacy, University College Cork, College Road, T12 YN60 Cork, Ireland.,Analytical Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Waleed Faisal
- School of Pharmacy, University College Cork, College Road, T12 YN60 Cork, Ireland.,Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Daniel J Price
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.,Institution of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60439 Frankfurt am Main, Germany
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, T12 YN60 Cork, Ireland
| |
Collapse
|
14
|
Falavigna M, Brurok S, Klitgaard M, Flaten GE. Simultaneous assessment of in vitro lipolysis and permeation in the mucus-PVPA model to predict oral absorption of a poorly water soluble drug in SNEDDSs. Int J Pharm 2021; 596:120258. [DOI: 10.1016/j.ijpharm.2021.120258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
|
15
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
O'Dwyer PJ, Box KJ, Dressman J, Griffin BT, Henze LJ, Litou C, Pentafragka C, Statelova M, Vertzoni M, Reppas C. Oral biopharmaceutics tools: recent progress from partnership through the Pharmaceutical Education and Research with Regulatory Links collaboration. J Pharm Pharmacol 2021; 73:437-446. [PMID: 33793836 DOI: 10.1093/jpp/rgaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To summarise key contributions of the Pharmaceutical Education and Research with Regulatory Links (PEARRL) project (2016-2020) to the optimisation of existing and the development of new biopharmaceutics tools for evaluating the in vivo performance of oral drug products during the development of new drugs and at the regulatory level. KEY FINDINGS Optimised biopharmaceutics tools: Based on new clinical data, the composition of biorelevant media for simulating the fed state conditions in the stomach was simplified. Strategies on how to incorporate biorelevant in vitro data of bio-enabling drug products into physiologically based pharmacokinetic (PBPK) modelling were proposed. Novel in vitro biopharmaceutics tools: Small-scale two-stage biphasic dissolution and dissolution-permeation setups were developed to facilitate understanding of the supersaturation effects and precipitation risks of orally administered drugs. A porcine fasted state simulated intestinal fluid was developed to improve predictions and interpretation of preclinical results using in vitro dissolution studies. Based on new clinical data, recommendations on the design of in vitro methodologies for evaluating the GI drug transfer process in the fed state were suggested. The optimized design of in vivo studies for investigating food effects: A food effect study protocol in the pig model was established which successfully predicted the food-dependent bioavailability of two model compounds. The effect of simulated infant fed state conditions in healthy adults on the oral absorption of model drugs was evaluated versus the fasted state and the fed state conditions, as defined by regulatory agencies for adults. Using PBPK modelling, the extrapolated fasted and infant fed conditions data appeared to be more useful to describe early drug exposure in infants, while extrapolation of data collected under fed state conditions, as defined by regulators for adults, failed to capture in vivo infant drug absorption. SUMMARY Substantial progress has been made in developing an advanced suite of biopharmaceutics tools for streamlining drug formulation screening and supporting regulatory applications. These advances in biopharmaceutics were achieved through networking opportunities and research collaborations provided under the H2020 funded PEARRL project.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland.,Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
| | - Jennifer Dressman
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | | | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Chara Litou
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | - Christina Pentafragka
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Marina Statelova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
17
|
Ilie AR, Griffin BT, Brandl M, Bauer-Brandl A, Jacobsen AC, Vertzoni M, Kuentz M, Kolakovic R, Holm R. Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across Permeapad Ⓡ membrane and in vivo absorption. Eur J Pharm Sci 2020; 152:105452. [PMID: 32622980 DOI: 10.1016/j.ejps.2020.105452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022]
Abstract
Supersaturated lipid-based drug delivery systems have recently been investigated for oral administration for a variety of lipophilic drugs and have shown either equivalent or superior oral bioavailability compared to conventional non-supersaturated lipid-based drug delivery systems. The aim of the present work was to explore supersaturated versus non-supersaturated lipid-based systems at equivalent lipid doses, on in vivo bioavailability in rats and on in vitro permeation across a biomimetic PermeapadⓇ membrane to establish a potential in vivo - in vitro correlation. A secondary objective was to investigate the influence of lipid composition on in vitro and in vivo performance of lipid systems. Results obtained indicated that increasing the celecoxib load in the lipid-based formulations by thermally-induced supersaturation resulted in increased bioavailability for medium and long chain mono-/di-glycerides systems relative to their non-supersaturated (i.e. 85%) reference formulations, albeit only significant for the medium chain systems. Long chain systems displayed higher celecoxib bioavailability than equivalent medium chain systems, both at supersaturated and non-supersaturated drug loads. In vitro passive permeation of celecoxib was studied using both steady-state and dynamic conditions and correlated well with in vivo pharmacokinetic results with respect to compositional effects. In contrast, permeation studies indicated that flux and percentage permeated of supersaturated systems, either at steady-state or under dynamic conditions, decreased or were unchanged relative to non-supersaturated systems. This study has shown that by using two cell-free PermeapadⓇ permeation models coupled with rat-adapted gastro-intestinal conditions, bio-predictive in vitro tools can be developed to be reflective of in vivo scenarios. With further optimization, such models could be successfully used in pharmaceutical industry settings to rapidly screen various prototype formulations prior to animal studies.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium; School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|